DAMPED LYMAN-ALPHA SYSTEMS

Rubén Sánchez-Ramírez Instituto de Astrofísica de Andalucía (IAA-CSIC)

QUASI-STELLAR OBJECTS

• QSOs discovered in the late 1950's and early 1960

No. 1, 1966

LETTERS TO THE EDITOR

ON THE ABSORPTION SPECTRUM OF 1116+12

Optical spectra was difficult to interpret

 \sim

- High redshift scenario was initially opposed because of the energies that have to be involved
- Today, we think that quasars have cosmological origin with the power source originating from an accretion disc powering a massive black hole (a case of AGN)

We have analyzed two spectrograms of the quasi-stellar radio source 1116+12. Schmidt (1966) has derived a redshift of 2.118 from emission lines at 3795 and 4827 Å which were identified as Ly- α λ 1216 and C IV λ 1549, respectively. We have found on both plates wide absorption features at 3585 and 4570 Å. These absorption features are tentatively identified as Ly- α and C IV, respectively, with a redshift of 1.949. In this Letter we describe briefly the techniques and results of our analysis and, following Bahcall and Salpeter (1965, 1966), some implications of our tentative identifications.

QSO SPECTRA

ABSORPTION SYSTEMS

Absorber	Log N(HI)	Signature	What is it?
Ly α forest	11 - 17.5 cm ⁻²	Lyα 1216 A	IGM
CIV system	> 14 cm ⁻² ?	CIV 1548 A	IGM/galaxy
MgII system	> 17 cm ⁻²	Mg II 2796 A	Galaxy halo
Lyman limit systems	> 17.5 cm⁻²	Lyman limit at 912 A	Galaxy halo
Sub-DLA	19 - 20.3 cm ⁻²	Weak Ly α damping wings	Halo?Massive galaxy?
DLA	> 20.3 cm ⁻²	Lya damping wings	Galaxy
CaII system	> 19 cm ⁻² ?	CaII 3935 A	High density gas?

ABSORPTION LINES

 $I(\nu) = I_0(\nu)e^{-\tau}$

ABSORPTION LINES

ABSORPTION LINES

DAMPED LYMAN ALPHA SYSTEMS

- ∞ DLA: N > 2 * 10
- SubDLA: N > 10
- ∞ LLS: N > 10
- State State

- Hydrogen mainly neutral (precursors of molecular clouds, stars' birthplace)
- Used to trace the chemical evolution along the history of the universe

DLAS: THE DISTRIBUTION FUNCTION F(X,N)

 $f(N, X) \equiv (c/H_0)n_{\rm co}(N, X)A(N, X),$

 $f_{\rm H\,I}(N, X) dN dX$

 $f_{\mathrm{H}\,\mathrm{I}}(N, X) = k_1 N^{\alpha_1}$

Number of DLAs in the intervals (N, N+dN) and (X, X+dX)

$$dX \equiv \frac{H_0}{H(z)} (1+z)^2 \, dz \qquad H(z) = H_0 \left[\Omega_{\rm m} (1+z)^3 + \Omega_{\Lambda} \right]^{1/2}$$

$$f_{\rm H\,I}(N,z) dN dX = \frac{m}{\Delta N \sum_{i=1}^{n} \Delta X_i} dN dX_i$$

$$f_{\rm H\,I}(N, X) = k_3 \left(\frac{N}{N_d}\right)^{\beta}, \text{ where } \beta = \begin{cases} \alpha_3 & N < N_d \\ \alpha_4 & N \ge N_d \end{cases}$$

$$f_{\rm H\,I}(N, X) = k_2 \left(\frac{N}{N_{\gamma}}\right)^{\alpha_2} \exp\left(\frac{-N}{N_{\gamma}}\right) \xrightarrow{-21}_{\begin{array}{c} -22 \\ -22 \\ 0 \\ 0 \\ -22 \\ 0 \\ -22 \\ 0 \\ -24 \\ -25 \\ -26 \\ -26 \\ 0 \\ -26 \\ -26 \\ 0 \\ -26 \\ -26 \\ 0 \\ -26 \\ -$$

DLAS: THE LINE DENSITY OF SYSTEMS (*l*_{DLA})

DLAS: HI CONTENT AND EVOLUTION (\Omega_G)

DLA SURVEYS: HISTORICAL PERSPECTIVE

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 61:249-304, 1986 June 1986. The American Astronomical Society. All rights reserved. Printed in U.S.A.

