

### ESTALLIDOS VIII Evolutionary state of the Lyman Alpha Emitter Haro 2

Héctor Otí Floranes Dirigido por J. M. Mas Hesse Centro de Astrobiología (CSIC-INTA) 8-10 marzo 2010



- Ly $\alpha$  is an intense line observed in the optical in high-z sources
  - used to quantify Star Formation Intensity
  - relevant for Cosmology
- However, that is not trivial:  $Ly\alpha$  escape from source is a rather complex issue
- Therefore, it is crucial to understand how  $Ly\alpha$  photons are produced, absorbed, scattered and finally escape from the source
- Haro 2 L<sub>bol</sub> is similar to LAEs at z=3.1 (Gawiser et al. 2007; Gronwall et al. 2007), which are a proxy of the low-L end of LBGs
- Hence, Haro 2 is the best local prototype of Ly $\alpha\mbox{-emitting galaxies at high z}$



- Haro 2/Mrk 33
- Blue Compact Dwarf Galaxy
- Distance = 20.5 Mpc
- 1arcsec~100 pc
- Galactic E(B-V)~0.012
- High Z for BCDGs: 12+log(O/H) = -3.5 => Z ~ Zo/2



• Lequeux et al. (1995)



- Despite being a metal-rich, dusty galaxy, Ly $\alpha$  emission was found
- Neutral gas is expanding as a superbubble at ~200 km s<sup>-1</sup>, which allows the red wing of the line to escape



## **STAR-FORMING KNOTS**

Knot SE point-like source

age~4 Myr  $M \sim 7e + 5 Mo$ E(B-V)=0.040 50% Lyα absorbed

IMF Salpeter

2-120 Mo



**Knot NW** rather extended source age~5 Myr

M~1.3e+6 Mo E(B-V)=0.020 25% Lyα

absorbed

 $M\sim2e+6$  Mo



## **PROPERTIES OF KNOTS**



- There is a temporal shift of 1 Myr between both knots
- Age was calculated fitting SiIV and CIV UV lines in the normalized spectra with the available Starburst99 UV spectral libraries: Zo and SMC/LMC
- Different metal content in knots?
- Knot SE
  - UV line spectrum could only be fitted with Zo library
- Knot NW
  - On the other hand, knot NW could be fitted with both libraries, finding a similar value of ~5 Myr



# Lyα EMISSION: MINOR AXIS



"Estallidos VIII" Héctor Otí-Floranes Salobreña 8/9/10-03-2010



Estallidos de formación estelar en galaxias



"Estallidos VIII" Héctor Otí-Floranes Salobreña 8/9/10-03-2010





## Lyα PROFILE: MAJOR AXIS





## Lyα PROFILE: MAJOR AXIS



"Estallidos VIII" Héctor Otí-Floranes Salobreña 8/9/10-03-2010



# Lva PROFILE: MAJOR AXIS

- Different profile of FUV and nearer UV continuum
- Lack of coupling between  $Ly\alpha$  emission and continuum
- Absence of continuum in region showing diffuse  $Ly\alpha$  emission  $\rightarrow Ly\alpha$ photons escape after multiple scattering
- In knot NW there is a weak Ly $\alpha$  emission within a continuum-dominated region





- Diffuse emission is as intense as the emission associated to knot SE.
  - Hayes et al. (2007) observed in Haro 11 a diffuse Ly $\alpha$  emission which resulted to be higher than the localized emission
- Very extended diffuse emission, as large as > 600 pc  $\rightarrow$  Ly $\alpha$  photons escape after multiple scattering
- Collisional emission?
- Age of knots (~ >4 Myr) and Lyα emission properties, as predicted by model from Tenorio-Tagle et al. (1999)
- Extended, diffuse Ly $\alpha$  emission seems to be originated by the older burst (~5 Myr)

Estallidos de formación estelar en galaxias



### X-RAY IMAGE

- X-ray emission is confined in a region of radius ~600 pc
- Hard X-ray emission is located around the SE knot
- Soft X-ray emission is more extended, especially in knot NW
- Diffuse Lyα emission extends over the soft X-ray emitting NW region
- Older burst (→ more time the superbubble to expand) shows diffuse emission
- A hard X-ray source is found northwest of nucleus. Too weak to extract spectrum. Not included in analysis





