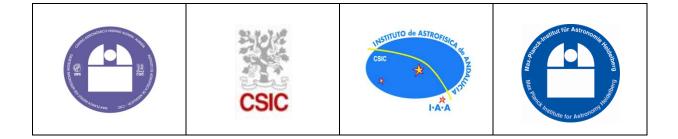


 Code:
 PANIC-MEC-SP-001


 Issue/Ver.:
 1.1

 Date:
 31.03.2017

 No. of pages:
 102

Doc.Ref:	PANIC-MEC-SP-01	
Issue: 1.1	Date: 31.03.2017	Mechanical
Page	2 / 102	As Built Report
		_

Prepared by	Armin Huber and the MPIA PANIC-Team	Max-Planck-Institut für Astronomie
Revised by	Klaus Meisenheimer	Max-Planck-Institut für Astronomie

List of acronyms and abbreviations

Assembly, Integration, Verification		
Centro Astronómico Hispano Alemán		
Coefficient of Thermal Expansion		
Final Design Review		
Finite- Element- Analysis		
Field of View		
Full Width at Half Maximum		
Generic InfraRed Software		
Instituto de Astrofísica de Andalucía		
Lens Mount		
Mirror Holder		
Multi Layer Insulation		
Max-Planck-Institut für Astronomie		
Near InfraRed		
Optics Mount		
PAnoramic Near Infrared camera for Calar Alto		
Preliminary Design Review		
Point Spread Function		
Read-out Electronics		
To Be Confirmed		
To Be Decided		

List of supporting documents

4 / 102

The following documents provide additional information about topics addressed in this As- Build-document. They are referenced as RDx in the text:

PANIC-OPT-TN-08
Complete Mechanical Tolerances
Issue 0/1 05 Mar 2009
PANIC-MEC-TN-03
Thermal cycling test of a Panic dummy lens.pdf Issue 1
PANIC-MEC-TN-04
PANIC - Investigations concerning the Mirror deflection.pdf
Issue 1
Berechnung Gehäuse_AD-rev.pdf
Druckverlust Kryostat NEU.pdf
PANIC-OPT-TN-06
Panic Optical Assembly, Integration and Verification
Issue 0/1 15 Sept 2008
PANIC-CRI-MN-01
PANIC Cryostat user manual
PANIC-MEC-TN-05
Calculating the cold distances for the PANIC optical model
PANIC-MEC-MN-01 2-0
Filter exchange procedure
PANIC-MEC-TN-06
Panic Filter Wheel Configuration
PANIC-DET-MN-01 1_0
Panic Mosaic installation manual

Contents

1	PAN	IIC General	7
	1.1	Specifications	8
	1.2	Overall design of PANIC	9
		1.2.1 Layout of the Instrument	9
		1.2.2 Optics	11
		1.2.3 Detectors	12
		1.2.4 Electronics and Software	13
2	Opto	omechanics	14
	2.1	Cryogenic Lens Mounts	
	2.2	Adjustment and Alignment	
	2.3	Cool-down and Warm-up	
	2.4	Optics overview	
		2.4.1 Entrance Window	
	2.5	Optics Mount 1	23
		2.5.1 Lens Mount 1	
		2.5.2 Mirror Structure	29
		2.5.3 Lens Mount 2	32
		2.5.4 Cold Stop Wheel	
		2.5.5 Major Changes in OM1 compared to final Design	
	2.6	Optics Mount 2	41
		2.6.1 Lens Mount 3	43
		2.6.2 Filter Wheel Unit	45
		2.6.3 Lens Mount 4	52
		2.6.4 Detector Interface	54
		2.6.5 Major Changes in OM1 compared to final Design	
3	Whe	el mechanisms	56
	3.1	General	56
	3.2	Lifetime	57
	3.3	Positional accuracy	58
	3.4	Drive	59
	3.5	Heat Dissipation	60
	3.6	Position Control	61
4	Cryo	ostat	63
	4.1	Requirements	63
	4.2	Design	64
		4.2.1 Vacuum Vessel	65
		4.2.2 Nitrogen Main Tank	69
		4.2.3 Nitrogen Vessel Detector	71

Doc.Ref: P Issue: 1.1 E Page

		4.2.4 Cold Bench	72
	4.3	Thermal analysis	76
		4.3.1 Main Vessel Heat Input	76
		4.3.2 Detector Vessel Heat Input	76
	4.4	Temperature Control and Monitoring	77
		4.4.1 Cold Bench Temperature Monitoring	77
		4.4.2 Detector Temperature Control	78
		4.4.3 Warm-up Heaters	78
	4.5	Cryostat Operation	80
		4.5.1 Opening and Closing	80
		4.5.2 Vacuum Pumping	82
		4.5.3 Cool-down	83
		4.5.4 Warm-up	84
5	PANI	C at the Telescope	85
	5.1	Telescope Adapter	86
		5.1.1 Option to Mount PANIC to the 3.5 m Telescope	89
6	Deteo	ctor	90
		6.1.1 Detector Mount	
		6.1.2 Read-out Cabling and Preamplifiers	94
7	Trolle	۷	95
	7.1	Trolley A	95
	7.2	Trolley B	
8	Othe	Topics	100
	8.1	hass Budget	
		8.1.1 Optics	
		8.1.2 Cryostat	
		8.1.3 Electronics	

1 PANIC GENERAL

A review of potential new instrumentation for Calar Alto, conducted independently at MPIA/Heidelberg and IAA/Granada, came to the unanimous conclusion that an NIR imager for the 2.2 m telescope is the new instrument which is needed most to keep Calar Alto instrumentation up to date. Therefore the project PANIC (<u>**Pa**</u>noramic <u>**N**</u>ear <u>I</u>nfrared Camera for <u>**C**</u>alar Alto) was started in October 2006. It is a joint project between IAA and MPIA, with IAA responsible for the software and optics and MPIA for the cryotechnique, mechanics, detectors and read-out electronics.

Figure 1:PANIC cryostat in its caddy with control and read-out electronics, the conical telescope adapter, the crane-flange and a liquid nitrogen vessel for filling.

1.1 Specifications

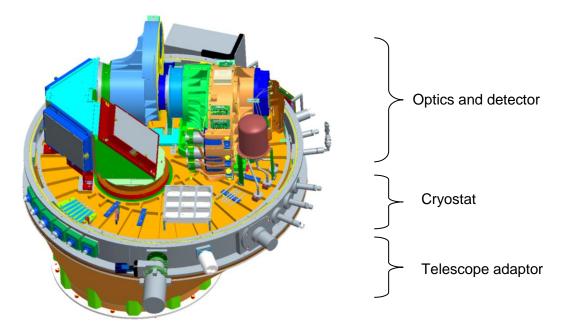
The specifications can be summarized as follows:

- 4096 x 4096 pixels
- NIR Spectral range
- Image scale 0.45 arcsec/pixel @ 2.2 m telescope, 0.22 arcsec / pixel @ 3.5 m telescope
- Cold stop to minimize thermal background
- Allow narrow band (bandwidth = 1% of central wavelength) filters
- Fit the 2.2m telescope, i.e. maximum length 120 cm, maximum mass 400kg
- Fit into the elevator cabin in the dome building

At the 2.2m telescope the instrument has a pixel scale of 0.45 arcsec/pixel and a field of view of 0.5 x 0.5 degrees and so is perfectly suited for survey-type observations.

A high resolution mode can be realized at the 3.5 m telescope since the f/10 beam at the 3.5 m telescope has twice the focal length of the f/8 beam at the 2.2 m telescope. At the 3.5 m telescope the image scale is therefore halved which makes the instrument well suited for observations at a high spatial resolution in a still large 0.25×0.25 degree field. The only additional element required is a mechanism to change between the 2 cold stops for the different telescopes. An adapter, which ensures the same focal position when instruments designed for the 2.2 m telescope are mounted on the 3.5 m telescope, already exists at Calar Alto (see section 5.1.1).

The standard auto-guiding system cannot be used with PANIC since it would vignette the field. However, the detectors allow non-destructive read-out of parts of the field which can be used for auto guiding. Guiding is probably not necessary even with narrow band filters since the tracking of the Calar Alto telescopes is very stable over a few minutes. We also implement a mode that allows a read-out of a window of 34 x 34 pixel at a rate of a few ms; this mode would be useful for certain variability studies of stars.


1.2 Overall design of PANIC

1.2.1 Layout of the Instrument

Since the optical train is about 2 m long, much longer than the maximum allowable length, a folded design is needed. Our design is shown in Figure 2 and Figure 4. Light enters the cryostat through an entrance window and then passes through lens L1 and the field stop, which limits the field of view. The mirrors M1, M2 and M3 fold the light path along a cold optical bench. All optical elements are mounted to this bench in order to minimize flexure effects. An image of the telescope primary mirror is formed between the lenses L5 and L6. At this position a cold stop mask blocks light rays which do not come from the main mirror and therefore reduces the thermal background in the K bands. Two cold-stop masks are mounted on a wheel which allows changing between the 2 cold stops required for the two different telescopes. The filter wheel module, located between the L8 and L9 lenses, contains 4 filter wheels carries a pupil imager lens which serves to control the alignment of the cold-stop. PANIC has no focussing mechanism of its own as the focussing is done with the telescope secondary mirror.

In order to save weight we have not used the widespread nested tanks design, but rather use a second small LN_2 tank to cool the detector module.

PANIC is mounted to the telescope(s) by the conical structure shown in Figure 3. This will be discussed in chapter 5.1.

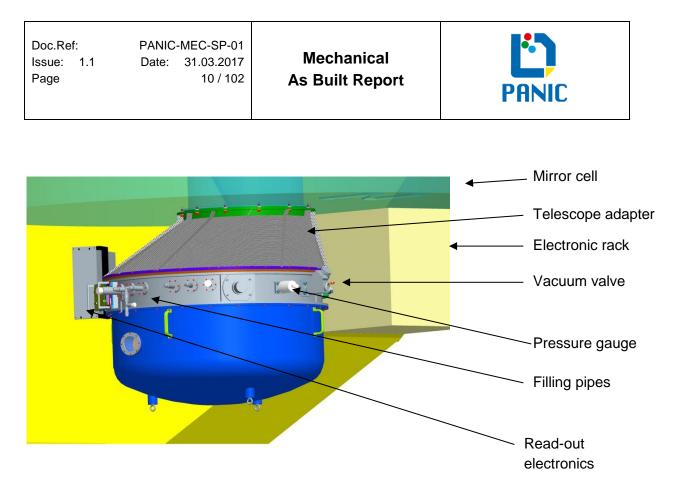


Figure 3: PANIC at the 2.2m telescope

Advantages of this design:

- Compact dimensions
- Light-weight
- All optical elements are mounted to one bench, flexure effects are minimized
- Closed modules minimize stray-light

Critical design aspects are:

- 400 kg mass limit. The mass limit originally set by the manufacturer of the telescope was 300 kg, but the identical ESO/MPG 2.2 m telescope in La Silla works perfectly for many years now with the 400 kg Wide-Field Imager. Experiments have shown that the performance of the telescope is not degraded even with a 10% larger load.
- Tight tolerances for the optics and detector, which are on the order of 30-50 µm for some elements.

Our design makes use of experience gained in many projects, particularly Omega2000. This is possible because dimensions and tolerances are comparable in both instruments. Previous solutions can obviously not be implemented exactly 1:1 but we have taken over the underlying design ideas, especially for the lens holders and the wheels.

PANIC	Mechanical As Built Report	Doc.Ref: Issue: 1.1 Page	PANIC Date:	-MEC-SP-01 31.03.2017 11 / 102
-------	-------------------------------	--------------------------------	----------------	--------------------------------------

1.2.2 Optics

PANIC is designed as a pure lens optics with 9 lenses (as shown in Figure 4). The image quality is 80% ensquared energy in 2 pixels over the whole field of view for all wavelengths. The wavelength range also includes the astronomical Z band, so PANIC is able to cover the whole spectral range from Z to K bands (0.82 - 2.5 μ m).

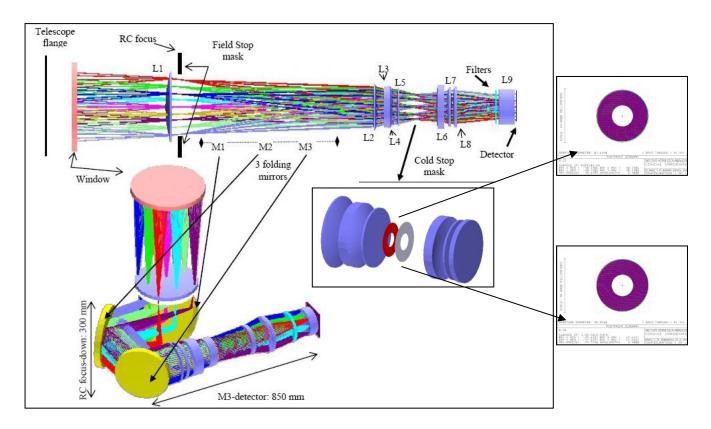


Figure 4: PANIC optical layout, original (top) and folded (bottom)

Doc.Ref: PANIC-MEC-SP-01 Date: 31.03.2017 Issue: 1.1 Page

12 / 102

1.2.3 Detectors

PANIC uses 4 HAWAII-2 RG detectors. They are mounted into a single module (see Figure 5) with a gap of 167 pixel between the individual detectors. This design results in a very nice footprint. The module dimensions are 136 x 136 x 60 mm, with a light sensitive area of 79 x 79 mm. The alignment of the 4 detectors within one plane has been measured by the manufacturer Teledyne and is within our tolerances. The module also contains heaters and temperature sensors.



Figure 5: The focal plane array. The greenish areas are the 4 light sensitive areas (left). The back of the module with connectors and heaters (right)

The detectors operate at a temperature of 77-80 K which must be held constant within ±0.1 K. A LN₂ cryostat is used to cool the instrument. To ease operation at CAHA the holding time is more than 24 hours.

More information about the detectors can be found in

PANIC-DET-MN-01 Mosaic_Installation_Manual

1.2.4 Electronics and Software

Read-out is done with MPIA's own electronics (see Figure 6) which is a further development of the Omega2000 read-out electronics. The electronics is mounted to the cryostat in order to minimize the length of the connection between detectors and the electronics. Laboratory tests of the read-out electronics with a multiplexer and also with the science detectors have been very successful.

The wheels are controlled with MPIA's standard motor control electronics which have been successfully used in many instruments. Commercially available devices supplied by LakeShore are used to monitor and control pressure and temperature of the cryostat.

Figure 6: The read-out electronics.

The instrument is controlled by MPIA's GEIRS software. An observation tool is the graphical user interface and facilitates the observations. Templates are supplied to ensure that even an un-experienced observer avoids errors. A quick-look tool allows checking of the data quality online. A pipeline will supply the observer with state of the art reduced data.

Doc.Ref: Issue: 1.1 Page

PANIC-MEC-SP-01 Date: 31.03.2017 14 / 102

2 OPTOMECHANICS

The baseline design for the opto-mechanics is a file directly derived from the optical simulation program Zemax. This file is used to determine the exact position of the optical elements. It is taken into account that the mechanical design, manufacturing and assembly will be done at ambient conditions whereas the operation temperature is at 80 K. This temperature change from manufacturing / assembly to operation causes shrinkage of the distances between the optical elements.

The tolerances for the optics are taken from the technical note PANIC-OPT-TN-08 (RD 1) from March 2009.

The optical layout is shown in Figure 7. Figure 8 explains how the optical elements are grouped into various compounds.