- Motivated by the discovery of 21cm absorption in 2 of the 3 DLAs known at the date (Wolfe et al, 1981)
- \sim Low resolution (Δ
- Section Section Section Section 2 Section
- Search for HI disks: N(HI) > 1.8 × 10 (from radio observations of spiral galaxies)
 ⇒ EW > 5
- 47 features detected (DW are clearly detected in 15 cases and in 11 cases DW are ruled out)

DLA SURVEYS: HISTORICAL PERSPECTIVE

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 77:1–57, 1991 September © 1991, The American Astronomical Society: All rights reserved. Printed in U.S.A. Sample: 57 (+literature) QSOs

 \sim Low resolution (Δ

1) Sample large enough for statistical purposes

- Goals: 2) z_{em} > Wolfe et al. (1986)
 3) Identify DLAs toward bright radio sources
- Statistical DLA sample: 125 candidates
- DLAs are not only HI disks in spiral galaxies
 - Local star mass density comparable to DLA HI density at $z \sim 2.5 \Rightarrow$ Tracers of the material available for star formation

 $n(z) = n_0(1+z)^{\gamma}$

 $f(N) = BN^{-\beta}$

NUMBER I	Density Distribution I	ARAMETERS	H I COLUMN DENSITY DISTRIBUTION PARAMETERS				
Sample	No	γ	Sample	log B	β		
DI D2	$\begin{array}{c} 0.035 \pm 0.007 \\ 0.163 \pm 0.026 \end{array}$	1.2 ± 1.7 0.3 ± 1.4	DI D2	13.63 ± 0.09 12.33 ± 0.07	1.73 ± 0.29 1.67 ± 0.19		

$$\langle \Omega_D \rangle = \begin{cases} 0.71 \pm 0.05 \times 10^{-3} h^{-1} & (q_0 = 0) \\ 1.31 \pm 0.09 \times 10^{-3} h^{-1} & (q_0 = 0.5) & \langle n(z) \rangle = 0.16 \pm 0.03 \\ \langle \Omega_D \rangle = \begin{cases} 0.79 \pm 0.14 \times 10^{-3} h^{-1} & (q_0 = 0) \\ 1.45 \pm 0.25 \times 10^{-3} h^{-1} & (q_0 = 0.5) \end{cases} & \langle n(z) \rangle = 0.25 \pm 0.04 \\ \end{cases}$$

A NEW SPECTROSCOPIC SURVEY FOR DAMPED Lya ABSORPTION LINES FROM HIGH-REDSHIFT GALAXIES1

KENNETH M. LANZETTA², ARTHUR M. WOLFE³, DAVID A. TURNSHEK⁴, LIMIN LU³⁴, Richard G. McMahon², and Cyril Hazard⁴ Received 1990 August 6: accepted 1991 March 5

DLA SURVEYS: HISTORICAL PERSPECTIVE

2

THE ASTROPHYSICAL JOURNAL, 440:435–457, 1995 February 20 © 1995. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE ASTROPHYSICAL JOURNAL, 454:698–725, 1995 December 1 © 1995. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE IUE SURVEY FOR DAMPED LYMAN-α AND LYMAN-LIMIT ABSORPTION SYSTEMS: EVOLUTION OF THE GASEOUS CONTENT OF THE UNIVERSE

KENNETH M. LANZETTA¹ Astronomy Program, Department of Earth and Space Sciences, State University of New York at Stony Brook, Stony Brook, NY 11749-2100; and Center for Astrophysics and Space Sciences, University of California, San Diego

