Age Patterns in a sample of Spiral Galaxies

Ultraviolet GALEX Visible DSS Near Infrared 2MASS

M^a Carmen Sánchez Gil (IAA) Emilio Alfaro & Enrique Pérez (IAA) Heath Jones & Joss Blend-Hawthorn (AAO)

Talk Outline

- <u>Aim</u>: Determine the temporal pattern of star formation in spiral galaxies (different morphological types)

• TTF (WHT&AAT), GALEX & SINGS images

- - Image processing
 - Extinction correction
 - Calibration from Starburst99 model
- <u>Results</u>: Age maps

I. Aim

- To map the ages of star forming regions across spatially-resolved spiral arms
- Use a pixel-by-pixel mapping technique
- Hα emission line (6563Å) from HII gas ionized by young massive O-type stars ≥10M_{*} with lifetimes ≤20Myrs
- As star forming region evolves, H α emission drops off earlier than UV, so the flux ratio is sensitive to age (F_{H α} / F_{FUV})
- The flux ratio is independent of the total stellar mass and the distance to the galaxy. So it is not affected by uncertainties in these parameters
- SAMPLE: (Cianci 2003)
 - Nearby and face-on spirals galaxies have enough spatial resolution to see detail in the HII structures of spiral arms (i < 30°)
 - Images available in GALEX NGS

II. Data: The sample

GALAXY	RA J2000	DEC J2000	ТҮРЕ	REDSHIFT	HELIO RADIAL VELOCITY (km/s)	DIAMETER	MAGNITUDE
M74	01 36 41.70	+15 46 59.4	SA(s)c	0.002192	657	10.5 x 9.5'	9.95
NGC1068	02 42 40.71	-00 00 47.8	(R)SA(rs)b	0.003793	1137	7.1 × 6.0′	9.61
NGC2146	06 18 38.17	+78 21 21.6	SB(s)ab	0.002979	893	6.0 x 3.4'	11.38
IC2574	10 28 21.25	+68 24 43.2	SAB(s)m	0.000190	57	13.2 x 5.4'	10.80
NGC4631	12 42 08.0	+32 32 26.0	SB(s)d	0.002021	606	15.5 x 2.7'	9.75
M94	12 50 53.06	+41 07 13.7	(R)SA(r)ab	0.001027	308	11.2 × 9.1′	8.99
M63	13 15 49.25	+42 01 49.3	SA(rs)bc	0.001681	504	12.6 x 7.2'	9.31
M51	13 29 52.71	+47 11 42.6	SA(s)bCpec	0.00154	463	11.2 × 6.9'	8.96
M83	13 37 00.78	-29 51 58.6	SAB(s)c	0.001721	516	12.9 × 11.5'	8.20
M101	14 03 12.48	+54 20 55.3	SAB(rs)cd	0.000804f	241	28.8x26.9′	8.31

NASA Extragalactic Database

II. Data: The Taurus Tunable Filter (TTF)

M51

- The TTF forms a FP interferometer with highly polished plates.
- Used in 3.9m AAT (TAURUS-2 focal reducer at Cassegrain focus) from 13-16 February 2000 & 4.2m WHT from 4-6 March 1999 (Sonia Cianci 2000)
- Piezo-electric stacks alter plate separation and were used to center bandpass at Hα emission line (6563Å).
- Extremely narrowband imaging : bandwidth 10-14Å able to avoid the nearby [NII] lines at 6583Å
 - AAT images: 0.37" per pixel, 10' field of view
 - WHT images: 0.56" per pixel, 15' field of view
- Frequency switching could be used to obtain Hβ images but these were not available.

II.Data: Galaxy Evolution Explorer (GALEX)

- GALEX was launched on April 28, 2003
- 50cm diameter, modified Ritchey-Chrétien telescope with 1.2° circular field of view
- Data includes imaging and spectroscopy in two wavebands:
 FUV (λ_{eff} = 1528Å, Δ λ=268Å), NUV (λ_{eff} = 2271Å, Δ λ=732Å)
- Resolution: 4"(FUV), 5.6"(NUV)
- Undertook a number of surveys: One of these, the Nearby Galaxies Survey (NGS) targetted 200 well-resolved nearby galaxies
- Newest data release was in May 2006.

