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a b s t r a c t 

Measuring the size distribution of dust particles is of interest in many scientific and technological con- 

texts. One of the most widely used techniques is laser light scattering (LLS), which provides the distri- 

bution of surface-equivalent spheres that fits the observed angular dependence of light scattered by a 

sample. We have revisited the problem of the uncertain lower size limit of this method by simulating 

laboratory measurements of the light intensity scattered by polydisperse spheres and irregular particles 

(agglomerated debris and pocked spheres), from which the original distributions are retrieved by regular- 

ized inversion with Mie and Fraunhofer phase functions. For the usual combination of blue ( λ= 466 nm) 

and red ( λ= 633 nm) light sources, size distributions of spheres with radii r > 0.1 μm are retrieved with 

Mie if the true complex refractive index ( m = n – ik ) is used. The retrieval for 0.1 μm < r < 3 μm is 

sensitive to errors in the assumed m , which results primarily from the dependence of the scattering effi- 

ciency Q sca on m . Irregular particle shape has also an impact on the Q sca vs . r curves, whose maxima are 

shifted towards larger r and are smoother compared to spherical particles. For a violet-blue wavelength 

( λ= 442 nm), good retrievals are obtained for irregular particles with r > 1 μm even if m is not very 

well known or the Fraunhofer model is used. Spurious slumps and enhancements appear for r < 1 μm, 

although if n is known, the actual lower limit decreases for increasing n . This implies that LLS size dis- 

tributions of submicron irregular particles may not be accurate. Establishing the lower size limit requires 

inspection of the dependence on m and analysis of the irregularity of samples. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The physical properties of atmospheric aerosols, of cometary

nd interplanetary dust and of particulate deposits on the surface

f airless bodies determine the way in which they scatter light as a

unction of illumination and viewing angles, and wavelength. The

nalysis of remote and close-range observations of the intensity

nd degree of linear polarization of sunlight scattered by particle

louds and particle-covered surfaces in atmospheric and astronom-

cal environments, with the assistance of modelling and laboratory

ata, provides a powerful method for retrieving their properties

nd discussing their implications in a wider context [1] . Remote

tmospheric and astronomical observations of dust clouds are usu-

lly interpreted using models of the interaction between matter

nd radiation [2–8] or by direct comparison with laboratory mea-

urements of the scattering matrix of appropriated dust analogs
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9–11] . Additionally, the models are tested and validated by analy-

is of laboratory measurements [12–16] . 

The effect of particle size, shape, internal structure and com-

osition are heavily entangled in light scattering data. Laboratory

ust analogs obtained from milled and sieved mineral and me-

eoritic samples or synthesised using bottom-up methods present

enerally broad size distributions, which results in size-averaging

f their scattering properties. Thus, separating the effect of size in

aboratory observations is a key first step towards the retrieval of

ther properties such as shape and refractive index. A common ap-

roach to address this problem is determining the size distribution

f samples using particle sizing techniques before performing more

omplex spectro-photopolarimetric measurements [17 , 18] . 

Among the particle sizing methods, low-angle laser light scat-

ering (LLS) [19] has become one of the most widely used tech-

iques in many different scientific and technological fields, ow-

ng to its measurement speed, bulk-representative sampling, suit-

bility for a wide range of sizes and materials and ease of use

20] . Natural dust particles are generally irregularly shaped, which

https://doi.org/10.1016/j.jqsrt.2019.106745
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2019.106745&domain=pdf
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1  
makes necessary adopting a convention on what size means. Bulk-

representative sampling methods consider an equivalent distribu-

tion of spheres, with size meaning the radius of spheres equivalent

in some physical sense to the particles under study (e.g. aerody-

namic radius in the case of sedimentation and radius of a projected

surface-equivalent sphere in the case of LLS). Thus, the distribu-

tions obtained from sedimentation, Coulter counting and LLS have

similar shape but generally different absolute values [21–24] . LLS

provides a size distribution of a natural dust sample represented

by the distribution of projected surface-equivalent spheres that fits

the observed angular distribution of the intensity of light scattered

by the sample. Using spheres as model particles is convenient be-

cause Mie theory provides exact results for their phase function

and it does not require vast computational resources. LLS relies on

the fact that diffraction angle is inversely related to particle size. At

low scattering angles (forward scattering), the most important fac-

tor determining the scattering behaviour of particles is size, while

shape, structure and refractive index have minor or negligible in-

fluence on the retrieved size distribution. The forward scattering

direction is mostly sensitive to larger particles. By contrast, the

scattered intensity for scattering angle larger than ~ 10 ° is sensitive

to the concentration of smaller particles in the size distribution as

well as shape, porosity and refractive index. Large scattering angles

are usually not considered to avoid sphere-specific features (deep

minimum at 100 ° – 120 ° and rainbows [7 , 25] ). Non-sphericity of

target particles is a potential pitfall of the LLS technique in the re-

trieval of size distributions in the small particle size range. The re-

liability of LLS and the validity of its assumptions regarding the

overlapping effects of shape, size and composition have been a

matter of concern for many years, not least because of the obscu-

rity of the analysis methods implemented by commercial sizers. 

The aim of this study is delimiting the range of validity of the

LLS sizing technique for spherical particles and for irregular par-

ticles with unit average aspect ratio (i.e., equi-dimensional) in the

critical range where particle size and wavelength are comparable

(i.e. within a factor of ~10). This range has been shown to play an

important role [26] , for example, on the appearance of a negative

branch in the linear polarization phase curve [27 , 28] , which is one

of the distinct features of polarimetric observations of cometary

dust tails. To this end, we have forward-modelled the angular dis-

tribution of the intensity of light scattered by polydisperse spheres

and model irregular particles, and these have been analysed with

the LLS particle sizing method in order to retrieve the underlying

size distribution and discuss the entanglement of size, refractive

index and irregularity effects on the retrievals based on the qual-

ity of the fit and the correspondence with the original distribution.

This paper is organized as follows. Section 2 summarizes the

main theoretical aspects of light scattering by dust particles and of

regularized inversion. Section 3 describes the computational tech-

niques used to model and analyse the phase function of particle

clouds. Section 4.1 presents the application of the LLS method to

spheres and the propagation of error in the refractive index to the

retrieved size distribution. Section 4.2 deals with the effect of ir-

regularity in the sizing of small particles using spheres as the ref-

erence regular geometry. Results are discussed in Section 5 . Finally,

Section 6 summarizes the findings of this work and concludes with

some remarks about the interpretation of LLS data. 