ARTHUR M. WOLFE Center for Astrophysics and Space Sciences, University of California, San Diego, CASS 0111, 9500 Gilman Drive, La Jolla, CA 92093-0111

> AND DAVID A. TURNSHEK Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 Received 1993 April 15: accepted 1994 September 2

- Sample: 260 (+literature) QSOs
 - \sim Low resolution (Δ
 - First low-z survey $(0.008 \le z \le 1.55)$
 - Solution Section Secti

THE LARGE BRIGHT QSO SURVEY FOR DAMPED Lya ABSORPTION SYSTEMS¹

ARTHUR M. WOLFE Department of Physics, and Center for Astrophysics and Space Sciences, University of California, San Diego, C-011, La Jolla, CA 92093 KENNETH M. LANZETTA Astronomy Program, State University of New York, Stony Brook, NY 11794

AND

CRAIG B. FOLTZ AND FREDERIC H. CHAFFEE University of Arizona, Multiple Mirror Telescope Observatory, Tucson, AZ 85721 Received 1995 March 16; accepted 1995 June 14

- Sample: 228 (+literature) QSOs
 - \sim Low resolution (Δ
 - High N systems decrease when z decreases
 - Density evolution due to gas consumption by star formation

- ✤ Low redshift
 - Swaan et al. (2005)
 - ∞ Rao et al. (2006)
- ✤ Intermediate redshift
 - Ellison et al. (2001)
 - Prochaska et al. (2004, 2005)
 - Noterdaeme et al. (2009, 2012)
 - subDLAs
 - Seroux et al. (2005)
 - Sector 2007 → 0'Meara et al. (2007)
 - 🔹 Zafar et al. (2013)

- ✤ High redshift
 - Storrie-Lombardi et al. (1996)
 - Storrie-Lombardi & Wolfe (2000)
 - Peroux et al. (2001, 2003)

 - Sánchez-Ramírez et al. (2014, in prep.)

THE ASTROPHYSICAL JOURNAL, 468: 121–138, 1996 September 1 © 1996. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE ASTROPHYSICAL JOURNAL, 543:552–576, 2000 November 10 © 2000 The American Astronomical Society. All rights reserved. Printed in U.S.A.

APM $Z \ge 4$ QSO SURVEY: SPECTRA AND INTERVENING ABSORPTION SYSTEMS

L. J. STORRIE-LOMBARDI¹ AND R. G. MCMAHON Institute of Astronomy Madingley Road, Cambridge CB3 0HA, UK; lisa@ociw@edu; rgm@ast.cam.ac.uk

M. J. IRWIN Royal Greenwich Observatory Madingley Road, Cambridge CB3 0EZ, UK; mike@ast.cam.ac.uk

AND C. HAZARD University of Pittsburgh, Pittsburgh, PA 15260; and Institute of Astronomy; hazard@ast.cam.ac.uk Received 1995 October 11; accepted 1996 March 15

LISA J. STORRIE-LOMBARDI

SIRTF Science Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125; lisa@ipac.caltech.edu

AND

ARTHUR M. WOLFE Department of Physics, and Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, CA 92093-0424 Received 2000 March 2; accepted 2000 June 12

- Sample: 40 (+literature) QSOs
 - \sim Intermediate resolution (Δ
 - High-z survey $(3.2 \le z \le 4.694)$
 - s Ω*

THE ASTRONOMICAL JOURNAL, 121:1799-1820, 2001 April © 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A. A&A 379, 393-406 (2001) DOI: 10.1051/0004-6361:20011281 © ESO 2001

ABSORPTION SYSTEMS IN THE SPECTRA OF 66 $z \ge 4$ QUASARS

CÉLINE PÉROUX Institute of Astronomy, Madingley Road, Cambridge CB3 OHA, England, UK; celine@ast.cam.ac.uk

