

Carmelle Robert

Canada

Centre de recherche en astrophysique du Québec

Granada-IAA 06/09

Spectromètre Imageur de l' Observatoire du Mont Mégantic

Imaging Fourier Transform Spectrometer

Laurent Drissen Frédéric Grandmont Anne-Pier Bernier Maxime Charlebois

Integral field spectrograph Wide field of view Good spectral resolution

Wavelength (angstroms)

1.33 m long 110 kg

SpIOMM: Michelson interferometer

- = extract the information from the light beam by making it interfere with itself
- Field of view:12'Detector:1340 x 1300 EEV CCDSpatial resolution:0.55"/pixel (seeing limited)Wavelength range:350 900 nmSpectral resolution: λ/Δ λ = up to 25 000

Michelson interferometer

Efficiency: 65%

- mirror alignment (few nm)
- metrology (modulation efficiency ≈ 80% i.e. like grating's efficiency)
 optical parts (beamsplitter + 1 mirror + camera)

Cygnus loop - Old supernova remnant

Data reduction (pixel by pixel)

Optical path difference

Bias, flat, image alignment, sky background subtraction. cosmis rays...

Fourier transform

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-ikx}dx$$

One test object for SpIOMM: NGC 5430 at 42 Mpc SB(s)b - Starburst 13 mag 2 datacubes - 2h each

Élaine Brière M.Sc. Thesis (U. Laval)

Long slit spectroscopy along the galaxy bar for comparison :

HII Region identification

- Using the program HIIphot (NASA)
- to get size, nb, properties... versus radius, galaxy type

Gas metallicity

- using Kewley & Dopita (2002) : NII / Hα vs
 - metallicity $12 + \log(O/H)$
 - ionization parameter $q=S_{ip}/n_{H}$
- Near Z_{\odot} for most HII regions ? No gradient in a barred S

Hα [NII] Liner

Anne-Pier Bernier Ph. D. Thesis (U. Laval)

Age of the HII Region stellar populations

- Using Starburst99, based on the equivalent width of the emission lines Hα and Hβ
- from 6 to 14 Myr youngest = WR knot central region near 3rd arm

100

20

40

60

Ascension droite

80

Velocity

Optically Adaptive System for Imaging Spectroscopy

By R. Bacon for the CFHT in 1997 ... now at the WHT

~1100 lenslets in a rectangular array light is dispersed by a prism and imaged on CCD

Field of view: 2.7''to 10.3''(3 possibilities)Spatial resolution: 0.09''/lensletto 0.26''/lenslet

Wavelength coverage : 4200 to 10300 Å (many configurations) Spectral resolution : 0.8 to 35 Å/pixel

NGC5430 : with OASIS at the CFHT

Simon Cantin Pd. D. Thesis (U. Laval)

SpIOMM

NGC4900 - SB(rs)c HII at 13Mpc

Red Continuum Flux

EQW(Hα)

Weak nuclear activity & chocs

Stellar populations : iterative process for young pop + older pop...

NGC5430 with OASIS & SpIOMM

- Nuclear ring or 2 tight nuclear spirals extending into the bar with young populations of 6-7 Myr, 2 Z_{\odot} TFS = 3.51±0.2 M_☉/yr dusty nuclear bar
- Weak nuclear activity & chocs
- Central region = underlying superposition of old bursts which took place 300 Myr to 10 Gyr ago (max amplitude ~ 1Gyr) with variable low Z
- Galaxy bar is a mixing agent other HIIR at 6 Myr ...
- ⇒ Secular evolution building up a pseudobulge (Kormendy & Kennicutt 2004)
 - slow & older phases used the internal gas and new gas (environment)
 - recent phase indicates a clear role by the galaxy bar to bring gas into the central region

SpIOMM

- Imaging Fourier Transform Spectro.
 'True' Integral field spectrometer
 a spectrum for every pixel
- Wide field 12'x12' 10 000 times Gemini GMOS/IFU 100 times VLT/MUSE
- High spatial resolution (seeing limited)
- Broad spectral range in the visible
 + filters
- R = 1 25 000
- To do: Replace beamsplitter + Second CCD
- Next: SITELLE for the CFHT

OAS/S

- Lenslet array with a grism
 need to work out the instrument optical path
- Small field 10"

- High spatial resolution +NAOMI
- Many wavelength configurations in the visible
- R = 200 4000
- To do: blue CCD

Next... important to have didicated projects (like SAURON)