II.Data: Galaxy Evolution Explorer (GALEX)

M101

II.Data: Spitzer Infrared Nearby Galaxies Survey(SINGS)

- From NASA/IPAC Infrared Science Archive for NASA's Infrared and Submillimeter Data: SINGS Spitzer and Ancillary Data.
- The Spitzer Infrared Nearby Galaxies Survey (SINGS) is a comprehensive imaging and spectroscopic study of 75 nearby galaxies (D < 30 Mpc). (<u>Spitzer Space Telescope</u> launched by a Delta rocket from the Kennedy Space Center on August 25, 2003)

MIPS Data:

- The image (FITS) MIPS data available for download are listed based on bands of the observation [MIPS24, MIPS70 and MIPS160].
- The pixel scale of the MIPS mosaics is wavelength-dependent: 1.5 arcsec at 24 mm, 4.5 arcsec at 70 mm, and 9.00 arcsec at 160 mm. The flux scale is MJy sr-1. The orientation is North up, East left.
- $F_{TIR} = \zeta_1 v_1 F(24\mu) + \zeta_2 v_2 F(70\mu) + \zeta_3 v_3 F(160\mu)$ (Dale&Helou 2002)

 $\zeta_1 = 1.559$, $\zeta_2 = 0.7686$, $\zeta_3 = 1.347$

II.Data: Spitzer Infrared Nearby Galaxies Survey(SINGS)

M94

9"/px

3"/px

720x600 1.5″/px

III.Work: Image Processing

- Images had already been partially processed: Hα images had been bias subtracted, flat-fielded, sky background and continuum subtracted as part of Cianci (2003). Gradient in the background was not subtracted out of some images properly (ex. M51)
- I have done:
 - Strometrical solution and rotation (North up, East left)
 - Background subtracted and calibration in flux of Galex images and calibration in flux of Hα images.
 - Masking (bulge, foreground stars and field)
 - Outling out the noise
 Outline
 Outline
 - Reescaling and alignment of Galex, $H\alpha$ and IR images.

III.Work: Image Processing

M74

370x370 1.5″/px

III.Work: Correcting for dust

Galactic Extinction

- Schlegel et al. 1998 used diffuse IR emission as a measure of dust column density
- Removed contribution from dust within bright galaxies
- Mapped galactic extinction by colour excess E(B-V) in all directions (www.irsa.ipac.caltech.edu/applications/DUST)
- The GALEX team have interpreted the Cardelli et al. (1989) extinction curve to find the conversion factor in the two GALEX wavebands: (<u>http://www.galex.caltech.edu/</u>)
 - A(FUV) = 8.24 E(B-V)
 - A(NUV) = 8.20 E(B-V)
- o A(H α) = 2.6 E(B-V)

III.Work: Correcting for dust

Internal Reddening

- Face on spirals have little depth, but more dust in HII regions
- SINGS data not avalaible for all galaxies (M83, M101, NGC1068 and NGC2146)
- σ Hβ images not avalaible, so use UV spectral slope instead :

III.Work: Starburst99

- Evolutionary synthesis model created by Leitherer et al. 1999
- Simulates evolution of stellar spectra
- Simulates flux through particular filters: GALEX imaging response profiles were integrated with the synthetic spectra
- ${\it {\it o}}$ Modelled flux ratio using output: $L_{H\alpha}$ and L_{FUV}
- Physical constraints:
 - \odot Salpeter IMF α =2.35, M_{up} = 100M $_{\odot}$, 30M $_{\odot}$
 - Metallicity: Z=0.02, 0.04, 0.008, 0.004
 - Star formation history: <u>Instantaneous</u> or Continuous

III.Work: Starburst99

 β_1

M51

βz

IV. Summary:

Ø Work in progress: Analysis

- Determine the better redenning correction among several methods and the better parameters for the model
- Calculate the pattern velocity of the wave front and the corotation radius

Thank you !