2. Theory 

2.1. The scattering matrix 

A beam of monochromatic light is described by its Stokes vec-

tor. The interaction between a light beam with Stokes vector �0 

and a cloud of particles results in scattering of the incident light

and modification of the Stokes parameters. The Stokes vector of the
cattered beam � is related to �0 by the scattering matrix F : 

= 

λ2 

4 π2 D 

2 
F �0 (1)

here λ is the wavelength of the incident beam and D is the

istance between the particle cloud and the position at which

he Stokes components are measured. The components of F de-

end on the physical properties of the particles (number density,

ize, shape, internal structure and composition), as well as on geo-

etrical parameters (particle orientation and scattering direction).

hen the particles are randomly oriented all scattering planes are

quivalent, and the scattering direction is fully described by the

cattering angle ( θ ), i.e. the angle between the propagation direc-

ions of the incident and scattered beams. Furthermore, if the en-

emble of particles presents mirror symmetry, only six non-zero

nique matrix elements remain [29 , 30] . The normalized scattering

atrix is given by: F = 

σsca 
4 π P = 

r 2 Q sca 
4 P where σ sca is the aver-

ge scattering cross section and Q sca = σ sca / ( π r 2 ) the scattering

fficiency [31] . For unpolarized incident light and assuming that

 low sample density grants the assumption of single scattering,

he first element of the scattering matrix, F 11 ( θ , λ), known as the

hase function, is proportional to the intensity I ( θ , λ), which rep-

esents the probability of scattering in any given direction. I ( θ , λ),

nder the aforementioned conditions, is a relative-scale measure-

ent of the phase function. Hereafter we refer to I ( θ , λ) as the

measured or forward-modelled) average phase function. The LLS

echnique relies on measuring of I ( θ , λ) to determine particle size.

.2. The size distribution 

The phase function of a polydisperse particulate sample is an

verage of the phase functions of individual sizes weighted by the

ize distribution of the sample: 

I ( θ, λ) ∝ P 11 ( θ, λ) = 

r 2 ∫ 
r 1 

σsca ( x ) P 11 ( x, θ ) n ( r ) d r (3)

Since for irregular particles size is not well defined, the mea-

ured phase function I ( θ , λ) is interpreted as the average of the

hase functions of equivalent spheres weighted by their size distri-

ution, where size is understood as the radius of the sphere with

he same geometric cross section. In Eq. (3) , P 11 is the first element

f the normalized scattering matrix (from Eq. (2) ), x = 2 π r / λ is the

ize parameter and n ( r ) = d ̄N ( r )/d r is the number density size dis-

ribution. N̄ ( r ) is the cumulative size distribution and n ( r ) dr is the

umber of particles with size between r and r + dr . A size distribu-

ion n ( r ) is usually described by its effective radius r eff and effec-

ive standard deviation σ eff as defined by Hansen and Travis [25] . 

It is advantageous to introduce the r → log r variable transfor-

ation in Eq. (3) and use the size distribution in logarithmic scale,

or two reasons: 

(i) when plotting d ̄N ( r ) / d log r = ln 10 r n ( r ) vs. log r , equal ar-

eas under parts of the curve means equal relative amounts of

spheres in the ranges considered. 

ii) P 11 shows smoother variability for equal relative steps �r / r (i.e.,

for equal logarithmic steps) than for equal absolute steps �r

[32] . 

Different kinds of size distributions N i (log r ) ≡
 ̄N i ( r ) / d log r = ln 10 r n i ( r ) can be considered. The in-

ex i denotes the type of distribution: number ( i = 0, de-

oted alternatively as N (log r )), area ( i = 2, denoted alterna-

ively as S (log r ) = d ̄S ( r ) / d log r = ln 10 r s ( r )) and volume

 i = 3, denoted alternatively as V (log r ) = d ̄V ( r ) / d log r = ln

0 r v ( r )). With these changes, Eq. (3) can be re-written as:
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I(θ, λ) = C 

r 2 ∫ 
r 1 

σsca (x ) P 11 (x, θ ) 
g i (r) 

N i ( log r ) dlog r where g i ( r ) = r i [32] . The

sual choice of i = 2, i.e. N 2 (log r ) = S (log r ) ∝ v ( r ), is of a practical

ature and bears no influence in the fact that it is σ sca (with units

f area) what defines what size means in Eq. (4) , i.e. the radius of

he projected area [33] . The reason for using the logarithmic scale

rojected area or equivalently the volume distribution is that it

eights particles by r −3 , which allows reducing the huge dynamic

ange of the scattering intensity pattern [19] . Commercial sizers

eport the retrieved distribution as a volume-based histogram

here the value for each size bin represents the fraction of the

otal particle volume that correspond to particles with equivalent

adii inside that size bin. Note that this is the volume of the sphere

ith equivalent projected area, not with equivalent volume. The

ntensity measured by any given detector j with efficiency φj of

 particle sizer is an integration of the phase function over the

olid angle subtended by the detector’s surface [34] . Therefore, Eq.

4) may be re-written as: 

 

(
θj , λ

)
= 

∫ 
�j 

I ( θ, λ) d� = C 

r 2 ∫ 
r 1 

σsca ( x ) 

r 2 

⎧ ⎪ ⎨ 

⎪ ⎩ 

φj 

∫ 
�j 

P 11 ( θ, x ) d�

⎫ ⎪ ⎬ 

⎪ ⎭ 

S ( log r ) dlog r (5) 

Eq. (5) can be discretized as follows [34] : 

 = K s (6) 

In Eq. (6) , b is the phase function vector with N θ rows (number

f scattering angle bins), where each element is the average of the

hase function within a narrow scattering angle bin. K is a matrix

here each column i contains the product of the average phase

unction of particles within a specific size bin i for N θ angular de-

ectors, P 11 ( x i , θ j ) weighted by r −2 , and the logarithmic width of

he bin: 

 ij = Q scat ( r i ) P 11 

(
x i , θj 

)
�log r i (7) 

The matrix K has N θ rows (number of angular bins) and N r 

olumns (number of size bins). The columns of this matrix are

sually obtained from Fraunhofer diffraction or from Mie theory.

he column vector s ( N r rows) contains the discretized logarithmic

cale distribution ( s i = S (log r i )). 

The ‘observational’ vector b can be the phase function mea-

ured by a particle sizer, or a synthetic phase function obtained

y direct application of Eq. (6) (i.e. forward-modelling). Forward

odelling is carried out by filling the columns of K with phase

unctions generated with a model of the interaction between ra-

iation and dust particles, and the elements of s with the chosen

ize distribution. Given an observed or a forward-modelled vector

, Eq. (6) can also be inverted to retrieve s: s = D b where D is

he generalized inverse of K . Particle sizers estimate the unknown

ector s by using Eq. (8) . 