LISA J. STORRIE-LOMBARDI SIRTF Science Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125 RICHARD G. MCMAHON AND MIKE IRWIN

Institute of Astronomy, Madingley Road, Cambridge CB3 OHA, England, UK

AND

ISOBEL M. HOOK Institute for Astronomy, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, England, UK Received 2000 November 27 ; accepted 2001 January 9

- Sample: 66 (+literature) QSOs
 - \sim Intermediate resolution (Δ
 - ∞ EW method

The CORALS survey I: New estimates of the number density and gas content of damped Lyman alpha systems free from dust bias^{*,**}

S. L. Ellison¹, L. Yan², I. M. Hook³, M. Pettini⁴, J. V. Wall⁵, and P. Shaver⁶

- Sample: 66 (+literature) QSOs
 - \sim Intermediate resolution (Δ
 - No dust bias in DLA samples

PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 116:622-633, 2004 July © 2004. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. THE ARTROPHYSICAL JOURNAL, 635:123-142, 2005 December 10 © 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A.

The Sloan Digital Sky Survey Damped Lya Survey: Data Release 1

JASON X. PROCHASKA AND STEPHANE HERBERT-FORT UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064; skavier@ucolick.org, shf@ucolick.org Received 2004 March 17; accepted 2004 April 20; published 2004 June 8

THE SDSS DAMPED Lya SURVEY: DATA RELEASE 3

JASON X. PROCHASKA AND STÉPHANE HERBERT-FORT Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064; savier@ucolick.org, shf@ucolick.org

AND

ARTHUR M. WOLFE Department of Physics, and Center for Astrophysics and Space Sciences, University of California at San Diego, Gilman Drive, La Jolla, CA 92093-0424; awolfe@ucad.edu Received 2005 February 19; accepted 2005 August 15

MODERN SURVEYS AND IDENTIFICATIONS Astronomy Astrophysics A&A 508, 133-140 (2009) DOI: 10.1051/0004-6361/200811541 @ ESO 2009 Damped and sub-damped Lyman- α absorbers in z > 4 QSOs^{*,**} R. Guimarães¹, P. Petitjean², R. R. de Carvalho³, S. G. Djorgovski⁴, P. Noterdaeme⁵, S. Castro⁶, P. C. da R. Poppe¹, and A. Aghaee^{7,8} P2155+1358 zabs=4.211 log N(HI)= 20.00 Lya 분 0.5 $\Omega_g~(x~10^{-3})$ Lχβ (Z) Rux 0.5 Lyr Ë 0.5 z

Redshift

A&A 505, 1087-1098 (2009) DOI: 10.1051/0004-6361/200912768 © ESO 2009

Astronomy Astrophysics

A&A 547, L1 (2012) DOI: 10.1051/0004-6361/201220259 © ESO 2012

LETTER TO THE EDITOR

Evolution of the cosmological mass density of neutral gas from Sloan Digital Sky Survey II - Data Release 7*

P. Noterdaeme1,2, P. Petitjean2, C. Ledoux3, and R. Srianand1 this work (no corr.) this work (corr. 10^{3} 1 21.5 22.0 20.5 21.0 10 log N(HI) 101

Column density distribution and cosmological mass density of neutral gas: Sloan Digital Sky Survey-III Data Release 9*

P. Noterdaeme¹, P. Petitjean¹, W. C. Carithers², I. Pâris³, A. Font-Ribera^{2,4}, S. Bailey², E. Aubourg⁵, D. Bizyaev⁶,
 G. Ebelke⁶, H. Finley¹, J. Ge⁷, E. Malanushenko⁶, V. Malanushenko⁶, J. Miralda-Escudé⁸, A. D. Myers⁹, D. Oravetz⁶,
 K. Pan⁶, M. M. Pieri¹⁰, N. P. Ross², D. P. Schneider^{11,12}, A. Simmons⁶, and D. G. York^{13,14}

SUBDAMPED LYMAN ALPHA SYSTEMS

A&A 556, A141 (2013) DOI: 10.1051/0004-6361/201321154 © ESO 2013

140

± 120 -

100 sightlir

80 F

5

Number

objects 30 F

Ż •

1.0

a(n)/dX

0.