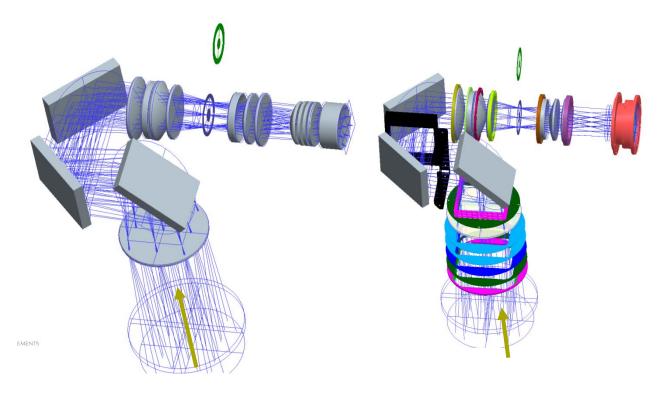
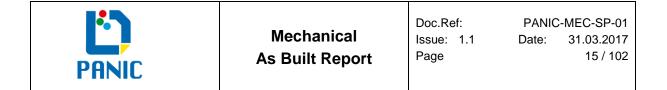



Figure 7: The optical layout with lenses and mirrors(left) and with baffles (right)

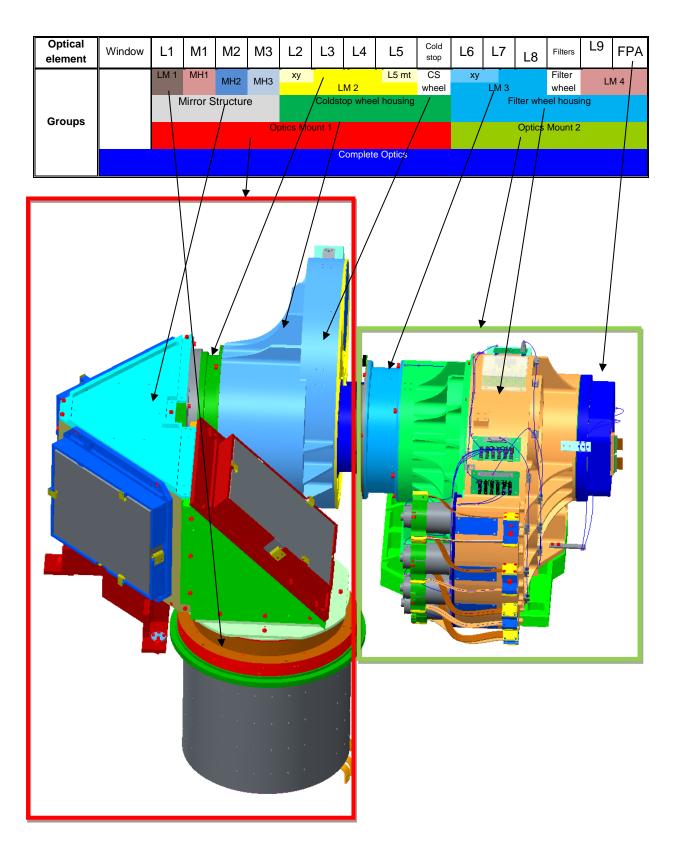
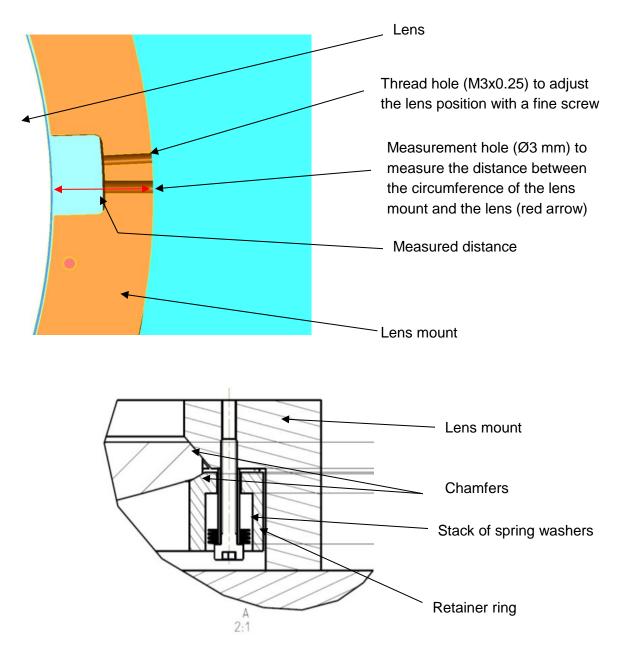


Figure 8: Overview over the optical elements and their mounts

 Doc.Ref:
 PANIC-MEC-SP-01

 Issue:
 1.1
 Date:
 31.03.2017


 Page
 16 / 102

2.1 Cryogenic Lens Mounts

The development of a lens mounting system capable of both ensuring that the optical tolerances are met and protecting the elements to survive cooling is challenging. It was chosen to implement the very successful principle developed for OMEGA2000.

2.2 Adjustment and Alignment

All lenses will be aligned individually. The raw alignment is done with well polished chamfers. The alignment is tuned by four pairs of holes drilled for each lens into the circumference of the lens mounts. Every pair consists of a measurement hole (Ø3 mm) and an adjustment hole with a fine thread (M3x0.25) for a fine screw (as shown in Figure 9).

For aligning, the distance between the circumference of the lens mount and the lens is measured at all four positions. The distances are then adjusted with the fine screws. The lens is centered in its mount if the measured distance is equal in all four measurement holes. Finally the alignment screws are removed and the mounting screws are fastened to conserve the achieved position.

Doc.Ref: P Issue: 1.1 D Page

PANIC-MEC-SP-01 Date: 31.03.2017 18 / 102

2.3 Cool-down and Warm-up

The lenses rest in the conical surfaces of the mount. Chamfers allow the lenses to move in their mounts. The retainer rings keep the lenses in this position with eight disk spring packages each. Temperature changes result in diameter changes of the parts. These changes lead to an axial displacement of the lenses and retainer rings because the parts can slide on the chamfer surfaces relatively to each other, assuming that the chamfers are manufactured very precisely and that friction can be neglected.

Cooling of the mount components and the lenses does not start simultaneously. The lenses are cooled by the mounts, and the retainer rings are cooled by the corresponding lenses and by the screws in the spring packages. Figure 10 shows the displacements of a lens and a retainer ring due to thermal shrinkage during the cool-down from ambient temperature to 77 K. The arrows in the axial direction show movements relative to the lens mount supporting surface. a) All parts at room temperature, b) Lens mount cooling, lens and ring still much warmer, c) Cold lens mount, lens cooling, retainer ring still much warmer, d) Cold lens and lens mount, retainer ring cooling.

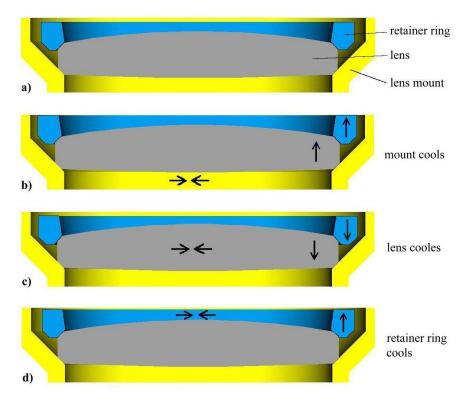


Figure 10: Displacements of lens and retainer ring due to thermal shrinkage while cooling down (explanation in the text)

The cool-down cycles during assembly showed that this principle can be successfully implemented with the larger PANIC lenses.

2.4 Optics overview

The complete optics is shown in Figure 8. For the tolerance budget "complete optics" means the optical path from the telescope interface to the cryostat cold bench.

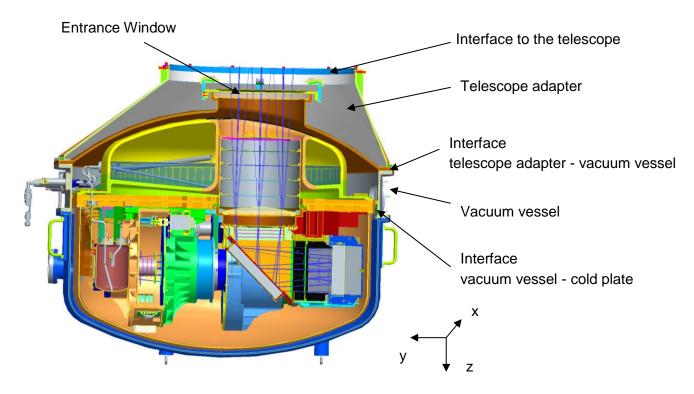


Figure 11: Interfaces and components included in "complete optics"

The table below shows the tolerance budget for the complete optics with respect to the telescope adapter. Figure 11 shows the parts between the telescope adapter and the optics. The main deformation is caused by the telescope adapter (300 μ m, see chapter 5.1) and the spacer stacks (80 μ m, see below). The tolerances of manufacturing and assembly must therefore be kept within 120 μ m.

Tolerances:

	Tilt x	Tilt y	Decenter x	Decenter y	Position z
	[arcmin]	[arcmin]	[µm]	[µm]	[µm]
	±3	±3	±500	±500	±5000
Achieved by	Manufacturing				

Doc.Ref: F Issue: 1.1 [Page

PANIC-MEC-SP-01 Date: 31.03.2017 20 / 102

The cold bench is the link between the cryostat and the optics. This part was analyzed with FE-simulations to ensure sufficient stiffness and to minimize mass. Figure 12 shows the (meshed) FE-Model. The spacer stacks are fixed at the interface to the vacuum vessel. This means the simulation shows the flexure of the spacer and the bench itself due to own weight and different orientations of the gravity vector. The masses of Optics Mount 1 and Optics Mount 2 are represented by dummies.

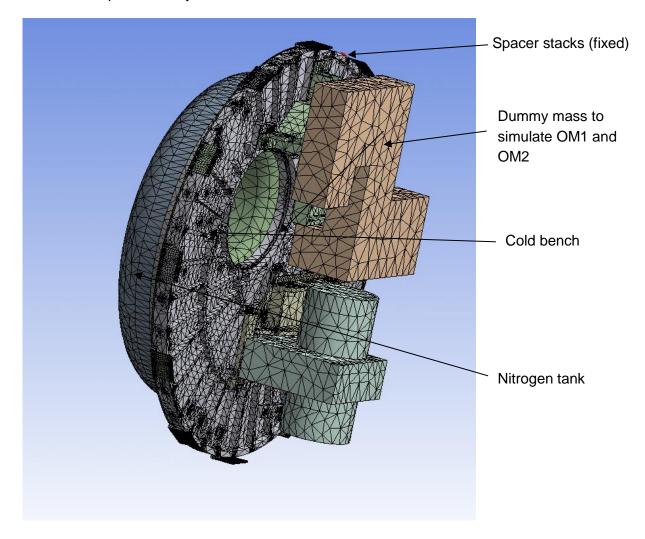


Figure 12: Simulation of the cold bench including the dummy masses.

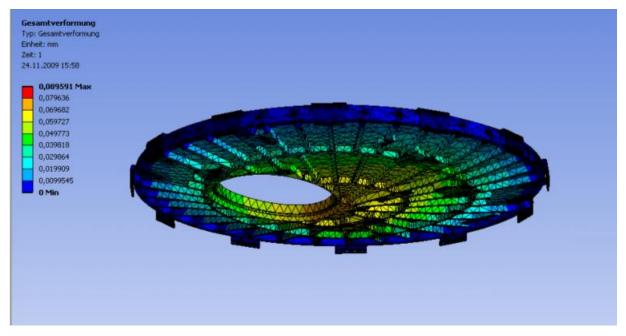


Figure 13: Results of the simulation with different orientations. top: telescope pointing to horizon, bottom: telescope pointing to zenith

 Doc.Ref:
 PANIC-MEC-SP-01

 Issue:
 1.1
 Date:
 31.03.2017

 Page
 22 / 102

The results in Figure 13 show that the deflection is in the order of about 18 μ m if the telescope is pointing to horizon and 80 μ m if pointing to zenith. Both of these values are within the tolerances.

2.4.1 Entrance Window

The entrance window is a 20 mm thick flat disc made of Infrasil 302.

Tolerances:

	Tilt x	Tilt y	Decenter x	Decenter y	Position z
	[arcmin]	[arcmin]	[µm]	[µm]	[µm]
	±4.8	±4.8			±1000
Achieved by	Manufacturing				

2.5 Optics Mount 1

Optics mount 1 is the assembly comprising of the lenses one to five, the three mirrors and the cold stop wheel. These subassemblies are integrated and verified separately.

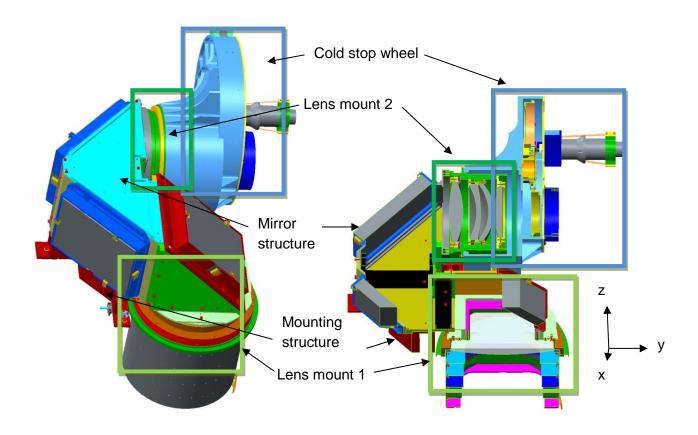



Figure 14: Optics mount 1 and its sub-components

Doc.Ref: Issue: 1.1 Page

Figure 15: Optics mount 1 after installation into the cryostat

Tolerances:

	Tilt x	Tilt y	Decenter x	Decenter y	Position z
	[arcmin]	[arcmin]	[µm]	[µm]	[µm]
	±1.02	±1.02	±50	±50	±200
Achieved by	Manufa	cturing /	Adjustment	Adjustment	Manufacturing
	Shimming				/ Shimming

Optics mount 1 can be shifted in x and y with screws. The same screws allow adjusting of the tilt perpendicular to the cold plate (tilt z). Tilt x and tilt y are defined by the planarity of the mounting structure.

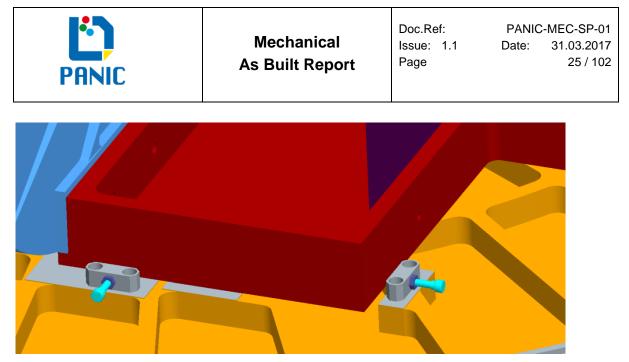


Figure 16: Adjustment screws allow optics mount 1 to be shifted in x and y direction.

The alignment is made by using four fine thread screws and one end-stop as rotation center. Turning two screws simultaeously will shift the complete assembly linearly. Rotation can be achieved by attaching the block and turning only one of the y-screws.