.3. The inversion method 

An inversion such as Eq. (8) can be performed in principle by

olving the least-squares problem: 

 LSQ = arg min || K s − b || 2 (9) 

This problem is almost always ill-posed, i.e. the solution is not

nique or it is not a continuous function of the data [35] . The prob-

em is also ill-conditioned if the singular values of K decay grad-

ally to zero and the ratio between the largest and smallest non-

ero singular values is large. An arbitrary small perturbation of the

ata can cause an arbitrarily large perturbation of the solution. 

To obtain a stable and physically meaningful result from an ill-

osed problem, different variants of the Phillips–Tikhonov (PT) reg-

larization may be considered [32 , 34 –36] . The PT regularisation
ith two terms solves the least squares problem: 

s reg = arg min 

(‖ 

K s − b ‖ 

2 
2 + δ ‖ 

L ( s − s ∗) ‖ 

2 
2 

+ γ ‖ 

H ( s − s ∗) ‖ 

2 
2 

)
(10) 

here δ and γ and L and H are the regularisation parameters and

atrices, and s ∗ is an initial estimate of the solution. The prior

nformation introduced by this regularisation method is smooth-

ess of the solution. The regularisation matrices are responsible for

moothing out the result and the regularisation parameters con-

rol the weight of the smoothing. When b consists of observational

ata (as opposed to synthetic, forward-modelled data) the mea-

urement covariance matrix S can be implemented in the solution

f Eq. (10) [37 , 38] . Moreover, the underlying size distribution can-

ot take negative values, and therefore a further constraint that

an be imposed to Eq. (10) is that all the components b i of b are

ositive. Thus, Eq. (10) can be solved by using a constrained non-

egative least squares algorithm. 

.4. The light scattering model 

The construction of the matrix K implies assumptions about the

roperties of the particles used as reference such as size, shape

nd refractive index. Spheres are the favoured reference geometry

ue to the straightforward definition of size and the computational

easibility of the scattering models associated to this shape, which

re applicable to a specific size and refractive index range (Fraun-

ofer) or to the full size and refractive index range (Mie). Regard-

ng size, three scattering regimes can be distinguished: Rayleigh

egime for x << 2 π , resonance regime for x ≈ 2 π and geomet-

ical optics for x >> 2 π . Note that r = 0.633 μm for x = 2 π and

= 633 nm. 

The Fraunhofer model was the first one used by particle siz-

rs [19] . It assumes that the sample is a large (geometrical op-

ics), opaque, non-absorbing disk, i.e. the scattering cross section is

qual to the geometric cross section (in other words: all particles

catter with the same efficiency, Q sca ( x ) = 1). The forward scattered

ight originates only from diffraction, and in principle only small

cattering angles can be considered. The recommended lower limit

or the Fraunhofer approximation is 50 μm ( λ= 633 nm) [19] , al-

hough empirical studies often find that Fraunhofer can be safely

pplied for x > 30 ( r > 3 μm at λ= 633 nm) [39] . Mie theory is

xact for spheres for the three scattering regimes, since it explic-

tly calculates the contributions of diffraction, scattering and ab-

orption to the scattering matrix. For this, the complex refractive

ndices of the particulate samples ( m p = n p – ik p ) and the medium

here they are suspended ( m m 

= n m 

) are needed. The scattering

fficiency is a function of the size parameter, and the real and

maginary parts of the particle-medium relative refractive index

 m = ( n p / n m 

) – i ( k p / n m 

) = n – ik ). In the limit of large particle size,

he Mie and Fraunhofer optical models converge [40] . 

Rayleigh scattering is the simplest scattering behavior. It re-

uires particle sizes much lower than the wavelength of the in-

ident and transmitted radiation [25] . As the particle size ap-

roaches the Rayleigh regime, the scattering efficiency decreases

s the fourth power of x and the phase function tends towards cos

 θ as x → 0 and thus becomes small, smooth and changes slowly

ith decreasing size. This means that the columns of K for x be-

ow ~1 have a very small scaling and are very similar (i.e. corre-

ated, linearly dependent). Such matrix is ill-conditioned and an

nversion at these sizes is not feasible. The regularized solution is

ominated by the smoothness constraint, producing meaningless

esults in this size range [16 , 34] . This places a lower limit to the

ccessible range of particle equivalent radii. Performing measure-

ents in the blue part of the spectrum lowers the size limit with

espect to usual red wavelength measurements, e.g. for λ= 466 nm,

he Rayleigh regime is placed below r = 0.06 μm. 
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In principle, a numerical model of the interaction between ra-

diation and particles [7 , 31] combined with a geometrical model

of the particles themselves could also be used to generate the

columns of the matrix K for retrieval purposes. Unfortunately, nu-

merical methods are currently limited to a rather reduced range

of size parameters for practical reasons. Calculations for x > 50

are computationally demanding and impractical for retrieval pur-

poses, compared with Fraunhofer and Mie calculations. In addi-

tion, the choice of the particle model may differ for different sam-

ples (e.g. porous aggregates, compact particles, fractal-like parti-

cles, etc.), which adds further complexity to the implementation of

these methods in particle sizing. It must be highlighted, however,

that Fraunhofer and Mie deliver immediate results for a spherical

geometry that is rarely displayed by real dust samples. 

From Eqs. (6) and ( 7 ), it can be anticipated that the discrepan-

cies between the scattering model employed by the LLS method,

which uses σ sca ( x i ) and P 11 ( x i , θ j ) calculated for spheres for cer-

tain m , and the actual scattering behaviour causing the observed

or forward-modelled phase functions will be transferred to the re-

trieved size distribution s . These discrepancies are likely to be de-

pendent on size, since scattering characteristics converge in the

large particle limit. Thus, a broad size distribution straddling sev-

eral scattering regimes may be valid within a certain size range,

while it may deviate from the true distribution elsewhere. 

3. Methods 

3.1. Fraunhofer and Mie computations 

The Mie and Fraunhofer phase functions P 11 ( x i , θ j ) are the the-

oretical backbone of the LLS particle sizing method. They are used

to fill the columns of K when one or the other model are selected.

The Fraunhofer normalized phase function is given by: 

P 11 ( x, θ ) ∝ x 2 
(

2 J 1 ( x sin θ ) 

x sin θ

)2 

( 1 + co s 2 θ ) (11)

where J 1 is the Bessel function of the first kind [19] . In this study,

Mie phase functions and average scattering cross sections σ scat ( x )

[25] are calculated with M. Mishchenko’s Lorentz-Mie code [31 , 41] .

Phase functions at λ= 633 nm and λ= 466 nm for a range of radii

and angles have been calculated with the two models. The He–Ne

laser ( λ= 632.8 nm) is the staple light source in LLS particle sizing.