0

60 40

20

0

20 Ē 5

10 E

1

☆Songalia & Cowie 2010 ☆Procheska et al. 2005

▼ O'Mears et al. 2013 A Rao et al. 2005 ■ Zwaan et al. 2005

Peroux et al. 2003

2

3

Absorption Redshift

4

2

Astronomy Astrophysics

The ESO UVES advanced data products guasar sample

II. Cosmological evolution of the neutral gas mass density*

T. Zafar¹, C. Péroux¹, A. Popping², B. Milliard¹, J.-M. Deharveng¹, and S. Frank^{1,3}

QUASARS AND THEIR ABSORPTION LINES: A LEGACY SURVEY OF THE HIGH REDSHIFT UNIVERSE

X-shooter Large Programme

http://adlibitum.oat.ts.astro.it/dodorico/Xshooter_LP/Abstract.html

- ✤ UVB: 3000-5600
- ✤ VIS: 5500-10200
- ∾ NIR: 10200-24800

X-Shooter, VLT (UT3), Paranal Observatory, Chile

QUASARS AND THEIR ABSORPTION LINES: A LEGACY SURVEY OF THE HIGH REDSHIFT UNIVERSE

X-shooter Large Programme

http://adlibitum.oat.ts.astro.it/dodorico/Xshooter_LP/Abstract.html

The aim of this LP is to assemble a legacy dataset of 100 z > 3.5 QSO spectra observed with X-shooter at the ESO VLT.