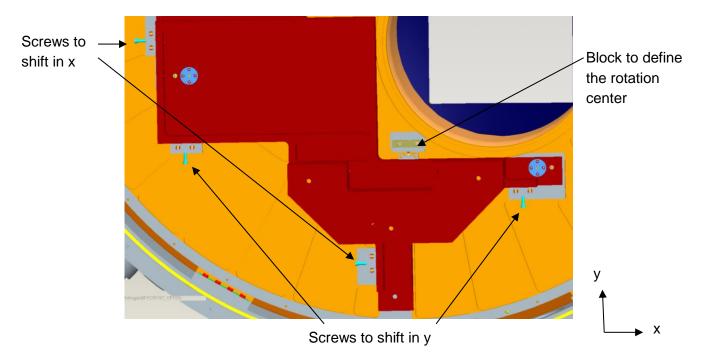


Figure 17: Optics mount 1 adjustment principle

Doc.Re	f:	PANIC	-MEC-SP-01
Issue:	1.1	Date:	31.03.2017
Page			26 / 102

Tightening sequence after alignment

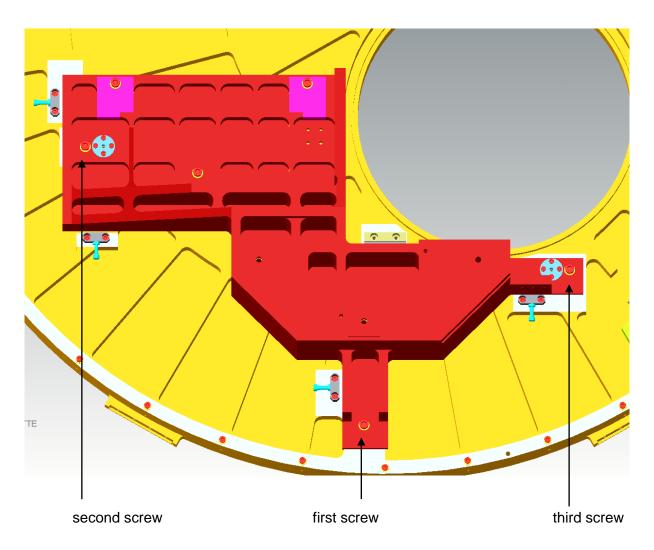
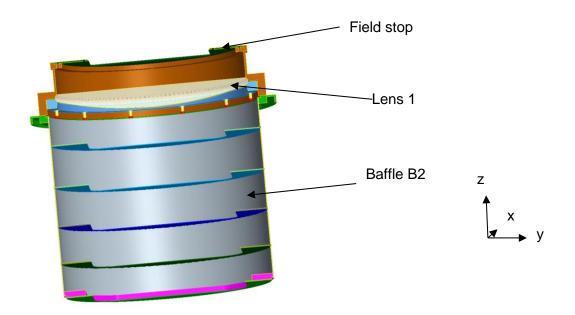



Figure 18: Sequence to tighten the screws of OM1

PANIC	Mechanical As Built Report	Doc.Ref: Issue: 1.1 Page	PANIC-MEC-SP-01 Date: 31.03.2017 27 / 102
-------	-------------------------------	--------------------------------	---

2.5.1 Lens Mount 1

Lens Mount 1 is a mount to hold the first lens before the folding mirrors. This lens is the largest lens in the instrument. The field stop and the bafffle B2 are attached to this lens mount.

Figure 19: Lens Mount 1 with lens 1, the field stop and the baffle B2

Tolerances:

	Tilt x	Tilt y	Decenter x	Decenter y	Position z
	[arcmin]	[arcmin]	[µm]	[µm]	[µm]
	±1.2	±1.2	±50	±50	±100
Achieved by	Manufacturing		Fitting diameter		Manufacturing

The decentring value is minimized by a fitting diameter. The z-position of the interface surface provides the correct z-position of lens mount 1

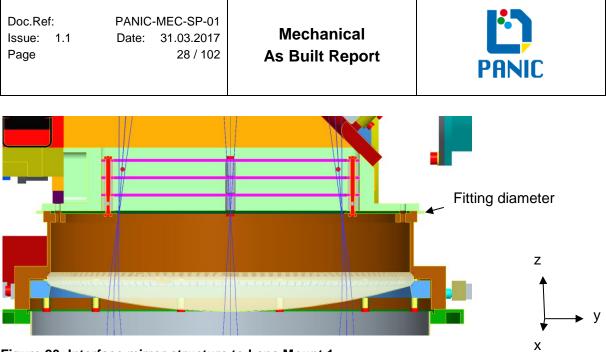


Figure 20: Interface mirror structure to Lens Mount 1

2.5.1.1 Lens 1

Lens 1 is directly attached to Lens Mount 1. The correct integration of Lens 1 into the mount will be achieved by measuring and re-adjusting the actual lens position as described in section 2.2.

2.5.1.2 Baffle B2

Baffle B2 is the largest baffle in the system and placed in front of Lens Mount 1.

2.5.2 Mirror Structure

The mirror structure folds the optical beam three times by 90°.

Due to limited mass budget the mirror sizes must be reduced to an absolute minimum. Therefore FE-analysis investigating circular, elliptical and rectangular mirrors has been performed. The results show that a rectangular shape meets the requirements with the lowest mass.

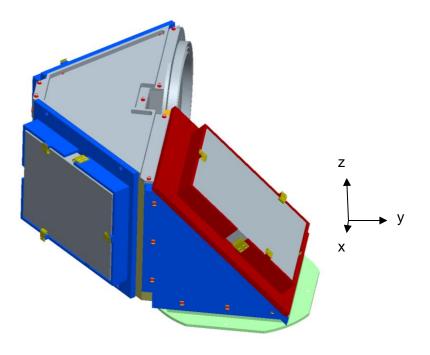


Figure 21: The mirror structure

Tolerances:

		Tilt x	Tilt y	Decenter x	Decenter y	Position z
		[arcmin]	[arcmin]	[µm]	[µm]	[µm]
		±1.2	±1.2	±50	±50	±100
Α	chieved by	Manufacturing precision and doweling				

The mirror structure is doweled to the Optics Mount 1 to achieve the required precision. All interface surfaces are remachined after assembly of the structure to provide the required tolerances.

Doc.Ref:	PANIC-MEC-SP-01
Issue: 1.1	Date: 31.03.2017
Page	30 / 102

2.5.2.1 Mirror Holders

The mirrors are mounted in Mirror Holders (MH) using a three point mounting. The mirrors are clamped to their mounts with spring elements allowing the aluminum to shrink differently than the mirror substrate which is made of Zerodur.

Two springs (radial springs) clamp the mirror in x- and y- direction by pressing the mirror against three support surfaces (shown white in Figure 22). Three additional springs press the mirror against the support surfaces in z-direction (shown white in Figure 22).

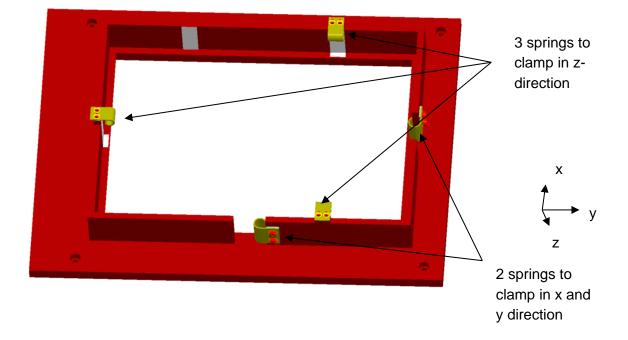


Figure 22: Mirror holder design for supporting the three mirrors. Three springs clamp the mirror in x direction, one in y and one in z direction.

Tolerances:

The tolerances are equal for every Mirror Holder and include the positioning of the mirror inside the holder.

	Tilt x	Tilt y	Decenter x	Decenter y	Position z
	[arcmin]	[arcmin]	[µm]	[µm]	[µm]
	±1.5	±1.5	±100	±100	±100
Achieved by	Initial measurement with possibility for remachining				

2.5.2.2 Mirror Size

To determine the thickness of the mirrors the self-weight deflection has been analyzed using FE-analysis. Figure 23 shows the boundary conditions used in the model.

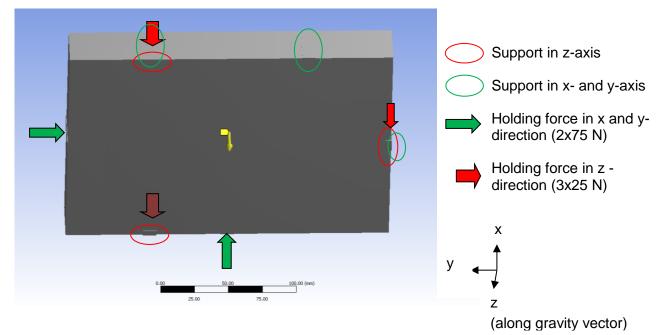
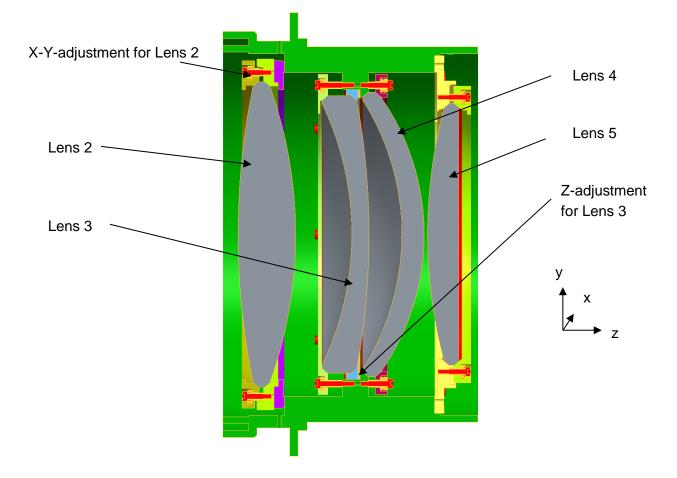


Figure 23: Boundary conditions to model the mirror support

The yellow arrow shows the gravity vector. The mirror is supported in z-direction by three support surfaces (red ellipses in the figure above). The support in x- and y-direction is made by three support surfaces on two sides (green ellipses). Four fixation spring clamps press the mirror against these support surfaces. The force is calculated to be 75 N (twice the gravity force). The green arrows point to the surfaces where the forces for the x- and y-directions are applied. Each arrow represents a force of 75 N. The z-direction force (red arrows) is split over three surfaces exactly opposite to the support surfaces. Each arrow represents a force of 25 N resulting in a total force of 75 N.


With these conditions several test runs at different mirror shapes and mirror thicknesses were made to determine the most lightweight mirror geometry. The calculations resulted in rectangular mirrors with a size of:

Mirror	Surface	Thickness	Mass
M1	174 mm x 238 mm	30 mm	3.15 kg
M2	236 mm x 170 mm	30 mm	3.05 kg
M3	236 mm x 170 mm	35 mm	3.55 kg

The details of this analysis can be found in RD 3.

Doc.Ref: Issue: 1.1 Page	PANIC-MEC-SP-01 Date: 31.03.2017 32 / 102	Mechanical As Built Report	PANIC
--------------------------------	---	-------------------------------	-------

2.5.3 Lens Mount 2

Figure 24: Boundary lens mount 2 group

The lenses L2 to L5 are assembled to a common mount (Lens Mount 2).

De-airing

The air between the lenses can dissipate via transfer ports and radial holes. To deaerate the volume between lens 3 and lens 4 there are three slots in the z-adjustment ring for lens 3 allowing the air to flow into the volume between lens 3 and lens 2.

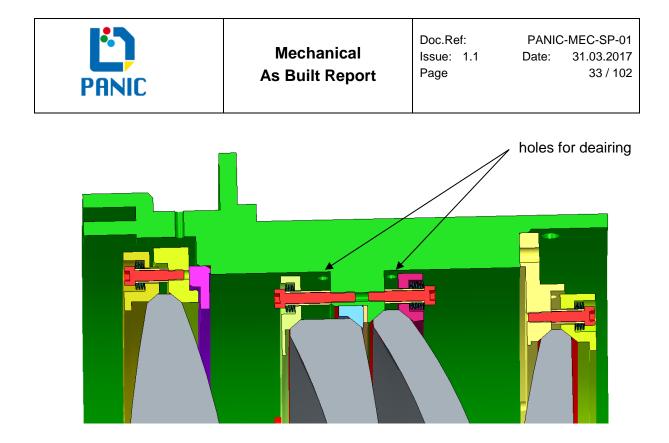
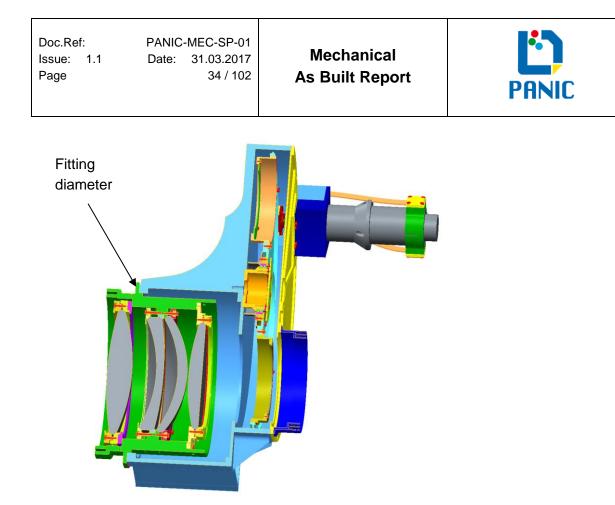



Figure 25: De-airing is done by radial holes

Tolerances:

	Tilt x	Tilt y	Decenter x	Decenter y	Position z
	[arcmin]	[arcmin]	[µm]	[µm]	[µm]
	±1.2	±1.2	±50	±50	±100
Achieved by	Manufacturing (fitting diameter + additional support)				

The tube of lens mount 2 is inserted into a fitting diameter of the cold stop wheel housing. This diameter guarantees the position in x, y and z.

Figure 26: Positioning of lens mount 2

2.5.3.1 Lens 2

Lens 2 is adjustable in x and y direction in order to align lens mount 2 and to allow less tight tolerances.

The adjustment unit for lens 2 allows it to be shifted in the in x and y direction (perpendicular to the optical axis). The unit consists of two rings with parallel flat surfaces that allow the attached lens to slide along this surface.

PANIC	Mechanical As Built Report	Doc.Ref: Issue: 1.1 Page	PANIC-MEC-SP-01 Date: 31.03.2017 35 / 102
-------	-------------------------------	--------------------------------	---

Adjustment unit for Lens 2

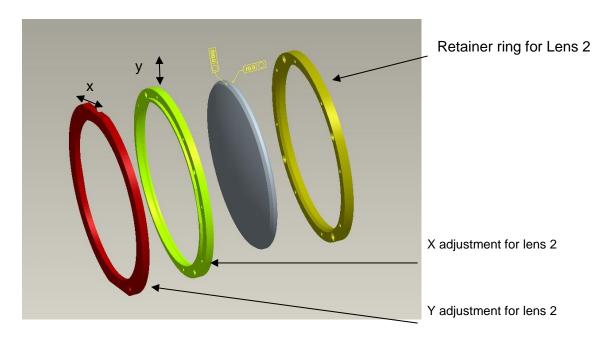
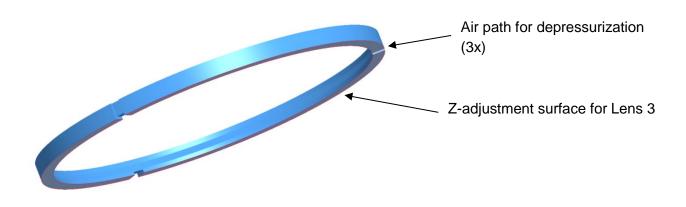



Figure 27: Adjustment unit for Lens 2

The alignment will be done with micrometer screws. After aligning, the achieved position will be fixed by fastening the mounting screws.

Doc.Ref: PANIC-MEC-SP-01 Issue: 1.1 Date: 31.03.2017 Page 36 / 102	Mechanical As Built Report	PANIC
--	-------------------------------	-------

2.5.3.2 Lens 3

Figure 28: Adjustment ring for lens 3

Lens 3 is attached via a spacer ring. This ring will be adapted to the correct size during integration. The task of this ring is to define the correct distance between lens 3 and lens 2 in order to compensate assembly and manufacturing tolerances in the lens mount 2 group.

2.5.3.3 Lens 4

Lens 4 is directly attached to lens mount 2.

2.5.3.4 Lens 5

Lens 5 would require a large diameter to fit over lens 4. A small mount holding lens 5 was designed to avoid this. This mount is screwed to lens mount 2 and allows lens 5 to have a reduced diameter. To achieve exact positioning the mount for lens 5 will have a fitting diameter to fit into lens mount 2.

