WHAT is CONTROLLING the FRAGMENTATION in the INFRARED DARK CLOUD G14.225-0.506?: DIFFERENT LEVELS of FRAGMENTATION in TWIN HUBS

DOI: 
10.3847/0004-637X/819/2/139
Publication date: 
01/03/2016
Main author: 
Busquet G.
IAA authors: 
Busquet, G.;Anglada, G.
Authors: 
Busquet G., Estalella R., Palau A., Liu H.B., Zhang Q., Girart J.M., De Gregorio-Monsalvo I., Pillai T., Anglada G., Ho P.T.P.
Journal: 
Astrophysical Journal
Publication type: 
Article
Volume: 
819
Pages: 
Number: 
139
Abstract: 
We present observations of the 1.3 mm continuum emission toward hub-N and hub-S of the infrared dark cloud G14.225-0.506 carried out with the Submillimeter Array, together with observations of the dust emission at 870 and 350 μm obtained with APEX and CSO telescopes. The large-scale dust emission of both hubs consists of a single peaked clump elongated in the direction of the associated filament. At small scales, the SMA images reveal that both hubs fragment into several dust condensations. The fragmentation level was assessed under the same conditions and we found that hub-N presents 4 fragments while hub-S is more fragmented, with 13 fragments identified. We studied the density structure by means of a simultaneous fit of the radial intensity profile at 870 and 350 μm and the spectral energy distribution adopting a Plummer-like function to describe the density structure. The parameters inferred from the model are remarkably similar in both hubs, suggesting that density structure could not be responsible for determining the fragmentation level. We estimated several physical parameters, such as the level of turbulence and the magnetic field strength, and we found no significant differences between these hubs. The Jeans analysis indicates that the observed fragmentation is more consistent with thermal Jeans fragmentation compared with a scenario in which turbulent support is included. The lower fragmentation level observed in hub-N could be explained in terms of stronger UV radiation effects from a nearby H II region, evolutionary effects, and/or stronger magnetic fields at small scales, a scenario that should be further investigated. © 2016. The American Astronomical Society. All rights reserved.
Database: 
WOK
SCOPUS
ADS
SCOPUS
URL: 
https://ui.adsabs.harvard.edu/#abs/2016ApJ...819..139B/abstract
ADS Bibcode: 
2016ApJ...819..139B
Keywords: 
ISM: clouds; ISM: individual objects (G14.225-0.506); stars: formation