No	Object name	Redshift	Mag	High Res	Status	No	Object name	Redshift	Mag	High Rec	Status
1	SDSS J101347.29+065015.6	3.79	APM R=18.4, r=18.9	N	OBS	61	BR 2213-6729	4.47	APM_R=18.6	Y	OBS
2	SDSS J101818.45+054822.8	3.62	APM_R=18.1,r=18.8	N	OBS	52	BR J2349-3712	4.21	APM_R=18.7	N	OBS
3	SDSS J102040.62+092254.2	3.64	APM_R=18.0,r=18.4	N	OBS	63	[HB89] 0000-263	4.01	NED=18.?	Y	OBS
4	SDSS J102456.61+181908.7	3.53	APM_R=17.9	N	OBS	64	BR J0006-6208	4.48	NED=18.3,R=19.3	Y	OBS
6	SDSS J103221.11+092748.9	3.99	APM_R=17.9, r=18.8	N	OBS	66	BR J0030-6129	4.17	R=18.6	N	OBS
6	BR 1033-0327	4.51	APM_R=18.5	N		66	PSS J0034+1639	4.29	R_APM=18.0	N	OBS
7	SDSS J103448.54+110214.5	4.27	APM_R=18.2, r=18.9	N		67	SDSS J004219.74-102009.4	3.88	APM_R=18.2,r=18.7	N	OBS
8	SDSS J103732.38+070426.2	4.10	APM_R=18.3,r=18.5	N		68	BR 0035-26(BRI J0048-2442)	4.15	NED=18.9	N	OBS
9	SDSS J103730.33+213531.3	3.63	APM_R=17.7	N		69	[HB89] 0053-284	3.62	NED=18.3	N	OBS
10	SDSS J104234.01+195718.6	3.64	APM_R=18.1	N		60	[HB89] 0055-269	3.66	NED=17.1	Y	OBS
11	SDSS J105434.17+021551.9	3.97	APM_R=18.0, r=18.8	N	OBS	61	PMN J0100-2708	3.52	R=18.7	N	OBS
12	SDSS J105705.37+191042.8	4.10	APM_R=17.9, r=18.7	N	OBS	62	BRI J0113-2803	4.30	R=18.7	N	OBS
13	SDSS J105858.38+124554.9	4.33	APM_R=17.6, V=18	N		63	PSS J0117+1662	4.24	V=18.6	N	OBS
14	SDSS J110352.73+100403.1	3.61	APM_R=18.6,r=18.7	N		64	PSS J0121+0347	4.13	R=18.3, V=17.9	Y	OBS
16	SDSS J111008.61+024458.0	4.12	APM_R=17.6,r=18.3	N	OBS	65	SDSS J0124+0044	3.84	APM_R=17.6?,r=17.0	Y	OBS
16	SDSS J110855.47+120953.3	3.67	APM_R=18.4,r=18.6	Y		66	PSS J0132+1341	4.16	R_APM=18.5	N	OBS
17	SDSS J111701.89+131116.4	3.62	APM_R=18.3,r=18.4	N		67	PSS J0133+0400	4.15	R_APM=18.3	Y	OBS
18	SDSS J112617.40-012632.6	3.61	APM_R=18.7,r=18.9	N	OBS	68	BRI J0137-4224	3.97	NED=18.46	Y	OBS
19	SDSS J112634.28-012436.9	3.74	APM_R=18.6, r=19.0	N	TBR	69	SDSS J016339.60-001104.8	4.19	APM_R=18.0,r=18.9	N	OBS
20	SDSS J113536.40+084218.9	3.83	APM_R=18.3,r=18.3	N		70	PSS J0211+1107	3.98	APM_R=18.2	N	OBS
21	[HB89] 1159+123	3.61	APM_R=17.3,r=17.4	Y	OBS	71	PMN J0214-0518	3.99	APM_R=18.4	N	OBS
22	SDSS J120210.08-005425.4	3.69	APM_R=18.5	N	OBS	72	BR J0234-1806	4.31	NED=18.8	N	OBS
23	SDSS J124837.31+130440.9	3.72	APM_R=18.1,r=18.6	N	OBS	73	BRI 0241-0146	4.05	APM_R=17.8	Y	OBS
24	SDSS J124957.23-015928.8	3.63	APM_R=17.5,r=17.6	Y	TBR	74	BR 0245-0608	4.24	NED=18.6	Y	OBS
26	SDSS J130452.57+023924.8	3.66	APM_R=18.6,r=18.4	N	OBS	76	PSS J0248+1802	4.42	APM_R=17.7	Y	OBS
26	SDSS J131242.87+084105.1	3.74	APM_R=18.4,r=18.6	N	OBS	76	SDSS J026518.67+004847.4	4.01	APM_R=18.3,r=19.0	Y	OBS
27	2MASS J1320299-052335	3.70	APM_R=17.8	Y	OBS	77	BR J0307-4945	4.72	NED=18.8	Y	OBS
28	SDSS J132346.05+140517.6	4.04	APM_R=18.6, r=19.0	N	OBS	78	BR J0311-1722	4.04	APM_R=17.7	N	OBS