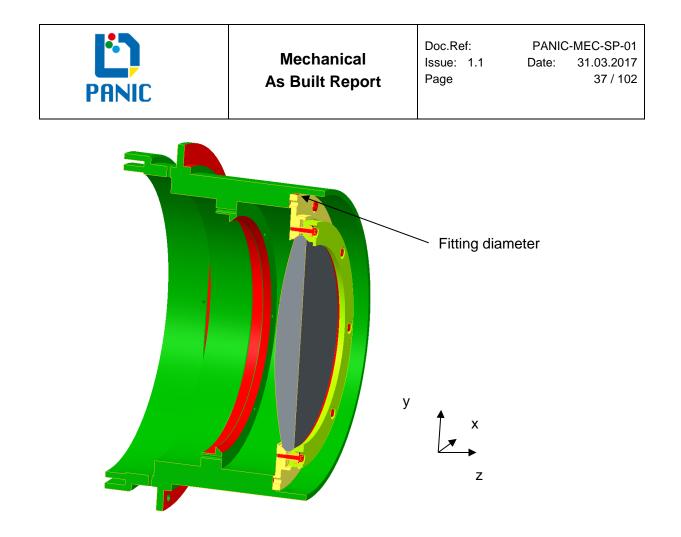


Figure 29: Lens 5 with its support in Lens Mount 2

Doc.Ref: PANIC-MEC-SP-01 Issue: 1.1 Date: 31.03.2017 Page

38 / 102

2.5.4 Cold Stop Wheel

The last optical element in Optics Mount 1 is the Cold Stop Wheel. Its task is to insert either the cold stop mask for the 2.2 m telescope or the mask for the 3.5 m telescope into the optical beam. The wheel also includes open positions to allow measurements without a mask in the optical beam.

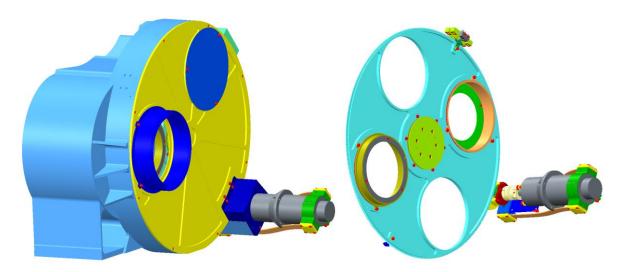


Figure 30: The cold stop wheel; left the complete view right without cover

Details about the wheel mechanisms can be found in chapter 3 which describes all aspects of the PANIC wheel mechanisms.

Figure 31: The cold stop wheel; with cover removed

Tightening sequence after alignment

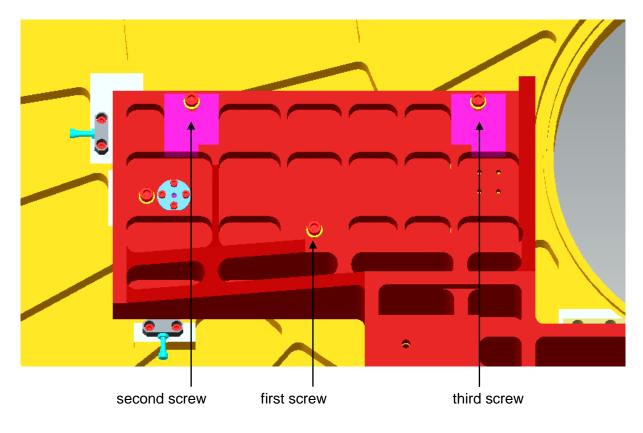


Figure 32: Sequence to tighten the screws of Cold Stop Wheel

 Doc.Ref:
 PANIC-MEC-SP-01

 Issue:
 1.1
 Date:
 31.03.2017

 Page
 40 / 102

2.5.5 Major Changes in OM1 compared to final Design

To fulfill the tolerances for LM2 at all zenith distances, the lens-mount is directly mounted to the CS-wheel housing. This housing was therefore modified and optimized by FE-analysis.

The approach with the manufacturing tolerances turned out to be too optimistic. A thin shimming foil is used to achieve the required accuracy.

2.6 Optics Mount 2

Optics Mount 2 is the assembly comprising the lenses six to nine and the filter wheel. These subassemblies are integrated and verified separately.

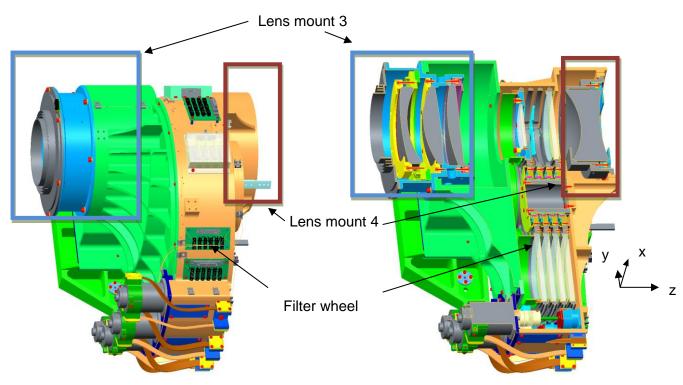
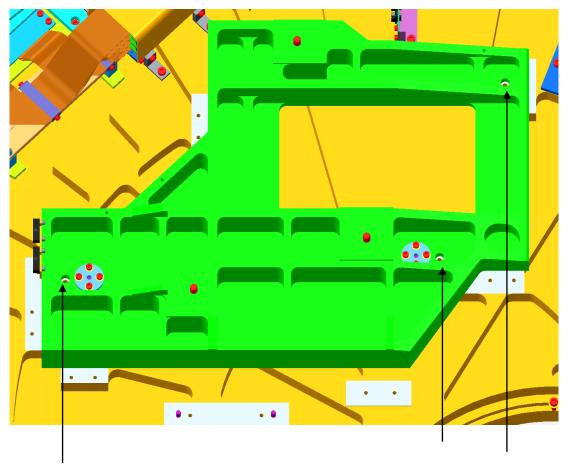


Figure 33: Optics mount 2 and its components

Tolerances:


	Tilt x	Tilt y	Decenter x	Decenter y	Position z
	[arcmin]	[arcmin]	[µm]	[µm]	[µm]
	±1.50	±1.50	±50	±50	±100
Achieved by	Shimming	Adjustable	Adjustable	Manufacturing	Adjustable

Optics Mount 2 can be shifted in x and y with screws. The same screws allow correcting the tilt perpendicular to the cold plate (tilt y). Tilt x and tilt z are defined by the flatness of the mounting structure. The alignment concept is the same as for the optics mount 1. (see chapter 2.5)

Doc.Re	f:	PANIC	-MEC-SP-01
Issue:	1.1	Date:	31.03.2017
Page			42 / 102

Tightening sequence after alignment

first screw


third screw second screw

Figure 34: Sequence to tighten the screws of Optics Mount 2

PANIC	Mechanical As Built Report	Doc.Ref: Issue: 1.1 Page	PANIC-MEC-SP-01 Date: 31.03.2017 43 / 102
-------	-------------------------------	--------------------------------	---

2.6.1 Lens Mount 3

Lenses 6 to lens 8 are grouped to lens mount 3. This assembly is similar to lens mount 2.

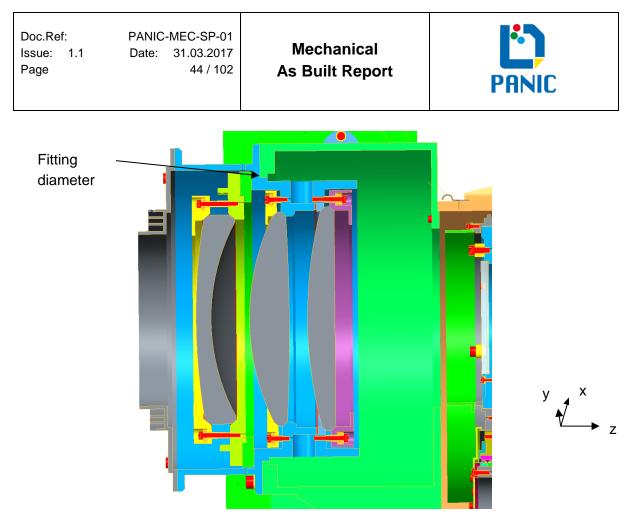


Figure 35: Lens mount 3 group

Tolerances:

	Tilt x	Tilt y	Decenter x	Decenter y	Position z
	[arcmin]	[arcmin]	[µm]	[µm]	[µm]
	±1.2	±1.2	±50	±50	±90
Achieved by	Manufacturing (fitting diameter + additional support)				

The tube of lens mount 3 is inserted into a fitting diameter on the filter wheel housing. This diameter guarantees the position in x, y and z. An additional support is attached at the opposite side.

Figure 36: Positioning of lens mount 3

2.6.1.1 Lens 6

Lens 6 is adjustable in the x and y direction for alignment purposes. This adjustment is done in the same way as described in chapter 2.5.3.1 for lens 2.

2.6.1.2 Lens 7

Lens 7 is directly attached to lens mount 3.

2.6.1.3 Lens 8

Lens 8 can be adjusted in z-direction via a spacer ring in a similar manner to lens 5 in lens (chapter 2.5.3.4).

2.6.2 Filter Wheel Unit

The filter wheel unit comprises four filter wheels each with six positions. In each wheel there is one open and one closed position. Wheel 1 also carries the pupil imager lens for alignment purposes. Th total there are $3 \times 4 + 1 \times 3 = 15$ positions available. In total 15 different filters can be mounted. Unused positions are closed with an aluminum dummy.

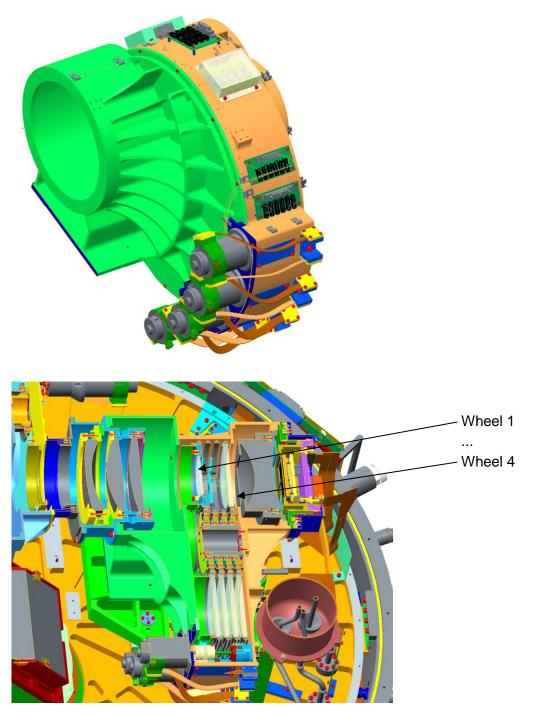


Figure 37: The wheels are numbered according to their order in the light-path

Doc.Ref	1:	PANIC	MEC-SP-01
Issue:	1.1	Date:	31.03.2017
Page			46 / 102

2.6.2.1 Pupil Imager Lens

The pupil imager lens is a single ZnSe lens and is attached to filter wheel 1. This lens is mounted in the same way as the other lenses.

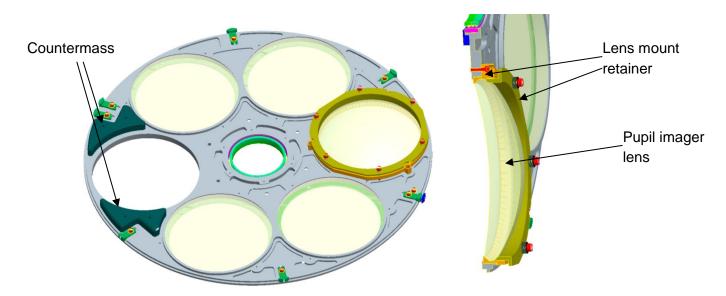


Figure 38: Filter wheel 1 with the pupil imager lens and counterweights

2.6.2.2 Filters

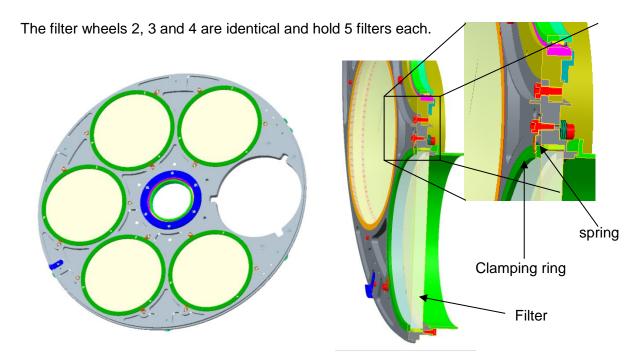
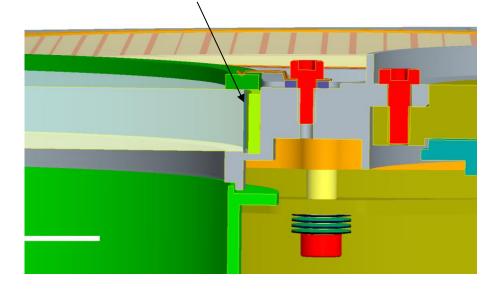
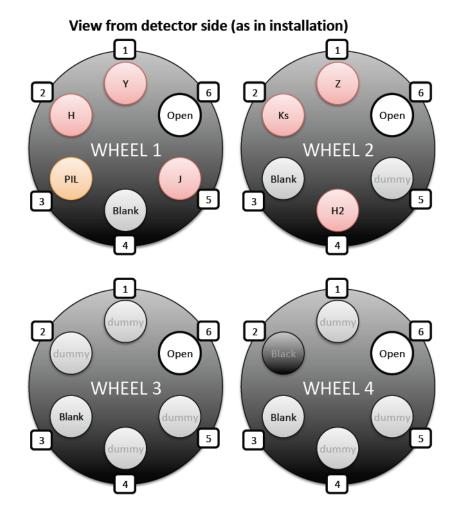



Figure 39: Left: Design of the filter wheels 2 - 4. Right: Cross section showing mounting concept.

To adjust the inner diameter of the filter mount to the actual filter size an aluminum ring is inserted into the mount:

The inner diameter of this ring is large enough to ensure a gap to the filters of 0.5mm at cold. Assuming the FSi substrate does not shrink at all and remains at 117.855 mm in diameter, the inner diameter of the ring has a diameter of 119.4 mm at warm resulting in 118.95 mm at cold. The resulting gap will be 0.55 mm.


Doc.Ref:		PANIC	-MEC-SP-01
Issue:	1.1	Date:	31.03.2017
Page			48 / 102

Filter positions as equipped during delivery.

For the current configuration please refer to RD 10 (Panic Filter Wheel configuration).

				Po	sition		
		1	2	3	4	5	6
	1	Y	Н	PIL	Blank	J	open
wheel	2	Z	Ks	Blank	H2	dummy	open
Å	3	dummy	dummy	Blank	dummy	dummy	open
	4	dummy	dummy	Blank	dummy	dummy	open

Doc.Ref: Issue: 1.1 Page PANIC-MEC-SP-01 Date: 31.03.2017 49 / 102

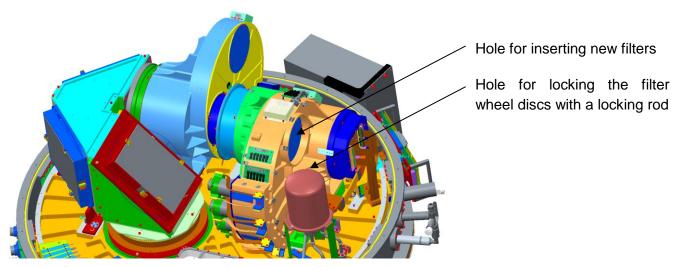

As-built images of the filter wheels. Position 1 is always on top.