Some LLS machines perform additional measurements in the blue

part of the spectrum, e.g. the Malvern Mastersizer instrument se-

ries takes large scattering angle measurements at λ ~ 470 nm. For

Mie calculations, a range of relative complex refractive indices is

chosen (1.12 ≤ n ≤ 2.47, 0 ≤ k ≤ 1), considering that many LLS mea-

surements are performed using water as the carrier medium, i.e.

n m 

= 1.333 and 1.5 ≤ n p ≤ 3.3. This range encompasses the values

of n p of most mineral dust samples. 

A size grid is defined between r = 5 × 10 −3 μm and 1.1 × 10 3 

μm, where the steps between size bins are chosen to be equidis-

tant in a logarithmic scale (steps of 0.06). This configuration is sim-

ilar to the one used by default by the Malvern Mastersizer 20 0 0

analysis software and is convenient for the usual log-normal char-

acter of size distributions. The phase functions for each size bin

are averages of many discrete-size phase functions calculated for

smaller subdivisions of these bins. Regarding the scattering an-

gle grid, calculations have been performed between 0 ° and 180 °
in 0.004 ° steps. The resolution of the grid in the forward scatter-

ing direction is very important, since it determines the retrieval

skill near the upper limit of the inversion size range. In this work,

a method of angular binning of the phase functions P 11 emulat-

ing the operation of commercial sizers has been implemented. LLS

particle sizers reduce the huge dynamical range of the phase func-

tions between forward and side and back scattering (many orders
f magnitude) [19] by careful arrangement of the angular distribu-

ion and surface area of detectors, which facilitates the inversion.

e define here forward scattering as the range of the scattered in-

ensity measured by the so-called focal plane detector array in LLS

ommercial apparatuses, and side and back scattering as the range

easured by large scattering angle detectors. Detectors with an-

ulus sector geometry placed in the focal plane detector array are

sually arranged in such a way that they are equidistant in a log-

rithmic scale. Thus, the logarithm of the detector areas increases

ith a constant increment, where larger areas balance the much

maller intensities [34 , 38] . We apply this in Eq. (5) by integrating

he phase functions in a parameterized angular grid encompassing

 different segments: 33 logarithmic bins between 0.02 ° and 5.8 °,
 bins between 7 ° and 30 °, and 4 bins between 45 ° and 135 °, em-

lating the grouping of detectors in a Malvern Mastersizer 20 0 0.

o obtain realistic values of the parameters defining the step and

ize of the bins for each segment, we have carried out the follow-

ng procedure. The parameters have been varied using a non-linear

east squares method until the forward-modelled phase function

f the Malvern Quality Audit Standard 2001 (glass spheres with

nown size distribution) matches the shape of the phase function

easured with a Malvern Mastersizer 20 0 0 apparatus as a func-

ion of detector number. The manufacturers of commercial particle

izers usually do not disclose the angular distribution and proper-

ies of their detectors. 

The Mie K matrices are also used in this work to carry out for-

ard modelling of phase functions of spheres at λ= 466 nm and

= 633 nm via Eq. (6) . for subsequent size distribution retrieval.

ecause the LLS sizing method is exact for spheres, the results of

his exercise are useful to validate the inversion method employed

o solve Eq. (7) . In addition, this approach can be used to test the

ensitivity of the size distribution retrieval to the real and imagi-

ary parts of the refractive index. When using the Mie model in a

ommercial particle sizer, refractive indices of the particle samples

nder study need to be supplied. However, in some cases experi-

ental values are not available, and in some other cases they are

vailable, but they are accompanied by relatively large experimen-

al uncertainties. Also, particles consist frequently of mixtures of

ifferent materials. Effective medium theories can be used to es-

imate the effective refractive indices, but they may not provide

ood estimates for irregular particles. 

A range of power law and modified log-normal number size

istributions are considered to check the performance of the inver-

ion method across the size parameter range 0.05 < x < 50 0 0, i.e.

.005 μm < r < 500 μm for λ= 633 nm. The so-called modified

og-normal n ( r ) distribution corresponds to a log-normal S (log r )

istribution (see equation 5.247 in [31] ). These are the most com-

on distributions of particulate samples that have been previously

ize-segregated using a combination of test sieves. [42] . 

To emulate the operation of a commercial sizer, we fill the

lements of b in Eq. (6) primarily with the 46 angular bins

t λ= 633 nm and append to these 4 additional elements at

= 466 nm in the large scattering angle sector (between 45 ° and

35 °). This is expected to provide extended sensitivity near the

ayleigh limit. The vectors b obtained in this way are then in-

erted ( Eq. (9) ) to estimate of the distribution used originally to

enerate b and analyse the quality of the retrieval. In order to keep

he number of unknowns equal or smaller than the number of ob-

ervations (46 angular detectors), the original size bin distribution

89 bins) needs resampling if the complete size range is consid-

red in the retrieval (e.g. for power law and broad log-normal dis-

ributions). We have also implemented a method to find the opti-

al retrieval size range as determined by the lowest norm of the

hase function fit residuals, which is useful to retrieve very narrow

og-normal size distributions. In general, the results in the full and
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Fig. 1. Example images of model agglomerate particles with various morphologies. Top panel row: agglomerated debris. Bottom panel row: pocked spheres. 
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estricted range match well, and the only difference is the higher

ampling in the restricted range. 

.2. Discrete dipole approximation and particle generation algorithm 

In order to study the performance of the LLS method with

rregular particles, we have chosen the agglomerated debris and

ocked spheres models [43 , 44] , whose light scattering response

as been calculated with the discrete dipole approximation (DDA)

echnique. The implementation of the DDA method and the parti-

le generation model employed in this work have been described

n detail elsewhere [43 , 44] . Agglomerates debris appear to be a

ore realistic model of mineral dust samples than spheroids or

aussian random spheres [13 , 45] . Moreover, agglomerated debris

nd pocked spheres are equidimensional. Particles with extreme

spect ratios show enhanced scattering at intermediate angles and

educed backscattering [7] . The ISO recommendation is using the

LS technique with particles with aspect ratios lower than 1:3 [19] .

longated particles may also produce scattering patterns affected

y flow particle alignment [46] , which is beyond the scope of this

tudy. Here it is assumed that particles are presented to the probe

aser in all possible orientations. Thus, our study deals with the

veraged effect of irregular shape. 

Agglomerated debris have a packing density of ρ = 0.236 (pack-

ng density defined as the ratio of particle volume to volume of

he circumscribing sphere). The geometric cross section of these

articles is on average a factor of 0.61 of the projected area of the

ircumscribing sphere [44 , 47] . In addition, other model particles

ith higher average packing density ( ρ = 0.336) have been consid-

red, namely pocked spheres [47] . For these particles, the average

atio of the geometric cross section to the projected area of the

ircumscribing sphere is 0.79. Four examples of agglomerated de-

ris and pocked spheres with different morphologies are shown in

ig. 1 . 