### X-RAY SPECTRUM

Model: Gal. Abs. \* Intr. Abs. \* ( hot plasma + power law )



#### **Fixed parameters:**

Galactic absorption: N(HI)=6.3×10<sup>19</sup> cm<sup>-2</sup> Intrinsic absorption: N(HI)=7×10<sup>19</sup> cm<sup>-2</sup>

#### Values of the free parameters:

Hot plasma temperature: kT=0.7±0.1 keV Power law index:  $\Gamma$ =1.8±0.4

Values of the luminosities (D=20.5 Mpc) when integrating over the whole region: L(0.2-1.5 keV)=2.5×10<sup>39</sup> erg s<sup>-1</sup> L(1.5-2.5 keV)=5.0×10<sup>38</sup> erg s<sup>-1</sup> L(2.5-8.0 keV)=1.1×10<sup>39</sup> erg s<sup>-1</sup>

> L(0.4-2.4 keV)=2.4×10<sup>39</sup> erg s<sup>-1</sup>  $L(2.0-10.0 \text{ keV})=1.6\times 10^{39} \text{ erg s}^{-1}$



Model: Gal. Abs. \* Intr. Abs. \* ( hot plasma w/ free abun. O & Mg + power law )FiTest f yields 97% of statistical significance with respect previous modelGalactic absProbably overparameterized ( $\chi^2$ /d.o.f ~ 0.7) and large uncertainties in parametersIntrinsic abs

#### Fixed parameters:

Galactic absorption: N(HI)=6.3×10<sup>19</sup> cm<sup>-2</sup> Intrinsic absorption: N(HI)=7×10<sup>19</sup> cm<sup>-2</sup>



#### Oxygen abundance over solar values in superbubbles blown by starburts is predicted by Silich et al. (2001)

#### Values of the free parameters:

Hot plasma temperature: kT=0.7±0.7 keV Power law index:  $\Gamma$ =1.4±1 O abundance: 1.5±1.1  $\rightarrow$  OVERSOLAR Mg abundance: 2.4±1.7  $\rightarrow$  OVERSOLAR

Values of the luminosities (D=20.5 Mpc) when integrating over the whole region:

L(0.2-1.5 keV)=2.4×10<sup>39</sup> erg s<sup>-1</sup>

L(1.5-2.5 keV)=4.5×10<sup>38</sup> erg s<sup>-1</sup>

L(2.5-8.0 keV)=1.2×10<sup>39</sup> erg s<sup>-1</sup>

 $L(0.4-2.4 \text{ keV})=2.5\times10^{39} \text{ erg s}^{-1}$  $L(2.0-10.0 \text{ keV})=1.7\times10^{39} \text{ erg s}^{-1}$  Estallidos de formación estelar en galaxias



#### X-RAY IMAGE

- Our CMHK02 synthesis evolutionary models predict the  $L_{softX}$  with  $\epsilon_{xeff} \sim 1-5\%$ , i.e. typical range (Strickland & Stevens 1999; Summers et al. 2001, 2004)
- On the other hand, L<sub>hardX</sub> is underestimated by one order of magnitude: stochasticity of X-ray binaries





### CONCLUSIONS

- We identify in Haro 2 two starbursting knots
  - NW: 5 Myr and E(B-V)=0.020
  - SE: 4 Myr and E(B-V)=0.040
- A rather complex spatial profile of Ly $\alpha$  emission along its major axis
  - A large, strong diffuse emission extending > 600 pc northwest of knot NW
  - A weak emission within continuum region of knot NW
  - A strong, localized emission close to knot SE
- X-ray data
  - Fitting: hot plasma (heated gas) and a power law (HMXB?)
  - Diffuse, soft emission coinciding spatially with the diffuse Ly $\alpha$  radiation  $\epsilon_{xeff} \sim 1-5\% \rightarrow$  in agreement with predictions by synthesis models
- Future
  - ACS image?