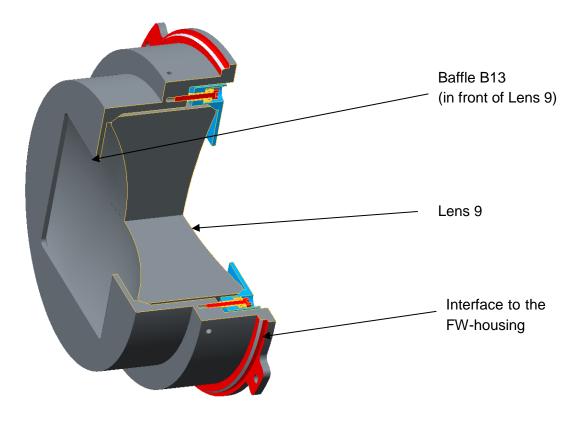
Doc.Ref: Issue: 1.1 Page PANIC-MEC-SP-01 Date: 31.03.2017 50 / 102

Mechanical As Built Report

2.6.2.3 Changing Filters

It is possible to change the mounted filters without disassembling the filter wheel unit. A hole is therefore incorporated in the filter wheel housing to allow access to the wheel disks.




Figure 40: Filter access

The details of this filter change concept are described in the filter changing procedure RD9 (Panic Filter Exchange Procedure).

2.6.3 Lens Mount 4

Lens mount 4 carries lens 9 and is directly attached to the filter wheel housing. Lens mount 4 also provides the interface to the detector unit.

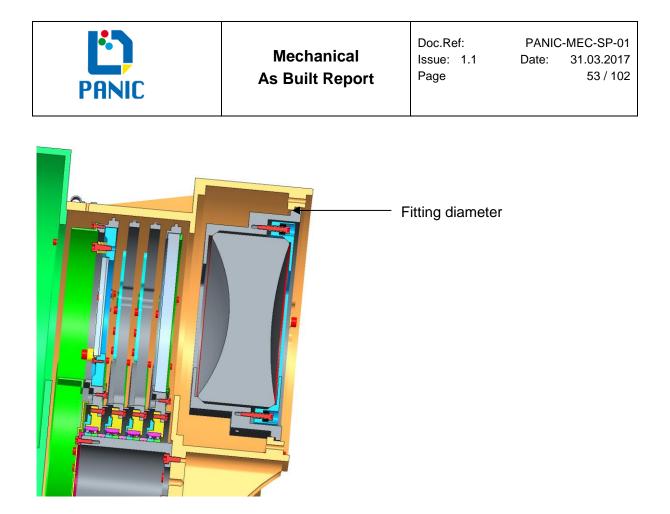


Figure 41: Lens mount 4 with lens 9 attached.

Tolerances:

	Tilt x	Tilt y	Decenter x	Decenter y	Position z
	[arcmin]	[arcmin]	[µm]	[µm]	[µm]
	±1.5	±1.5	±50	±50	±90
Achieved by	Manufacturing (fitting diameter)				

Lens mount 4 is attached in a similar way as lens mount 3. Again a fitting diameter is used to ensure the correct position of the mount.

2.6.3.1 Lens 9

Lens 9 is directly attached to lens mount 4. Unlike the other lenses lens 9 has a rectangular baffle, an aspect that must be considered during assembly since its orientation is important.

2.6.4 Detector Interface

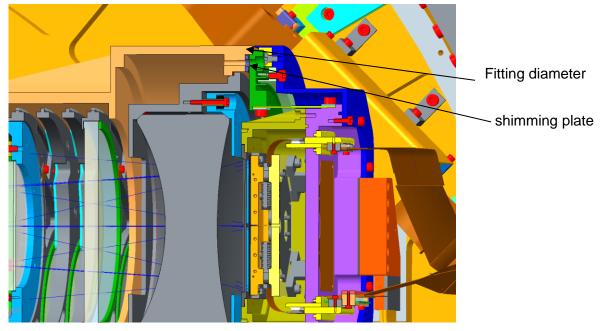


Figure 42: The interface to the detector

The detector is attached directly to the rear surface of the filter filter wheel housing.

Tolerances:

	Tilt x	Tilt y	Decenter x	Decenter y	Position z
	[arcmin]	[arcmin]	[µm]	[µm]	[µm]
	±2.4	±2.4	-	-	+200 / -50
Achieved by	Manufacturing (fitting diameter)				

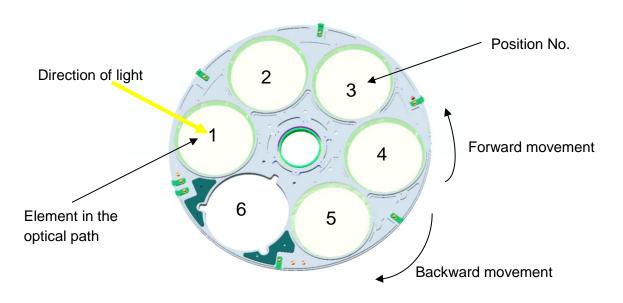
The detector is attached to the filter wheel housing in the same way that lens mount 4 is attached. Again a fitting diameter is used to ensure the correct position of the mount. In addition there is a shimming plate to tweak the detector surface to the focal plane in both distance and tilt. The complete procedure to install the detector to Panic is described in RD11 (Panic Mosaic Installation Manual).

2.6.5 Major Changes in OM2 compared to final Design

To fulfill the tolerances for LM3 at all zenith distances, the lens-mounts are directly mounted to the CS-wheel housing. This housing was therefore modified and optimized by FE-analysis.

The detector module is also directly mounted to this housing. To compensate for tilt and to achieve the best focus a wedge angled shimming ring has been inserted.

The approach with the manufacturing tolerances was too optimistic. A thin shimming foil between OM2 and the cold bench is necessary to achieve the required accuracy.


The filters are not equipped with an aluminum carrier frame. This resulted in a slightly smaller filter diameter, which is compensated by a ring, which is installed around the filter with a sufficient gap to allow different shrinkage rate of the ring vs the glass substrate.

3 WHEEL MECHANISMS

3.1 General

PANIC has 5 wheels, 4 filter wheels and 1 cold stop wheel. They have teeth on the outer circumference and are driven by bevel wheels. The filter wheels each have six positions including one open position.

Figure 43: Definition of wheel positions and directions

It is obvious that a gear between the motor and the bevel wheel improves the positional accuracy. However, since the lifetime of cryogenic gears (Harmonic Drive) have a maximum of 10000 turns at the output, we must consider not only positional accuracy, but also lifetime.

3.2 Lifetime

a) Cold stop wheel

The cold stop wheel will be moved only a few times per year, so the lifetime of a gear in this mechanism is not an issue.

b) Filter wheels

The number of turns of the bevel wheels is given by

N = mpn x npy x tpm

Where

mpn = movements per night. Based on existing experience on Calar Alto with Omega2000 the number of filter movements is between 1 and 100 per night, depending on the astronomical program. We assume a mean value of 30 movementsper night but expect the actual number to be lower than this.

```
npy = nights per year in which PANIC is used. We assume npy = 100
```

tpm = turns of bevel wheel per movement of wheel. Each filter movement requires the movement of at least 1 filter wheel, up to 180° . With a transmission ratio wheel/gear of 13.4:1 (see below) the motor turns $\frac{1}{2} \times 13.4 = 6.7$ times per filter change. Thus we obtain

$N = 30 \times 100 \times 6.7 = 19,000$ turns per year.

This would mean a lifetime of only 0.5 years for the gears It is clear that these gears would be unsuitable for the wheel mechanism. The wheels have been designed to incorporate drive systems without gears.

The lifetime of the motors is expected to be 150000 revolutions. With 19000 revolutions per year this would lead to an expected lifetime of 7.7 years and therefore is sufficient. Nevertheless we plan to accumulate the number of turns made by each motor in the software and issue a warning when the end of the lifetime is approached.

 Doc.Ref:
 PANIC-MEC-SP-01

 Issue:
 1.1
 Date:
 31.03.2017

 Page
 58 / 102

3.3 Positional accuracy

a.) Filter wheels

Each step of the motor corresponds to a displacement dx of the filter wheel which is obviously given by

$$\frac{dx}{2\pi \cdot r} = \frac{1}{200} \frac{1}{13.4}$$

Here r is the radius of the filter wheel on the optical axis. With r = 129 mm we obtain dx = 0.3 mm. Using the control software we will ensure that the motor actually stops in a magnetic detent. This is possible since the resolution of the resolvers used for position control is 1/24 of a motor step. The positional repeatability is obviously higher than 1 step, probably by a factor of around 15, so we conclude dx ~20 µm which corresponds to ~ 1 pixel.

b.) Pupil imager lens

The requirement for the *absolute position* of the pupil imager lens is dx = 0.1 mm. This can be easily reached since the motors are actually moved in microsteps, where 1 step = 256 microsteps. The motor is held in position by sustaining the motor current.

c.) Cold stop wheel

The cold stop has a diameter of 94 mm for the 2.2 m telescope and 79 mm for the 3.5 m telescope (including 3% oversize). It has been demonstrated that this oversize increases the background noise in the K bands by only about 5% of the sky background. The absolute positional accuracy in a drive with gear is obviously much higher than needed. Nevertheless we will use a gear here since this allows maintaining the position of the cold stop with an unpowered motor.

3.4 Drive

The main parts of the drives are shown in Figure 44. The drives are identical for the 4 filter wheels, but the drive for the cold-stop has an additional gear.

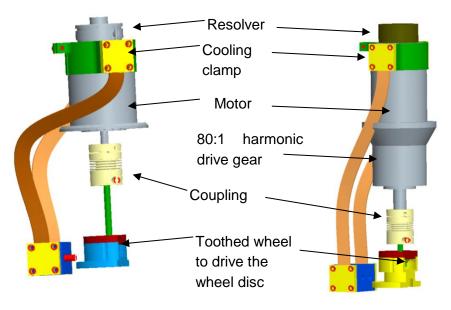


Figure 44: The main parts of the wheel drives. Left: one of four identical filter wheel power trains, right: the power train for the cold stop wheel

All wheels in PANIC have an identical diameter of 395 mm. The central bearing is a thin section duplex bearing with Dicronite (WS₂) lubrication. The wheels have 563 teeth and the bevel wheels have 42 teeth, this results in a 13.4:1 gear ratio. The cold-stop wheel has an additional harmonic drive gear at the exit of the motor with a ratio of 80:1.

The modulus of the gear is 0.7.

All wheels are driven by Phytron VSS 52.200.2.5-UHVC-HD-LTN-4Lp motors. These stepper motors are specially designed for vacuum and cryogenic applications.

All motors are equipped with a resolver (LTN RE15-1-A14 from LTN Servotechnik). These resolvers supply position information.

For the filter wheel one complete revolution are 200(full steps per motor revolution) \cdot 563 (number of teeth at the filter wheel) \div 42 number of teeth at the bevel wheel = 2680.95... steps. For the Cold Stop Wheel this number is – due to the additional 80:1 harmonic drive gear - 80 times higher: 214475.2... steps.

Doc.Ref: PANIC-MEC-SP-01 Date: 31.03.2017 Issue: 1.1 Page

60 / 102

3.5 Heat Dissipation

During movement of the wheels the power dissipated from the motors is 5.8 W, assuming 40 rpm, 1.5 A_{rms} , 256 microsteps and 77 K. 40 rpm at the motor result in 40/13.4 = 3 rpm at the wheels, which results in time to change a filter of <10 sec. The heat dissipated by the wheels is therefore negligible.

Once a position has been reached the current of the motors will be turned off in order to reduce power dissipation. The holding torque of the motor is 13 mNm, which corresponds to 174.2 mNm for the filter wheels and 8.7 Nm for the cold stop wheel. The filter wheels require balancing, since 1 (unbalanced) filter would cause a torque of 600 mNm. The cold stop wheel is naturally very well balanced.

In order to maintain the position of the pupil imager on a micro step, the motor current must not be turned off completely. If the current is reduced by 50% then the heat dissipation is 280 mW. This is not a problem since the pupil imager is used only for a quick check after installation of PANIC at the telescope.

3.6 Position Control

Position control of the wheels is achieved by positional switches that are activated by cams on the wheels. Figure 45 and Figure 46 show the how a wheel position is detected. One switch operated by one cam on the rear side is used to detect the absolute position. In addition there is a second switch operated by six cams (one cam per position) to detect if the wheel is in a working position or in between positions. This second cam switch is not able to identify which position is in the optical path. Although this system is sufficient to determine the absolute wheel position, a redundancy is introduced. A second cam close to the cam between position 1 and 6 provides absolute position information.

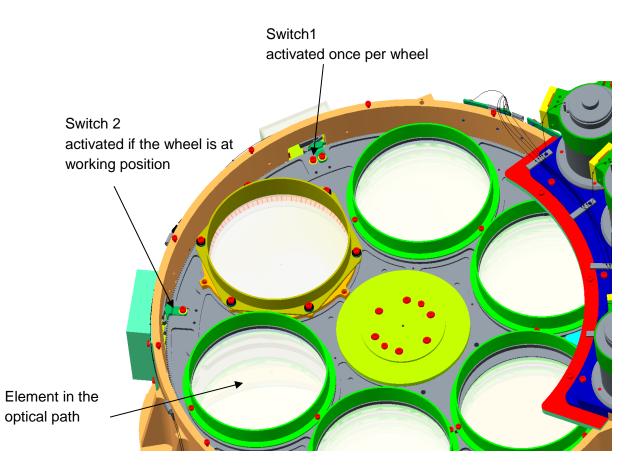


Figure 45: Two switches per wheel provide information about the actual wheel position

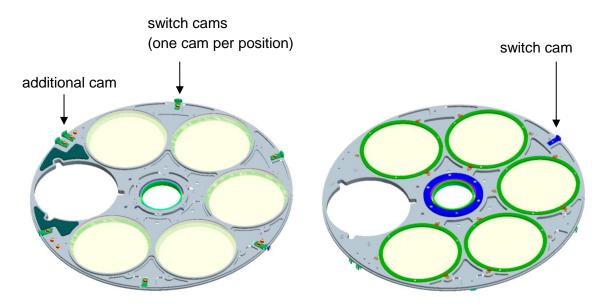


Figure 46: The filter wheel disc front side (left) has one cam per position, the rear side (right) has only one cam.

Two switches operated by one cam each are used to identify the two cold stop mask positions.

Experience with Omega2000 has shown that additional position information is desirable. We have therefore added resolvers on the motor axes which provide independent absolute position information.

4 CRYOSTAT

To provide the cold environment for the optics and the detector the complete instrument is built into a cryostat. The cryostat is designed as a nitrogen bath cryostat in order to cool the complete optics to a temperature below 100 K.

4.1 Requirements

Cold optics temperature	<100 K
Detector operation temperature	80 ±2 K
Detector temperature stability	± 0.1 K
Detector warm up and cool down rate	<1 K/min
Time between service / refilling	> 30 h
Total mass including optical bench,	
excluding optics, detector and LN_2 filling	< 180 kg
Total mass for the complete instrument	< 400 kg

Doc.Ref: PA Issue: 1.1 Da Page

4.2 Design

The cryostat is a nitrogen bath cryostat with a large vessel to cool the complete structure. To reduce LN_2 consumption and thermal gradients we use 20 layers of multilayer insulation (MLI) on the cold surface. This should reduce the heat load from radiation to about 5 W/m². For a constant detector temperature we use a second small LN_2 vessel to cool the detector exclusively. For weight reduction dished ends on the vacuum can instead of flat thick walled plates are used.