Size is usually defined in relation to the specific method used

o generate particles. The size parameter range used in the con-

truction of agglomerated debris and pocked spheres is 1 < x’

 32, where x’ corresponds to the radius of the circumscrib-

ng sphere of the model particle. Thus, agglomerated debris and

ocked spheres with the same x’ are circumscribed by spheres of

he same radii. However, it has been noted before [48] that defin-

ng a common measure of size-equivalence for non-spherical parti-

les is not straightforward. Comparing the phase functions of parti-

les with an inconsistent definition of size makes it difficult to dis-

inguish the dependence on size and morphology. LLS sizing pro-
ides a common characterization of size defined according to the

ngular dependence of the phase function of reference particles,

hich for practical reasons are chosen to be spheres. Thus, for con-

istency with the radius of spherical particles of the Mie optical

odel, we will refer hereafter to the size parameter x defined in

erms of the radius of the equivalent circular projected area or ge-

metric cross section, which for agglomerated debris is x = 

√ 

0.61

 ’ = 0.78 x ’ and for pocked spheres is x = 

√ 

0.79 x ’ = 0.89 x ’. Thus,

he size parameter ranges defined in this way are respectively 0.78

 x < 25 and 0.89 < x < 28. 

A dataset of light scattering computations with the DDA tech-

ique has been used, consisting of phase functions for a range

f refractive indices representative of various constituent materi-

ls [43 , 44 , 47] . For each set of x and m , the light-scattering re-

ponses of model particles were averaged over sample particles

nd their orientations. A minimum of 500 sample particles were

onsidered [47] . The forward-modelled average phase functions are

enerated by averaging the phase functions of the model particles

n the aforementioned size parameter ranges using selected size

istributions via Eq. (6) . For averaging, radius is computed from x

nd λ (for agglomerated debris 0.052 μm < r < 1.756 μm and

or pocked spheres 0.055 μm < r < 2.005 μm, at λ= 442 nm).

he phase functions are calculated between 0 ° and 180 ° in 1 °
teps. Since the particles are relatively small, the poorer resolu-

ion of the scattering angle grid (1 °) is not critical. Degradation of

he angular resolution by emulating detector binning is not nec-

ssary, since owing to the small size of the particles the differ-

nces between the forward peak intensity and side scattering in-

ensities in the fitting range (0 ° < θ < 50 °) are within 3 orders

f magnitude or lower. Larger scattering angles ( θ > 50 °) are ex-

luded to avoid sphere-specific features. Most calculations are car-

ied out for λ= 442 nm, which is expected to extend the sensitiv-

ty to small particles. Some examples are shown in Fig. 2 , where

he effects of size and refractive index are highlighted. It can be

een that the size distribution has an impact over the full scat-

ering angle range for irregular particles with the same optical

roperties, while the effects of refractive index are confined to

> 10 °. 

.3. Inversion techniques 

The golden standard of regularized linear inversion techniques

s the PT method [36] . The literature on regularization techniques

nd their applications to particle sizing is extensive. Performing

 comprehensive test on the different methods available is out
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Fig. 2. DDA-generated average phase functions (vector b in Eq. (6) ) of eight ensembles of agglomerated debris with different relative refractive indices m ( n = Re ( m ), 

k = Im( m )) and size distributions, at λ= 442 nm. The log-normal (log-n) and power law (pw) distributions considered are shown in the inset, with their corresponding 

definition parameters r c and ln σ and effective parameters r eff and σ eff -see below). The arrows highlight the effect of varying the size distribution and the optical pa- 

rameters with respect to the reference case (thick red line). The empty circles highlight the different effect of increasing n when the size distribution includes smaller 

particles. 
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of the scope of this work. A major critique to the PT method

is that the smoothness assumption cannot be applied in situa-

tions where good size resolution is important [49] . More developed

non-linear iteration methods exist, which are capable of retriev-

ing non-smooth and quasi-monodisperse distributions [50] . Several

commercial instruments are known to implement such numerical

methods (e.g. the Sequoia LISST series [51] ). However, the distri-

butions measured for laboratory dust samples are usually polydis-

perse and smooth [42 , 52] . In this work we focus on these types of

distributions and therefore the validity of the smoothness assump-

tion of the PT method is granted. It must be pointed out, however,

that modelling of averaged light scattering quantities of irregular

particles using DDA is restricted to a limited size range, which im-

plies artificial sharp cut offs of some of the assumed size distribu-

tions. 

A regularization toolbox for Matlab [53] has been employed

in this work. The PT algorithm with one regularization term has

been modified to include a second regularization term and to solve

Eq. ( 10 ) using the standard non-negative least squares Matlab rou-

tine [54] . The optimal regularisation parameters are estimated us-

ing the L-curve corner method and the generalized cross-validation

method. The L-curve is a plot for all valid regularization parame-

ters of the semi-norm || L s reg || 2 of the regularized solution s reg ver-

sus the corresponding residual norm || K s reg - b || 2 . The L -curve dis-

plays the compromise between minimization of these two quan-

tities. A log-log plot of the L -curve has a characteristic L -shape,

where the point of maximum curvature corresponds to the optimal

regularisation parameter. The generalized cross-validation method

is based in the idea that if an element b i of b is ignored, the

corresponding regularized solution should predict this observation,

and the choice of regularization parameter should be independent

of an orthogonal transformation of b . This leads to an optimal

regularization parameter that minimizes the so-called generalized

cross-validation function. (see [53] and references therein for more

details). 
. Results 

.1. Sizing of spheres 

.1.1. Validation of the inversion method and intrinsic limitations 

To generate b , power law number size distributions n ( r ) ∝ r p 

i.e. S (log r ) ∝ r p + 3 , see Section 2.2 ) with 6 different values of p

 p = -1.5, -2, −2.5, −3, −3.5, −4) and log-normal size distributions

 (log r ) with 10 different values of the location parameter r c (0.2 ≤
 c < 100) and, for each r c , 10 different values of the scale param-

ter ln σ (0.1 ≤ ln σ ≤ 1), have been considered. The retrievals

ave been performed for size ranges of different width, within the

.005 μm < r < 1100 μm range. 

Power laws provide mixtures of particles with sizes spanning

he full size range considered, and therefore allow to probe the

kill of the LLS method in detecting particles with very different

izes. Fig. S1, left panel column, shows inversion fits of average

hase functions with power laws (red: 633 nm, blue: 466 nm). The

ight panel column shows the original S (log r ) (circles) and re-

rieved (solid thick lines) size distributions. The method retrieves

ell the size distributions for r > 0.1 – 0.2 μm even for the distri-

utions dominated by large particles. When sharp cut offs are in-

roduced in the power law distributions, the edges of the retrieved

istributions are slightly smoothed out as expected (Fig. S2). 