29	BR J1330-2522	3.95	APM_R=18.5	Y	OBS	70	BR 0401-1711	4.23	NED=18.7	Y	OBS
30	SDSS J133254.51+005250.6	3.51	APM_R=18.4,r=18.3	Y	TBR	80	BR J0415-4357	4.07	NED=18.8	N	OBS
31	SDSS J135247.98+130311.5	3.70	APM_R=18.4,r=18.2	N	TBR	81	BR 0424-2209	4.32	NED=17.9, no APM	Y	OBS
32	SDSS J133653.44+024338.1	3.80	APM_R=18.6,r=18.7	N	OBS	82	BR 0623-3346	4.41	APM_R=18.4	N	OBS
33	SDSS J1401+0244	4,44	APM_R=18.4, r=10.0	N	OBS	83	BR J0629-3562	4.17	APM_R=18.3	N	OBS
34	PKS B1418-064	3.689	R=18.6	Y	OBS	84	BR J0629-3626	4.41	NED=18.9	N	OBS
36	SDSS J141608.39+181144.0	3.59	APM_R=18.2	N	OBS	86	BR J0714-6455	4.46	APM_R=18.3	N	OBS
36	SDSS J144260.12+092001.6	3.63	APM_R=17.2,r=17.6	N	OBS	86	SDSS J074711.15+273903.3	4.17	APM_R=17.2,r=18.5	Y	OBS
37	SDSS J1445 +0968	3.6203	r=17.9	Y	OBS	87	SDSS J076552.41+134551.1	3.67	APM_R=18.8,r=18.6	N	TBR
38	SDSS J160328.88+041949.0	3.66	APM_R=18.0,r=18.1	N	TBR	88	SDSS J080050.27+192058.9	3.96	APM_R=18.3, r=20.0	N	
39	SDSS J161768.18+061103.5	3.56	APM_R=18.3	N	OBS	89	SDSS J081855.78+095848.0	3.67	APM_R=17.7,r=17.9	N	OBS
40	SDSS J152436.08+212309.1	3.61	APM_R=17.3	N	TBR	90	SDSS J083322.60+096941.2	3.76	APM_R=18.5,r=18.8	N	OBS
41	SDSS J164237.71+096558.8	3.99	APM_R=18.2, r=18.9	N	OBS	91	SDSS J083610.92+066062.8	3.00	APM_R=18.0,r=18.6	N	OBS
42	SDSS J166266.03+100538.3	3.73	APM_R=18.6, r=18.9	N	TBR	92	SDSS J083941.46+031817.0	4.26	APM_R=17.9, r=18.9	N	OBS
43	SDSS J1621-0042	3.70	APM_R=17.7,r=17.3	Y	TBR	93	SDSS J092041.76+072544.0	3.64	APM_R=18.6,r=18.6	N	
44	SDSS J163319.63+141142.0	4.33	APM_R=18.7,r=19.0	Y	OBS	94	SDSS J093556.91+002255.8	3.75	APM_R=17.8,r=18.7	N	OBS
46	CGRaBS J1658-0739	3.74	R=18.7	N	TBR	95	SDSS J093714.48+082858.6	3.70	APM_R=18.2,r=18.7	N	
46	PSS J1723+2243	4.62	R=18.2	N	OBS	96	BRI 0962-0115	4.43	NED=18.7	Y	
47	BR 2212-1626	3.99	APM_R=18.1	Y	TBR	97	SDSS J096937.11+131216.4	4.06	APM_R=16.9	N	
48	2MASSi J2239538-055219	4.66	APM_R=18.3	Y	OBS	98	SDSS J106340.75+010335.8	3.65	APM_R=19.1,r=18.5	N	OBS
49	BR 2248-1242	4.16	APM_R=18.6	N	OBS	99	BRI 1108-0747	3.92	APM_R=18.8, NED=18.1	Y	OBS
60	PSS J2344+0342	4.24	APM_R=18.2	Y	TBR	100	SDSS J133160.69+101629.4	3.85	APM_R=18.8,r=18.6	N	OBS

QUASARS AND THEIR ABSORPTION LINES: A LEGACY SURVEY OF THE HIGH REDSHIFT UNIVERSE

X-shooter Large Programme

http://adlibitum.oat.ts.astro.it/dodorico/Xshooter_LP/Abstract.html

The aim of this LP is to assemble a legacy dataset of 100 z > 3.5 QSO spectra observed with X-shooter at the ESO VLT.

- Pipeline based on George Becker's code
- Developed some scripts do the job automatically (homogeneous reduction)
- Selocity bins ⇒ UVB: 20 km/s VIS: 11 km/s NIR: 19 km/s
- ∞ ~3 pix per resolution element

DLA 1+2 (z=3.703/3.6627, logN=19.5 +- 0.1/20.35 +- 0.1)

DLA 1 (z=3.957, logN=20.4 + 0.1)

I HANG RANGER AND STREET

EE.