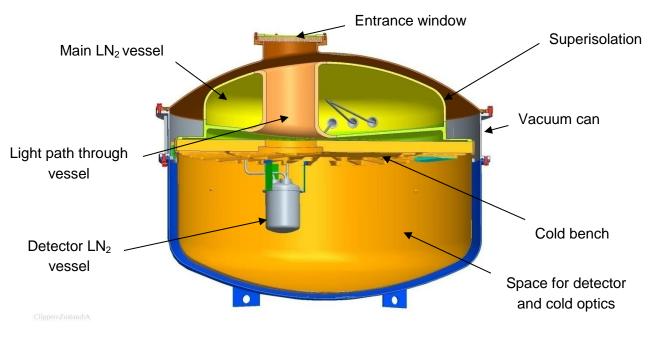


Figure 47: cross section through the cryostat

4.2.1 Vacuum Vessel

The vacuum vessel consists of 3 parts. There is a central ring which houses the cold to warm connections to the optical bench with spacers from glass-fiber reinforced plastics (GRP). Also mounted to this ring are all the electrical feedthroughs, the LN_2 feedthroughs, the vacuum pumping flange, the safety valve and the vacuum gauge.

On the telescope side there is a dished flange with the entrance window (called the "upper part").

At the opposite side there is a dome flanged to the central ring (called the "lower part"). The dome uses a dished boiler end.

All parts of the vacuum vessel are made from aluminum for weight reduction. All flanges and walls are weight optimized to meet the weight limitations of the telescope.

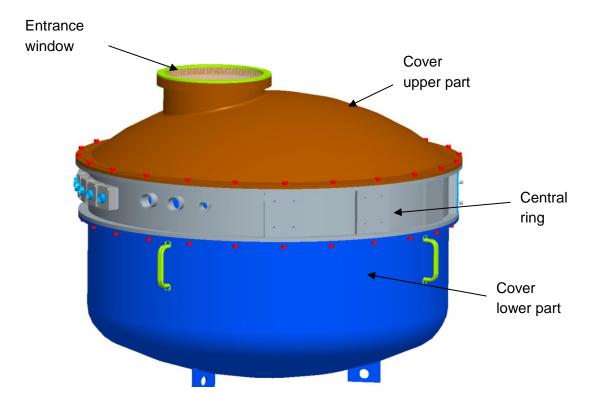


Figure 48: The vacuum vessel.

4.2.1.1 Central Ring

The central ring contains the following components:

- Cable feedthroughs for instrument control electronics
- Cable feedthroughs for read out electronics
- LN₂ feedthroughs for the main vessel and the detector vessel
- Flange to mount the detector-read-out electronics
- Mounting flanges to the caddy
- Vacuum ports for pumping and the vacuum gauge
- Vacuum safety valve
- Spacers to the cold bench (inside)

4.2.1.2 Covers

The cover "upper part" includes the entrance window and the connection flange to the telescope adapter.

The cover "lower part" includes the side window for alignment and crane hooks.

4.2.1.3 Windows

The vacuum vessel has two windows: The entrance window for the telescope beam and an additional window behind the detector. This exit window will be used during integration and assembly for alignment only. To avoid unwanted reflections the window is tilted by 5 deg. After the detector is attached, and before the instrument is mounted to the telescope this window will be closed.

The entrance window is made of fused silica.

4.2.1.4 Auxiliary Parts

Vacuum valve

The vacuum vessel will be pumped by a small turbo molecular pump. Due to its weight the pump will be removed and the vacuum will be sealed with a DN40 KF valve.

Vacuum safety valve

In case of overpressure in the vacuum vessel (e.g. from a leak in the LN_2 vessel) the vacuum vessel is protected by a spring loaded disk. The valve opens at an overpressure of roughly 100 mbar.

Dimension of the springs:

Spring Type:	VD143H-10	(from Gutekunst)
Spring Rate	2.474 N/mm	

$A = \pi \cdot r^2$ = $\pi \cdot 52.5 \text{ mm}^2$ = 8659 mm ²	<i>A</i> : effective area r: radius of cover plate disc (Ø105 mm)
$F = p \cdot A$ $= 0.01 \frac{\text{N}}{\text{mm}^2} \cdot 8659 \text{ mm}^2$ $= 86.59 \text{ N}$	F: Force resulting from overpressure p: overpressure inside (0,1 bar = 0.01 N/mm ²)
	D _{total} : total spring rate
$D_{total} = D_{spring} \cdot n_{springs}$	D _{spring} : spring rate of a single spring
$= 2.474 \frac{N}{mm} \cdot 6$ $= 14.844 \frac{N}{mm}$	n _{springs} : number of springs
$s = \frac{F}{D_{total}}$ $= \frac{86.59 \text{ N}}{14.844 \frac{\text{N}}{\text{mm}^2}}$ $= \frac{5.833 \text{ mm}}{14.844 \frac{\text{N}}{\text{mm}^2}}$	s: pre-compression of the springs

Doc.Ref:
Isue:PANIC-MEC-SP-01
Date:Mechanical
As Built ReportImage: Constraint of the state o

Figure 49: Safety valve

Pressure gauge

As a pressure gauge a PKR 251 with DN 25 KF flange is used. The gauge covers the complete pressure range from $5 \cdot 10^{-9}$ mbar to 1000 mbar.

4.2.2 Nitrogen Main Tank

A nitrogen vessel is used to cool the cold bench. The upper part of the vessel is a dished boiler end. The light path goes through the vessel and therefore a vertical tube must be welded into it. The vessel will have a geometrical volume of about 100 liters. Due to the movement on the telescope it is only possible to half fill it. The resulting max filling is about 46 I. We have a filling tube and an exhaust gas tube. In addition there will be an additional third tube for the safety valve. The vessel is filled from the side through the central ring. Filling is done when pointing the telescope to zenith. The filling tube from the side goes to the bottom of the LN₂ vessel. The exhaust gas line ends in the center of the vessel. The vessel is filled until LN₂ is spilled out of the exhaust gas line. A third tube is used for a safety valve. This tube ends roughly in the center of the LN₂ vessel. If the vessel is full the filling line is closed and the exhaust gas line is closed. The pressure of the evaporating gas forces the LN₂ out of the filling line when the telescope is pointing to the zenith.

The thermal contact area to the cold bench is a ring shape on the rim of the bottom flange. This is due to the deformation of the vessel with pressure inside, which should not have any influence on the optical bench.

The weight reduced LN_2 vessel for the cold bench could not be calculated in a standard way. It was therefore necessary to perform FE calculations. Due to uncertainties in these calculations we had a crosscheck of the results with an external company. The results of these calculations and the report can be found as RD 4 and RD 5.

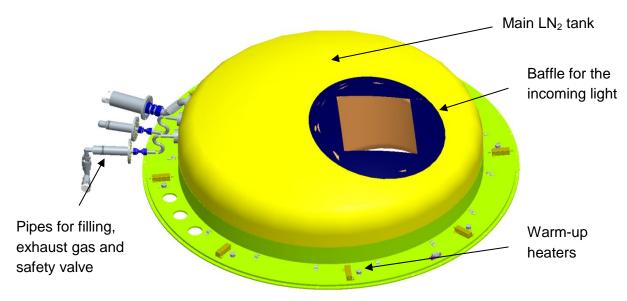


Figure 50: The main tank subassembly

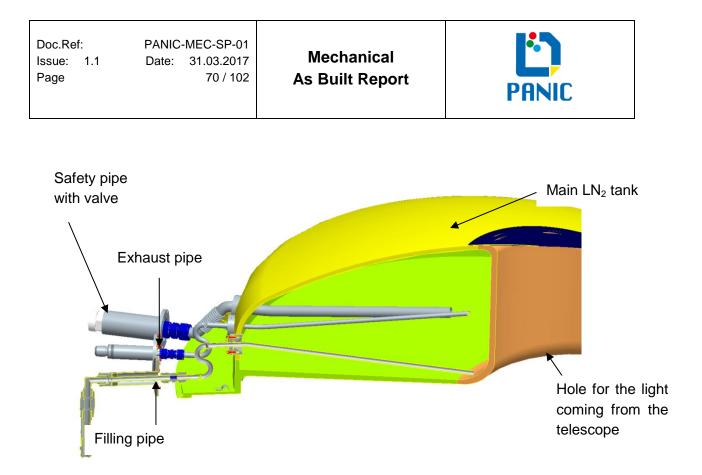


Figure 51: Cross section through the main tank showing the connecting pipes

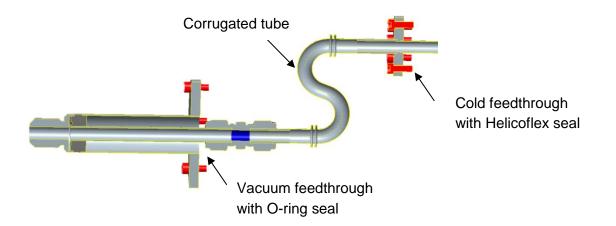


Figure 52: Cross section through the exhaust pipe

The connection of the stainless steel tubing to the aluminium vessel is done with Helicoflex seals. The O-ring groove is in the aluminium flange and the stainless steel flange is flat.

4.2.3 Nitrogen Vessel Detector

The detector temperature has to be below 80 K. The large vessel could not supply this temperature because it is exposed to room temperature and because it changes its temperature depending on the filling level and the orientation of the telescope.

A second nitrogen vessel is therefore used to exclusively cool the detector array. This vessel is completely enclosed in the cold environment of the cold optics. This will result in a very stable temperature as already seen in other instruments with 2 nitrogen vessels. (e.g. Omega2000, Omega Cass).The stability is better ± 0.2 K. The required stability of ± 0.1 K is achieved by a contoller. This controller is also used to control the warm up and cool down of the detector.

The LN_2 tank is made of aluminum AlMg4.5Mn.

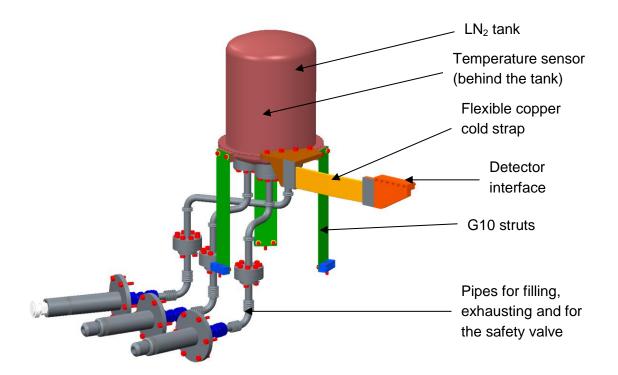


Figure 53: The detector tank subassembly

72 / 102

4.2.4 Cold Bench

The cold bench connects the optics with the tank and provides the mechanical support for the complete cold structure to the vacuum vessel.

The cold bench is made of aluminum and light weighted. To avoid distortions a specially casted and tension free version of AIMg4.5Mn was used. In order to eliminate tensions raised during the manufacturing process a special heat treatment was applied to the cold plate prior to finishing the interface surfaces. This treatment was done by completely heating up the cold plate to 180°C for 8 hours followed by a slowly cool down to room temperature by a rate of 15 K/h.

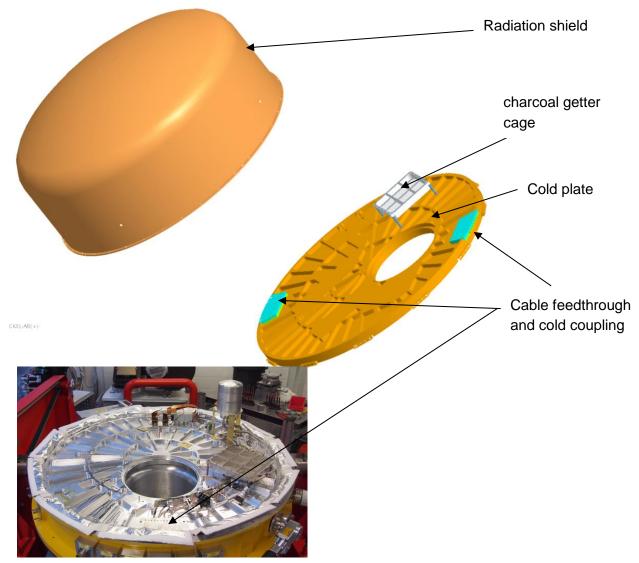


Figure 54: Cold bench assembly

Furthermore the cold bench is the central element of the cold bench assembly which comprises additional parts:

Getter cage

The getter cage is a part filled with charcoal for maintaining the vacuum during observation without pumping the cryostat. The cage is supported by 4 stainless steel feet to have a little thermal decoupling between the cold bench and the getter. At room temperature during vacuum pumping the getter will be heated to about 50°C to remove water vapor. The temperature of the heater is limited by thermal switches.

Spacers to the vacuum vessel

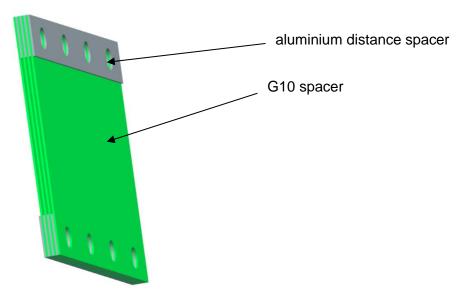


Figure 55: Stack of G10 spacers. Four spacers form a stack at PANIC

The spacers between the cold bench and the vacuum vessel ring are made of G10 fiber material. The diameter of the cold plate shrinks during cool-down from 1065 mm to 1060.8 mm. In order to compensate the shrinking of the plate between room temperature and operating temperature the spacers shall be flexible in the radial direction. To minimize the stress applied to the spacers the distance of the spacers is set between the warm and the cold value (1063 mm). To reduce stress caused by thermal shrinking multiple thin spacers are used and stacked. The number and the thickness of the spacers was investigated. The final design uses 12 spacer stacks each comprising four spacer-plates of 0.5 mm thickness.

 Doc.Ref:
 PANIC-MEC-SP-01

 Issue:
 1.1
 Date:
 31.03.2017

 Page
 74 / 102

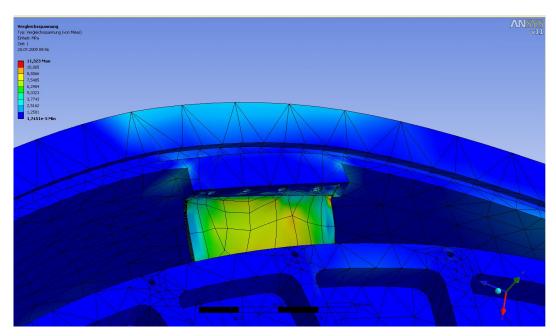


Figure 56: Finite element simulation of the spacers

Thermal coupling

To avoid warm items inside the cold volume all cables coming from the warm environment to the cold must be thermally coupled to the cold bench.

Drive and control harness

The drive and control harness consists of six cable bundles coming from the six vacuum feedthroughs. Each bundle is individually coupled.

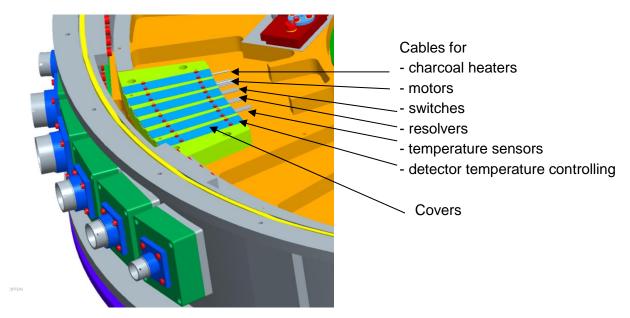


Figure 57: Feedthroughs for the cryostat cabling

Read-out circuits

The read out-circuits use four flex boards (one for each detector quarter). Two of them are coupled together directly after the vacuum feed through.