Modified log-normal size distributions provide scenarios closer

o actual measurements performed with particle sizers on size-

egregated samples. They allow visualizing how the retrievals dete-

iorate as the centre of the distribution is shifted towards smaller

adii, without the interference of much larger particles that tend to

ominate the average phase function. The results become noisier

s the tails of the distributions extend below r ~ 0.1 μm and the

alues of the distribution below this limit are wrong. Despite the

eterioration for r < 1 μm, reasonable values are obtained down to

bout 0.1 μm, even if part of the distribution falls below 0.1 μm.

ig. S3 shows examples of the original (circles) and retrieved (solid
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hick lines) log-normal size distributions for 3 values of ln σ . The

iagonal values of the averaging kernel A = KD (matrix product of

he K matrix by its generalized inverse [34] ) are a good indication

f the sensitivity of an inversion to a particular range of the in-

ependent variable, and in our problem non-zero diagonal values

erminate sharply at r ~ 0.1 μm. 

Of course, if the scattering angle range of b is reduced by re-

oving large scattering angle bins, the sensitivity to small parti-

les changes. The retrieved S (log r ) is a good estimate of the orig-

nal one e.g. for r > 4 μm when 0 ° 〈 < θ < 1 °, r 〉 > 0.7 μm when

 ° 〈 < θ < 6 °, and r 〉 > 0.2 μm when 0 ° < θ < 30 °. These lower

ize limits are determined by inverting within different angular

anges a forward-modelled phase function obtained by averaging

ith a power law encompassing the whole size range ( p = −3.5).

onversely, if small scattering angle bins are removed, sensitivity

o large particles is lost, e.g. r < 10 μm for θ > 3 °. 
The level of noise in the observational data has a critical ef-

ect on the results. We have performed size distribution retrievals

ike those described above for log-normal and power law original

istributions, by adding different levels of noise to the simulated

etector bins (from 1% to 10% of the detector intensity). A 2% level

f noise already has an impact on retrievals for r < 1 μm. The re-

rieval in the large particle range is more robust. By adding 8% all

he retrievals shown are affected to some extent either by noise

n the retrieved size distribution or by the apparition of spurious

odes in the small particle end. The problem of noise is addressed

y commercial analysers by considering the measurement covari-

nce matrix S in the solution of Eq. (10) (. This is however prob-

ematic since the detectors showing more fluctuations are usually

hose placed at wider scattering angles, i.e. those most sensitive to

he small particle range. For example, in the Malvern Mastersizer

0 0 0 instrument the detectors with θ > 2 ° show larger intensity

uctuations and receive accordingly lower weights in the retrieval.

hus, weighting helps in removing noise from retrievals of size dis-

ributions ranging above a few microns (e.g. [38] ), but may reduce

ensitivity to small particles compared to large particles. 

.1.2. Sensitivity to refractive index 

Deviations of the retrieved size distribution from the true distri-

ution employed in forward modelling can be investigated by con-

tructing the K matrix with the Fraunhofer approximation or with

ie theory using refractive indices deviating from the true one.

e assume that the refractive index is wavelength-independent in

he visible spectral range. To evaluate the effect of using a ‘wrong’

efractive index, we compare the size distributions retrieved with

hese to the original ones, besides the phase function fit quality.

e also compare the Mie forward-modelled size distributions ob-

ained with the true and the perturbed indices, both for the origi-

al size distribution, in order to identify the scattering angle range

here most discrepancies occur. 

First, the Fraunhofer model has been used to retrieve size dis-

ributions from average phase functions with different refractive

ndices in the scattering angle range 0 ° ≤ θ ≤30 °. We avoid the

hird segment of emulated detectors at 45 °, 60 °, 120 ° and 135 °,
ince Fraunhofer’s phase functions deviate significantly from Mie

or the first two angles of this set and are not defined for the last

wo. This range gives sensitivity to sizes down to r ~ 0.2 μm with

ie as mentioned above, but it excludes the 466 nm data. We have

ound that the lower limit of the size range can be as low as 0.5

m provided that the particles are very absorbing ( k = 1) and with

 high real part of the refractive index n . By contrast, the enhanced

ide scattering characteristic of transparent spheres is balanced by

tting an extra diffraction mode of particles with radii r ≤ 1 μm

a spurious mode usually observed in distributions retrieved with

ommercial particle analysers). Note that the Mie scattering effi-

iency Q scat ( r ) is generally underestimated by the Fraunhofer ap-
roximation ( Q scat ( r ) = 1), except for high absorption, and that the

aximum discrepancy, occurring at the first resonance peak, shifts

o larger sizes as the real part of the refractive index becomes

maller [19 , 25] . In general, it is safe to use the Fraunhofer approx-

mation for r > 3 μm (lowest valid size for a λ= 633 nm forward-

odelled phase function with m = 1.12 – i 10 −5 ) when the true re-

ractive index of the spheres is unknown. Fraunhofer can be con-

idered as the particular case of assuming high values of the real

nd imaginary part of the refractive index in the inversion retrieval

flat Q scat practically for r > 0.1 μm). For consistency with the Mie

alculations, we have repeated these Fraunhofer retrievals from

orward-modelled phase functions at λ= 466 nm with the same

ngular bins. As expected, the lower limits are reduced by a factor

66/633 ~ 0.74, and therefore the Fraunhofer retrievals are valid for

 > 2.2 μm if a particle sizer uses a λ= 466 nm light source. 

In order to study the impact of a poor guess of the refractive

ndex used in the optical model on the size distribution retrieval,

e have chosen as our reference case m = 1.62 – i 10 −2 . We use

he full scattering angle range (0 ° < θ < 135 °) and the usual two

avelengths 466 nm and 633 nm. Fig. 3 (second panel column from

he left) shows that underestimating the real part of the refractive

ndex ( n = 1.3) results in oscillations in the retrieved distribution

nd an enhancement or ‘spurious mode’ between 0.1 μm and 1

m, when there are particles with sizes below 1 μm. As shown

y the comparison of forward-modelled phase functions, for low n

dashed red line in first panel column from the left) there is less

cattered intensity for θ > 40 ° than for higher n (circles), which

s balanced in the fit (solid red line) by additional small particles.

verestimating the real part ( n > 1.7) generates noisier retrievals

nd ‘holes’ in the retrieved distribution when the original size dis-

ribution encompasses a significant fraction of particles with r < 1

m. Overestimating of the imaginary part of the refractive index

as a similar effect to underestimating the real part, and results in

 spurious mode appearing between 0.1 and 1 μm. ( Fig. 3 , fourth

anel column from the left). For wide distributions like the log-

ormal in Fig. 3 , this spurious mode may overlap with the genuine

ode. Underestimating the extinction coefficient by one order of

agnitude or more causes oscillations and holes, similar to over-

stimating n . The excess side scattering produced by low k when

articles are large (forward model for k = 10 −5 , green lines in third

anel column from the left) does not have a significant impact on

he retrieved distribution, which is dominated by fitting of the for-

ard peak. 

