Compact radio emission indicates a structured jet was produced by a binary neutron star merger

DOI: 
10.1126/science.aau8815
Publication date: 
15/03/2019
Main author: 
Ghirlanda G.
IAA authors: 
Agudo, I.;Perez-Torres, M.A.
Authors: 
Ghirlanda G., Salafia O.S., Paragi Z., Giroletti M., Yang J., Marcote B., Blanchard J., Agudo I., An T., Bernardini M.G., Beswick R., Branchesi M., Campana S., Casadio C., Chassande-Mottin E., Colpi M., Covino S., D'Avanzo P., D'Elia V., Frey S., Gawronski M., Ghisellini G., Gurvits L.I., Jonker P.G., van Langevelde H.J., Melandri A., Moldon J., Nava L., Perego A., Perez-Torres M.A., Reynolds C., Salvaterra R., Tagliaferri G., Venturi T., Vergani S.D., Zhang M.
Journal: 
Science (New York, N.Y.)
Refereed: 
Yes
Publication type: 
Article
Volume: 
363.0
Pages: 
968-971
Abstract: 
The binary neutron star merger event GW170817 was detected through both electromagnetic radiation and gravitational waves. Its afterglow emission may have been produced by either a narrow relativistic jet or an isotropic outflow. High-spatial-resolution measurements of the source size and displacement can discriminate between these scenarios. We present very-long-baseline interferometry observations, performed 207.4 days after the merger by using a global network of 32 radio telescopes. The apparent source size is constrained to be smaller than 2.5 milli-arc seconds at the 90% confidence level. This excludes the isotropic outflow scenario, which would have produced a larger apparent size, indicating that GW170817 produced a structured relativistic jet. Our rate calculations show that at least 10% of neutron star mergers produce such a jet. Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Database: 
SCOPUS
ADS
URL: 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062385835&doi=10.1126%2fscience.aau8815&partnerID=40&md5=4f568901e821a7298f8c9eb72429dc81
ADS Bibcode: 
2019Sci...363..968G