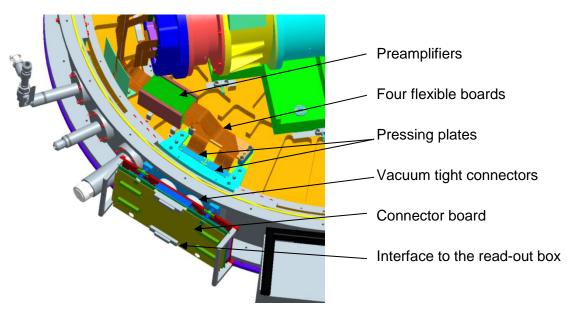


Figure 58: Feedthroughs for the detector read-out.

76 / 102

4.3 Thermal analysis

To minimize mass and volume of the LN₂ vessels it should just be large enough to reach the required hold time of one day. Optimized heat input will therefore also reduce mass.

4.3.1 Main Vessel Heat Input

The main vessel is exposed to room temperature. To reduce heat input we are using multilayer insulation (MLI). We have a heat input from radiation of about 5 W/m² with MLI.

1	Radiation on surface (4.3 m ²) with multilayer insulation	21.5 W
2	Radiation through the window	22.5 W
3	Conductivity through spacers	5.0 W
4	Conductivity through filling tubes	0.1 W
5	Conductivity through cables	3.0 W
6	Power consumption of detector preamplifier and electronics	5.0 W
	Total heat input	57.0 W
	Evaporation rate Hold time with 45 I LN $_2$	1.3 l/h 35.5 h

4.3.2 Detector Vessel Heat Input

The detector's heat dissipation is compensated by the Nitrogen inside the small vessel. The heat dissipated from the preamplifier is cooled by the large Nitrogen vessel.

1	Radiation on surface (0.09 m ²)	0.03 W
3	Conductivity through spacers	0.05 W
4	Conductivity through filling tubes	0.05 W
6	Power consumption of the detector module	0.05 W
	Total heat input	0.18 W
	Evaporation rate	4*10-3 l/h
	Hold time with 1 I LN ₂	250 h

4.4 Temperature Control and Monitoring

4.4.1 Cold Bench Temperature Monitoring

The temperature of the cold optics is monitored, but not controlled. Eight LakeShore DT-670 silicon diodes are used. A LakeShore 218 temperature monitor is used with these eight sensors. The sensors are placed at the following points:

- N2 main tank
- N₂ detector tank
- Charcoal gettercage
- Cold plate
- Filter-wheel Housing
- Detector preamplifiers
- Nitrogen Shield
- Optics (circumference of LM1)

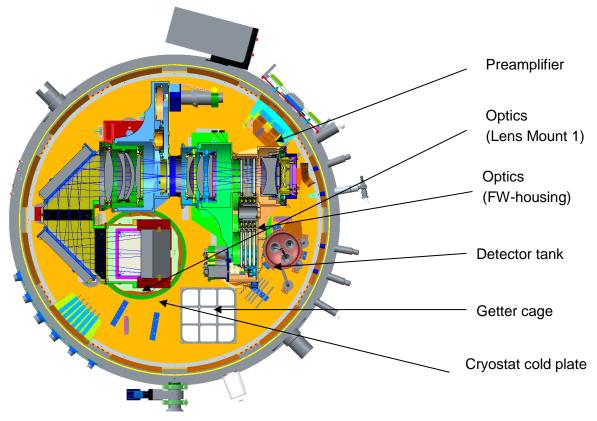


Figure 59: Distribution of the temperature sensors inside the PANIC cryostat. Not shown are the sensors on the LN_2 main tank, on the shield and inside the detector module.

Doc.Ref: P Issue: 1.1 E Page

4.4.2 Detector Temperature Control

The detector array has a temperature control. The array is mounted into a so called mosaic module delivered together with detectors from Teledyne (see chapter 1.2.3). The mosaic has two build-in heater foils for temperature control. One is attached to the cold plate with 100 Ω / 10 W. The second foil is mounted to the detector with 75 Ω / 10 W. A LakeShore 332 controller that offers two control loops is used. It can therefore handle the complete temperature control of the detector module. LakeShore DT-670 silicon diodes are used as temperature sensors

4.4.3 Warm-up Heaters

Heating up the cryostat

To accelerate warming-up the rear side of the nitrogen tank is equipped with warm-up heaters. In total eight heaters in parallel providing a heating power of 400 W (50 W each) are used. These heaters have a resistance of 47 Ω and are directly connected to the voltage source. This source can supply 48 V, resulting in a power output of 400 W. Thermostat switches monitor the temperature of the tank close to the heaters and switch off the power if the cryostat is warm and the temperature exceeds 26°C.

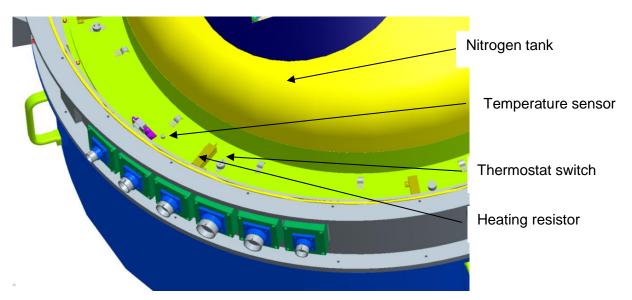


Figure 60: Eight heaters in two circuits attached to the nitrogen tank are used to warm-up PANIC

Heating up the Charcoal getter cage

To recover the Charcoal in the getter cage two heating resistors of 100 Ω are attached to the rear side of the getter cage. These heaters will be powered during vacuum pumping. The temperature is controlled by a thermostat switch which interrupts the power if the temperature exceeds the desired value. For the getter cage heater this temperature is about 50°C.

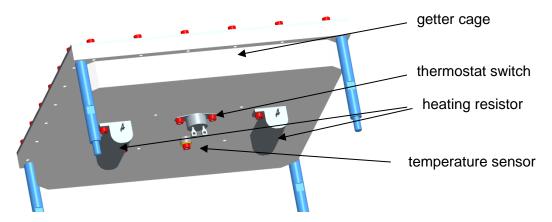


Figure 61: Two heaters, a thermostat switch and a temperature sensor are used to control the temperature of the getter cage

4.5 Cryostat Operation

80 / 102

The operation of the cryostat is described in the "Cryostat user manual" RD 7. In this chapter only a very short overview is given.

4.5.1 Opening and Closing

To open and close the PANIC cryostat it must be mounted in the trolley A. Here it can be rotated until the vacuum vessel cover points upwards. The trolleys are described in chapter 7.

Opening

For opening the cryostat the vacuum volume must be vented with dry nitrogen gas. Then the interface screws must be removed. Then the vacuum cover can be lifted with a crane using three hooks on top of the cover. The cover can also be opened by hand using the four handles around the cover. Since the mass of the cover is 33.2 kg the use of a crane is recommended.

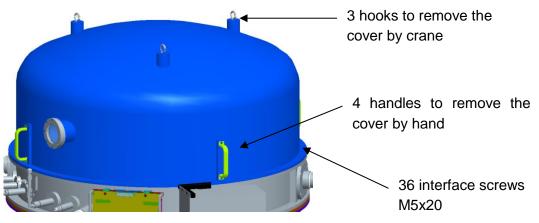
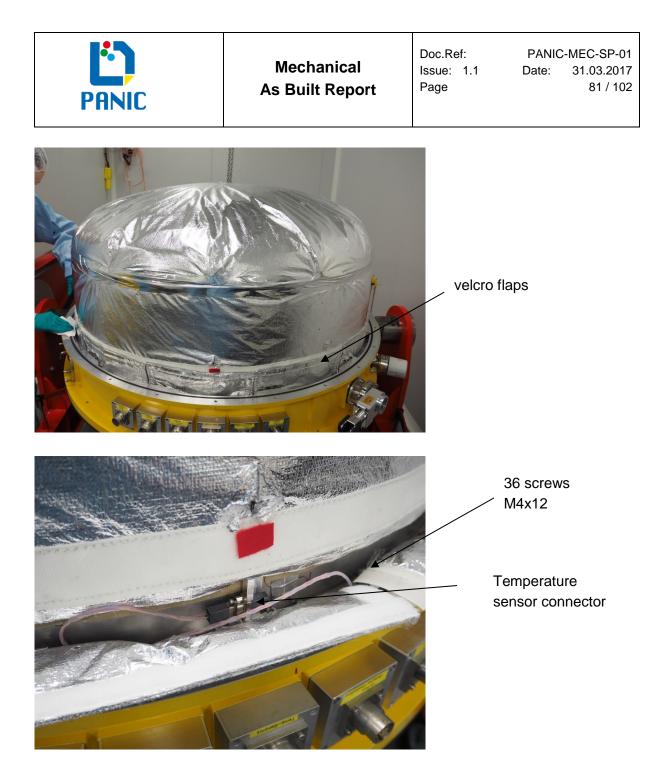
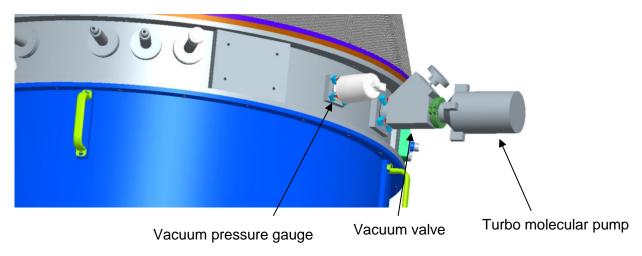
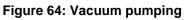



Figure 62: removing the vacuum cover

After removing the cover the LN₂-shield must be removed. To do this the Velcro fasteners of the overlapping MLI-foils have to be opened and the flaps covering the optical bench must be put to the side. Now one has access to the connection flange of the shield. Then the screws must be removed and the connector to the temperature sensor must be unplugged. Finally the shield can be lifted by hand.


Figure 63: removing the nitrogen shield


Closing the cryostat works in the same way but in reverse order.

4.5.2 Vacuum Pumping

After closing the cryostat PANIC must be rotated to its nominal orientation (entrance window pointing upwards). Then the vacuum pump can be installed.

During vacuum pumping the charcoal getter gage will be heated up in order to prepare the getter material for absorbing gas molecules when the cryostat is cold and the vacuum pump is switched off.

The cryostat will be pumped until the pressure is in the range of 10^{-4} mbar.

4.5.3 Cool-down

Cooling down is realized by slowly filling the tanks with liquid nitrogen. Since the maximum allowed cool-down rate is only 10 K/h the filling must be done carefully and slowly. This requirement is driven by the brittleness of the optical elements and has been supplied by the manufacturer.

Since the nitrogen main tank is at a higher level than the outer end of the filling pipe, nitrogen could flow out of the filling pipe unless it is not sealed. Therefore a valve is attached to this pipe. The attached safety valve avoids overpressure in the filling hose if both valves at the filling pipe and at the nitrogen vessel are closed at the same time.

In order to avoid condensation of frozen gases at the detector module, the detector must always be kept warmer than the cryostat. Therefore it is important to start filling the detector tank after cooling the main tank.

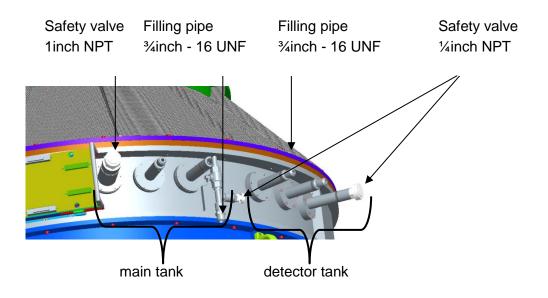


Figure 65: Connections to the tanks for the cryogenic liquids

4.5.4 Warm-up

Warming-up is performed with the built-in warm-up heaters. First the remaining liquid nitrogen must be removed. The exhaust pipe must be closed to remove the liquid nitrogen. So the evaporated gas generates pressure inside the tank. This pressure presses the remaining liquid nitrogen through the filling pipe into an external nitrogen vessel.

Again the detector should always be kept warmer than the surrounding cryostat. This can be achieved by using the heating system and the control loop.

5 PANIC AT THE TELESCOPE

PANIC is mounted to the telescope with a special adapter, which is the link between the rear side of the telescope and the cryostat. Its task is to support the Instrument in the correct place and orientation at the Cassegrain focus. PANIC is built for the 2.2 m telescope with an option to mount it to the 3.5 m telescope as well. If not otherwise stated the subsequent chapters describe the situation for the 2.2 m telescope.

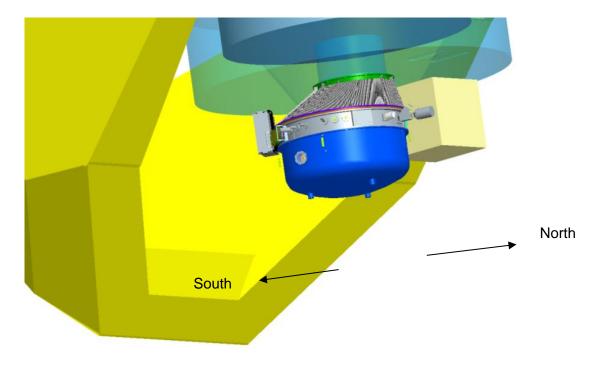


Figure 66: Orientation of PANIC at the 2.2 m telescope

Doc.Ref: PANIC-MEC-SP-01 Date: 31.03.2017 Issue: 1.1 Page

5.1 Telescope Adapter

86 / 102

The telescope adapter connects the optical telescope with the cryostat. The surface between the circular mounting rings in-between both interfaces forms a cone shell (see Figure 67).

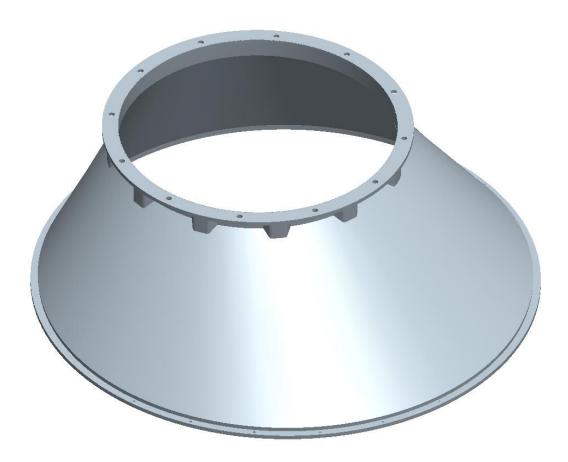


Figure 67: Telescope Adapter

In order to reduce significantly the weight of the telescope adapter, the structure is made from Carbon Fiber Reinforced Plastic (CFRP). The benefit in mass reduction will be approximately 14.0 kg, which represents a weight reduction of 47 % vs. a design made from steel. Beside the mass reduction, the stiffness of CFRP-structure shall be large enough to ensure limited displacements at the cryostat mounting surface.

CFRP Structure

The CFRP structure is composed of two solid 10 mm mounting rings for mounting the optical tube and cryostat and a cone shell in-between. All CFRP components are laminated in a

single mould. The moulding is made as a positive contour in which the moulding surface representing the inner surface of the adapter.

The cone structure consists of a honeycomb shell composed of a carbon skin with a thickness of 2.50 mm on each side and of a non-woven core made from polyether fibers.

The skins are made from a carbon twill weave fabric with 245 gr/m² embedded into an epoxy resin matrix. Eight layers of carbon fabrics with a thickness of 0.31 mm each are laid down with a preferred orientation. The core has a total thickness of 6 mm and is composed of 3 individual layers to ease draping.

The manufacturing process is hand lay-up technique. Due to the complexity of the geometry it is necessary to lay down interfering strips of fabrics which have approximately a width of 1/12 of total circumference of the cone. After all the layers of carbon fabrics and the core are laid down, a vacuum is applied during the cold curing process (= curing at ambient temperature).

The mounting rings are made as a monolithic carbon structure with tapered layers in the interface surface to the cone shell. To increase bending stiffness at the mounting ring on the optical tube side, a rim of 100 mm thickness is added on the outer shell surface. The rim is made from 6 mm non-woven core of polyether fibres with two layers of carbon twill weave fabric. Furthermore 12 ribs are equally distributed along the mounting rings to provide additional stiffness. The ribs have a trapezoidal cross section and are made from carbon fabrics with a foam core. The ribs are adapted individually in length to the cone shell.