Fig. 4 shows contour plots of r eff(retrieved)/ r eff(original) for log-

ormal distributions with r c between 0.4 and 99.7 μm and ln

= 0.5. The result of the retrieval with the correct complex refrac-

ive index is indicated by a circle. These contour plots summarize

he main features of the sensitivity of the LLS method to the value

f the complex refractive index chosen to perform the inversion: 

i) the retrieval is insensitive to the refractive index for log-normal

distributions peaking at large radii whose tail does not reach

below 1 μm ( Figs. 3 and 4 , bottom rows). 

ii) sensitivity limits appear around n ~ 1.5 and k ~ 0.05 ( Fig. 4 ,

top panel row), receding as the distribution shifts to larger sizes

( Fig. 4 , middle row). The retrieval is insensitive to n and k for

size distributions peaking at large sizes ( Fig. 4 , bottom row) 

ii) underestimation of n and overestimation of k result in en-

hanced S (log r ) (spurious size modes) for r < 1 μm ( Fig. 3 , first,

second and third panel rows) , i.e. distributions with smaller r eff

( Fig. 4 , top panel row) and conversely a larger σ eff. 

v) overestimation of n and underestimation of k result in slumps

in the retrieved distribution for r < 1 μm, i.e. narrower distri-

butions with larger effective radius ( Fig. 4 , top panel row) 
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Fig. 3. Variation of the angle-binned average phase function and retrieved size distribution by changing the refractive index in the inversion model for spheres. The original 

distributions are log-normal with ln σ = 0.6 and r c = 0.79 μm −25 μm. Two panel columns on the left: varying the real part of the refractive index ( n ); two panel columns 

on the right: varying the imaginary part of the refractive index ( k ).Circles: forward-modelled average phase functions with m = 1.62 – i10 −2 and original distributions. The 

fitted average phase functions and retrieved distributions are shown by solid lines (black: m = 1.62 – i10 −2 in retrieval model; red: m = 1.3 – i10 −2 ; green: m = 1.62 – i10 −5 ; 

cyan: m = 1.62 – i1; blue: true refractive index m = 1.62 – i10 −2 ). In the average phase function panels, the 4 low-lying points correspond to 466 nm, and the rest are for 

633 nm. The dashed lines are forward-modelled phase functions using the original size distribution and the values of n and k indicated in the legend. 
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v) the retrieval shows less sensitivity to overestimation of n and

underestimation of k , as shown by the upper left corner of the

contour plots in Fig. 4 . 

i) the equivalent results to applying the Fraunhofer approximation

is placed at the top right corner of each panel in Fig. 4 . Over-

estimation of k by using Fraunhofer is partially phased out by

overestimating n , implying that using Fraunhofer may give bet-

ter results than making a too low guess of n . 

Similar contour plots to those in Fig. 4 with opposite behaviour

are obtained for σ eff(retrieved)/ σ eff(original): an enhancement at

the small particle end means a wider distribution with a smaller

effective radius and larger effective standard deviation. 

Using mid-range values of n and k in the forward model, i.e.

m = 1.62 – i 10 −2 , enables seeing well the effect of underestimat-

ing n and overestimating k , but not so well the effect of over-

estimating n and underestimating k . In order to visualize the ef-

fect of using values of n and k respectively in excess and defect

of the real ones, forward modelling has been carried out with a

power law with p = −4 for the cases m = 1.12 – i 10 -2 and m = 1.62

– i 10 −5 , and the retrievals have been performed using m = 1.12 –

i 10 -2 . We have chosen this particular exponent because such power

law is dominated by particles with sizes within the range where

the largest discrepancies between Q sca curves for different refrac-
ive indices occur. A log-normal centred within such range and suf-

ciently wide would be equally valid for this exercise. Fig. 5 (top

ow) shows that using the correct refractive index produces very

ood estimates of the power law for r > 0.1 μm. Forward mod-

lling using n = 1.12 and inversion with n = 1.62 produces a col-

apse in the estimated size distribution below 2 μm (red line in

ig. 5 a, while the opposite produces an enhancement (cyan line in

ig. 5 a). Comparison of the Q sca curves in Fig. 5 b and P 11 contours

n Fig. 5 c readily explains such behaviour by a balance between

 sca and P 11 in the inversion model and the S (log r ) estimate. Note

hat in the size range where the mismatch between the Q sca curves

ccurs there is also a mismatch in the same direction of the P 11 

ontours. Similarly, forward modelling using k = 10 −1 and inversion

ith k = 10 -5 results in a collapse of the estimated distribution be-

ow r ~ 0.5 μm (red line in Fig. 5 d), while the opposite results in

n enhancement (cyan line in Fig. 5 d). In this case the mismatch

etween Q sca and the P 11 contours is less severe, which explains

hy the retrievals in Fig. 5 d with wrong k are not as bad as those

n Fig. 5 a with wrong n . 

The examples above are useful because they help visualizing

mportant effects of particle irregularity and porosity such as lower

ffective n and higher effective k , as it will be shown in next sec-

ion. Such large errors in estimating the refractive index of dust

amples can be avoided by using other information such as obscu-
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Fig. 4. Comparison between the effective radius of original distributions of spheres used in the Mie forward-modelling of the average phase function ( m = 1.62 – i10 −2 ) 

and the effective radius of the distributions retrieved by inversion using Mie with different values of the real and imaginary parts of the refractive index. The original 

distributions are log-normal with r c between 0.4 and 99.7 μm and ln σ = 0.5. The contour plots show the ratio of the effective radius of the retrieved distribution to the 

one of the original distribution ( r eff(retrieved)/ r eff(original). The circle corresponds to the retrieval performed with the correct m. 
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ation (transmission) measurements performed by commercial par-

icle sizers. However, it must be noted that LLS measurements are

sually carried out in dispersion media other than air with n m 

> 1,

or example water ( n m 

= 1.333). In such cases the sensitivity con-

ours in Fig. 4 are compressed towards the low end of the range

f the real part of n . This is illustrated in Fig. S4 for an extended

ange of n : 1.05 ≤ n ≤ 2.47 (i.e. 1.4 ≤ n p ≤ 3.3). For a particle mate-

ial with a refractive index of n p = 1.6 in water, the relative refrac-

ive index becomes n = 1.2. In this range the sensitivity to small

rrors in the refractive index is larger, especially if the distribution

s dominated by particles in the submicron range. For example, for

he p = −4 power law discussed above, an uncertainty of 10% in

he refractive index of the particles results in ~20% errors in r eff of

he retrieved distribution in air, and 50% errors in water. 