FEM Analysis

A linear static analysis was made with NASTRAN to determine deflection, stresses and strain. The shell and mounting ring surfaces are idealized with shell elements to reproduce the layered design of the composite's structure. The ribs are represented with solid elements. A nodal load of 3000 N, representing the mass of the instrument, is distributed through a rigid beam element to the hole locations in the mounting ring. tThe load is applied separately in each co-ordinate direction. At the tube mounting ring the structure is constrained by the mounting holes in all transversal directions. Figure 68 shows the FE-model.

Results

Besides ensuring sufficient strength the main objective was a limited maximum displacement in all load cases and for all directions less than 0.3 mm.

A summary of displacements at the reference node are shown in the table below:

88 / 102

	Displacements in mm					
Load	Х	Y	Z			
Fx = 3000 N	0,08	-0,01	-0,11			
Fy = 3000 N	-0,01	0,27	0,03			
Fz = 3000 N	-0,11	0,03	0,29			

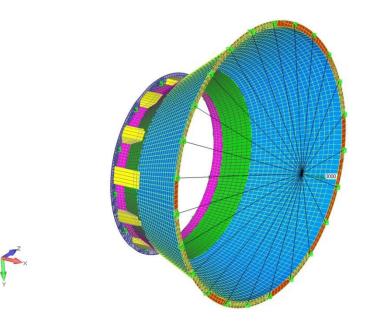


Figure 68: FE-Model of the telescope adapter

5.1.1 Option to Mount PANIC to the 3.5 m Telescope

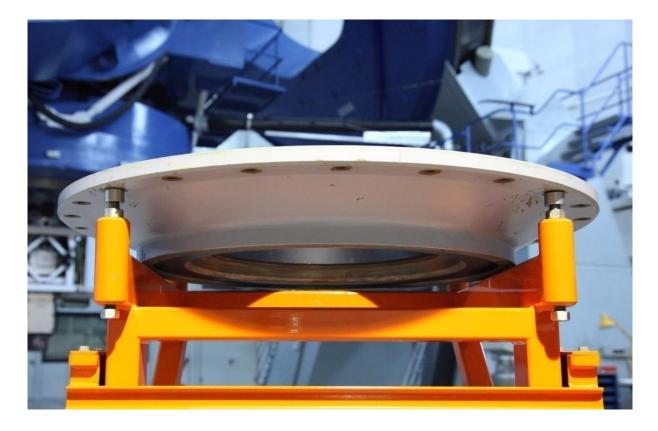


Figure 69: An adapter flange allows instruments designed for the 2.2 m telescope to be used at the 3.5 m telescope

Figure 69 shows the ring which must be mounted between the 3.5 m telescope and the instrument to ensure the correct focal distance for instruments that were designed for the 2.2 m telescope. Attaching PANIC to the 3.5 m telescope would double the spacial resolution of the imaging.

6 DETECTOR

The detector module consists of a mosaic of four 2k x 2k HAWAII 2RG arrays from Teledyne.

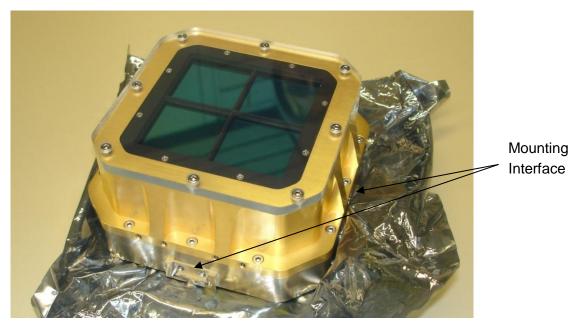


Figure 70: The detector module as delivered from Teledyne

6.1.1 Detector Mount

The detector is mounted via four G10 struts to the mounting interface. These struts insulate the detector module thermally and electrically from the cryostat and the cold optics. A labyrinth between the interface and the detector prevents light entering the inner part of the detector module.

The stiffness of the G10 spacers has been verified by FE-Analysis. Figure 72 shows the result. If the telescope is pointing to zenith the maximum deflection is 22 μ m. The simulation shows further that there is no tilt due to the spacers.

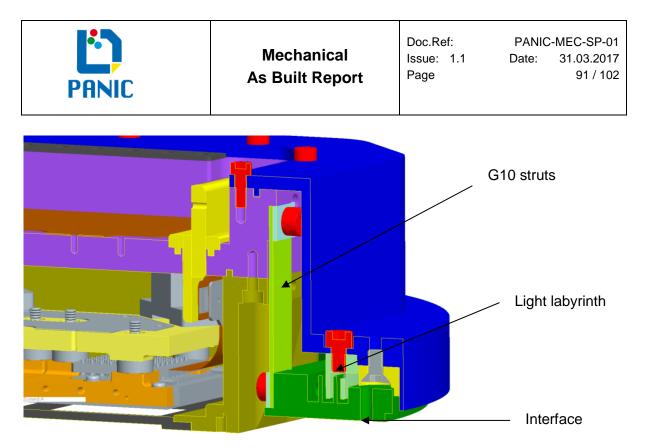


Figure 71: Detector mount

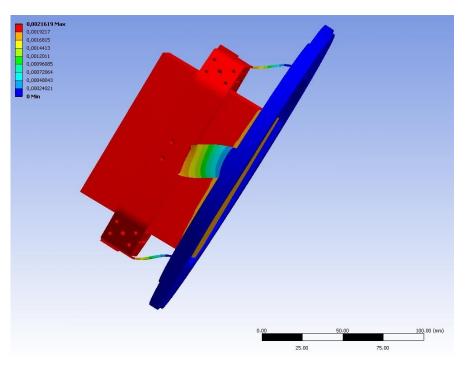


Figure 72: FE-Simulation due to self weight deflection of the detector mount

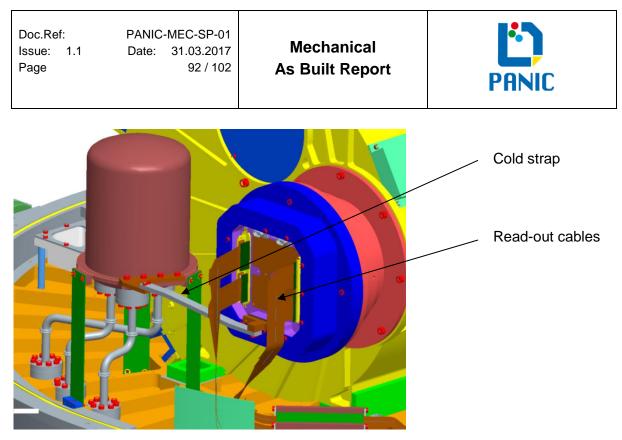
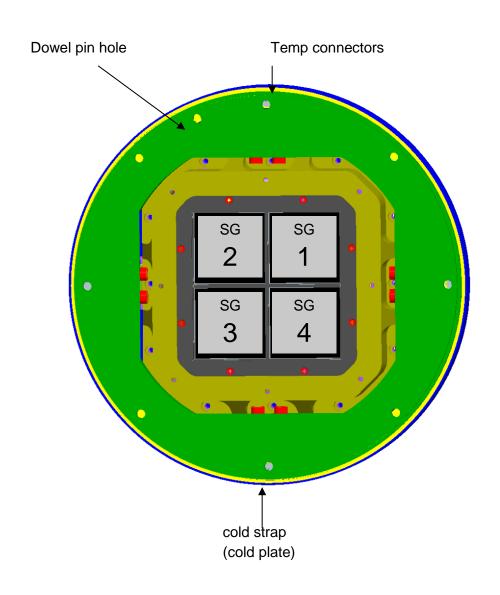



Figure 73: Detector assembly

Doc.Ref: PANIC-MEC-SP-01 Issue: 1.1 Date: 31.03.2017 Page

6.1.2 Read-out Cabling and Preamplifiers

94 / 102

The read-out-system uses its own cabling and feed through. Since the detector consists of four identical modules the connection to the read out electronics is routed in four almost identical harnesses. In the cryostat each harness is a flexible circuit board that also contains the preamplifiers. The preamplifiers are identical for all four detector segments.

The read-out electronics are directly attached to the vacuum vessel at the outer circumference of the vacuum vessel ring. It is a big advantage of this design that the electronics can be permanently installed.

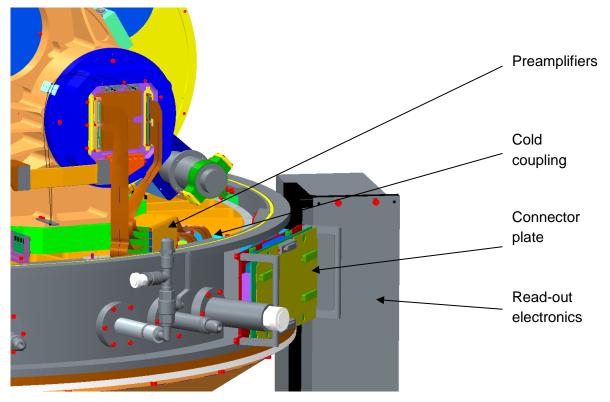


Figure 74:Read-out cabling

7 TROLLEY

This chapter describes the handling of the PANIC instrument in the integration facility at MPIA and at the Calar Alto Observatory.

We decided to have two handling trolleys due to the space restrictions in the 2.2m telescope building (limited space in elevator).

The integration and test trolley (trolley A) allows a 360° rotation of the instrument for integration work in the labs whereas the transport trolley (trolley B) allows vertical lifting for mounting at the telescope flange. A crane is necessary to place the cryostat into the trolleys. Crane hooks can be mounted at the PANIC telescope adapter or at the mounting ring at the cryostat.

7.1 Trolley A

Figure 75 and Figure 76 show the rotation trolley for the PANIC instrument. Rotation is carried out manually with a self-locking belt drive.

Figure 75: 3D-model trolley A (rotation)

 Doc.Ref:
 PANIC-MEC-SP-01

 Issue:
 1.1
 Date:
 31.03.2017

 Page
 96 / 102

Mechanical As Built Report

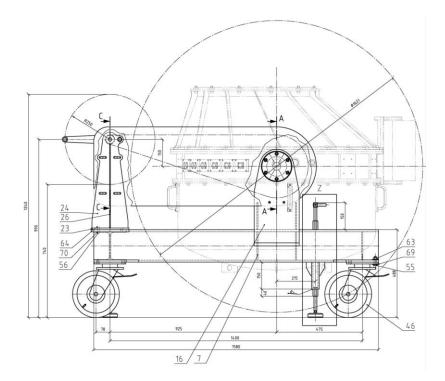


Figure 76: Dimensions of trolley A

Figure 77:PANIC in trolley A

7.2 Trolley B

Figure 79 shows the 3D-model of the lifting trolley which serves to mount the instrument at the telescope. This trolley is based on a standard unit with slight modifications (company: Kaiser + Kraft, Figure 78). The handrail has to be dismounted to fit the trolley into the 2.2 m telescope elevator (Figure 81).

To attach PANIC to the telescope it is moved with the telescope's lifting just below the Cassegrain flange. The lifting of the last few cm during the mounting procedure at the telescope flange is done by trolley B.

Figure 78: Lifting trolley from Kaiser + Kraft

Doc.Ref: PA Issue: 1.1 Da Page

PANIC-MEC-SP-01 Date: 31.03.2017 98 / 102

Mechanical As Built Report

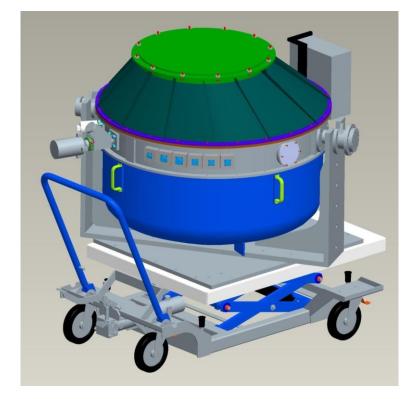


Figure 79: 3D-model lifting trolley B

Figure 80: PANIC in trolley B

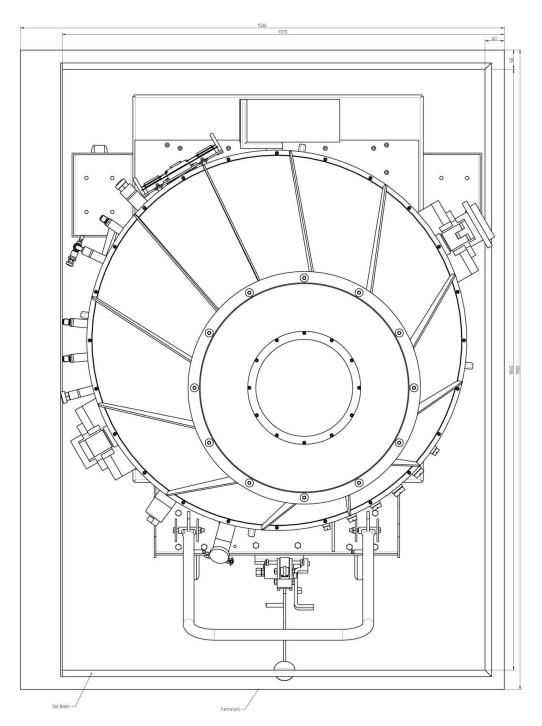


Figure 81: Cryostat lifting trolley B in 2.2m telescope elevator

8 OTHER TOPICS

8.1 Mass Budget

One critical requirement is the maximum allowed weight of the instrument, which must not exceed 400 kg.

Item	Mass [kg]	Remarks
Optics and opto-mechanics	90.9	See chapter 8.1.1
Cryostat	208.4	See chapter 8.1.2
Telescope flange	13.0	
Detector package	2.9	
Electronics	53.0	See chapter 8.1.3
Miscellaneous	15.0	
Total	383.2	

8.1.1 Optics

Item	Mass [kg]		Remarks	Source	
Optics and opto-mechanics	90.9				
Optics mount 1		52.8			
Lens mount 1			5.5		CAD-Model
Mirror structure (incl. mirrors)			21.6		CAD-Model
Lens mount 2			9.9		CAD-Model
Cold stop wheel			8.4		CAD-Model
support			5.4		CAD-Model
piece parts			2		estimated
Optics mount 2		38.1			
Lens mount 3			7.4		CAD-Model
Filter wheel			23.1		CAD-Model
Lens mount4			2.9		CAD-Model
support			2.7		CAD-Model
piece parts			2		estimated

8.1.2 Cryostat

Item	Mass [kg]		Remarks	Source	
Cryostat	208.4				
Vacuum vessel		84.1			
Vacuum can ring			19.8		CAD-Model
				towards	
Vacuum can upper part			20.6	telescope	CAD-Model
Vacuum can lower part			33.2		CAD-Model
Window			3.8		CAD-Model
Vacuum gauge			0.7		data from supplier
Vacuum valve			1		data from supplier
				feed troughs,	
piece parts			5	seals, O-Rings	estimated
Cold bench		47.9		incl shield	
cold plate			31.3		CAD-Model
LN2 shield			11.2		CAD-Model
getter cage			1.1		estimated
cable feed throughs			1.3		estimated
MLI / Superisolation			2		estimated
piece parts			1		estimated
Nitrogen vessel		45.6		incl filling pipes	CAD-Model
Nitrogen vessel detector		2.8		incl filling pipes	CAD-Model
				one day hold	
LN2 (half filling)		28		time with MLI	

8.1.3 Electronics

Item	Mass [kg]		Remarks	Source	
Electronics	53				
					data from electronic
RoE		7			workshop
Control unit					data from electronic
(motors, temperature)		24			workshop
					data from electronic
Cabling, rack		22			workshop