.2. Sizing of irregular particles 

Despite of the limited size range considered in the modelling of

gglomerated debris, this is the range where the effects of shape

nd refractive index are expected to approach the same order than

hat of size. In order to explore these effects, we have forward-

odelled phase functions for spherical particles with Mie theory

nd irregularly shaped debris agglomerates with the DDA tech-

ique (some examples are shown in Fig. 2 ), using the power-law

nd log-normal size distributions listed in Table 1 . The forward-

odelled phase functions plotted in Fig. 2 show the following

haracteristics: 

(i) The forward peak ( θ < 7 °), is narrower for larger particles (red

dots, larger r eff; red circles larger σ eff and similar r eff) 

ii) Side and back scattering, ( θ > 7 °), are less intense as k in-

creases (black-red-green dots). 
ii) Side and back scattering ( θ > 7 °) are more intense as n in-

creases if small particles are dominant (red and green empty

symbols). 

v) when large particles dominate, side scattering (7 ° < θ < 60 °) is
less intense and back scattering (90 ° < θ < 180 °) is stronger as

n increases (red-green filled circles). 

We have performed size distribution retrievals by regularized

nversion from the phase functions obtained with the DDA tech-

ique for scenarios in Table 1 . In this case we do not apply the

ame detector area and sensitivity scaling simulation that we ap-

lied for spheres, since the model particles are small and as a

onsequence their phase functions differ by less than 3 orders of

agnitude between forward and side scattering. Retrievals are per-

ormed with the Mie and Fraunhofer optical models for a single

avelength (442 nm or 633 nm) for scattering angles between 0 °
nd 50 °. We have determined in Section 4.1.1 that this range pro-

ides sensitivity in to sizes down to the r ~ 0.1 μm. Retrievals in

 wider angular range up to 135 ° have also been carried out, but

his results in poorer quality fits due to the deep minimum of the

hase function for spheres around θ = 100 ° [7] . The parameters of

he distributions retrieved with Mie at 442 nm for 0 ° ≤ θ ≤ 50 °
re summarized in Table S1. The ratios between the retrieved and

riginal values of r eff and σ eff are plotted in Fig. 6 . It is worth em-

hasizing that the size range considered is narrow and only in-

ludes particles with 0.78 < x < 39, i.e. in the Mie regime. In our

ontext, ‘large’ particles are considered to be those with 10 < x <

9, and ‘small’ particles are those with 0.78 < x < 10. Table S1 also

ists the parameters of power laws ( p ) and log-normal distributions

 r c and ln σ ) functions fitted to the retrieved distributions within

he size interval indicated by r min and r max . The fitting interval for

he analytical distributions has been chosen by removing points at

he high and low ends that deviate from the general trend at the
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Fig. 5. Left panel column: size distribution retrievals using very different values of n . Panel a: original power law ( p = −4) and retrieved size distributions (blue: m = 1.12 –

i10 −2 forward and inversion; green: m = 1.62 – i10 −2 forward and inversion; red: m = 1.12 – i10 −2 forward and m = 1.62 – i10 −2 inversion; cyan: m = 1.62 – i10 −2 forward 

and m = 1.12 – i10 −2 inversion. Panel b: Q sca (r) for m = 1.12 – i10 −2 and m = 1.62 – i10 −2 . Panel c: P 11 ( r , θ ) for m = 1.12 – i10 −2 and m = 1.62 – i10 −2. Right panel column: 

the same for very different values of k ( m = 1.62 – i10 −5 and m = 1.62 – i10 −1 ). The dashed lines in panels c and f roughly indicate the angular range of P 11 which dominates 

the retrieval for each size. 

Table. 1 

Material refractive index and size distributions used in forward modelling of the phase function of clouds of 

irregular particles from DDA-generated monodisperse phase functions. 

Scenario n k Size distribution a p r c / μm 

b ln σ r eff / μm σ eff

1 1.7 0 Power law −2.7 0.660 0.802 

2 1.6 0.03 Power law −3.1 0.470 0.996 

3 1.6 0.15 Power law (pw #2) −1.8 1.050 0.492 

4 c , d 1.313 0 Power law −2.3 1.260 0.661 

5 1.4 0.01 Power law (pw #1) −2.4 0.804 0.677 

6 e 1.4 0.01 Log-normal (log-n #1) 0.63 0.405 0.913 0.368 

7 e 1.4 0.01 Log-normal (log-n #2) 1.26 0.588 1.354 0.261 

8 d , e 1.6 5 × 10 −4 Log-normal (log-n #1) 0.63 0.405 0.913 0.368 

9 d , e 1.6 5 × 10 −4 Log-normal (log-n #2) 1.26 0.588 1.354 0.261 

10 1.4 0 Power law (pw #2) −1.8 1.050 0.492 

11 1.4 0.01 Power law (pw #2) −1.8 1.050 0.492 

12 1.4 0.1 Power law (pw #2) −1.8 1.050 0.492 

13 1.7 0 Power law (pw #2) −1.8 1.050 0.492 

14 1.7 0.01 Power law (pw #2) −1.8 1.050 0.492 

15 1.7 0.1 Power law (pw #2) −1.8 1.050 0.492 

16 1.4 0 Log-normal (log-n #2) 1.26 0.588 1.354 0.261 

18 f 1.4 0.1 Log-normal (log-n #2) 1.26 0.588 1.354 0.261 

19 1.7 0 Log-normal (log-n #2) 1.26 0.588 1.354 0.261 

20 1.7 0.01 Log-normal (log-n #2) 1.26 0.588 1.354 0.261 

21 1.7 0.1 Log-normal (log-n #2) 1.26 0.588 1.354 0.261 

a Power law number size parameter distribution: n ( r ) ∝ r p ; In brackets: abbreviation used in Fig. 2 . Log- 

normal number size parameter distribution n (r) = 

1 √ 
2 π ln σ r 

exp 

(
− ( ln r− ln r c ) 2 ) 

2( ln σ ) 2 

)
b Radius of the geometric cross section. 
c This particular scenario is defined in a wider size parameter range for agglomerated debris: 0.78 < x < 39 

(0.055 μm < r < 2.743 μm for agglomerated debris at λ= 442 nm). 
d Scenarios calculated also for pocked spheres. 
e Phase functions computed for λ= 442 nm (0.052 μm < r < 1.756 μm for agglomerated debris) and 

λ= 633 nm (0.078 μm < r < 2.515 μm for agglomerated debris). 
f Scenario #17 is the same as scenario #7. 
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Fig. 6. Ratio of effective parameters of retrieved distributions to those of the original ones for each scenario at 442 nm (black squares: ratio off effective radii; red circles: 

ratio of effective standard deviations). Distributions dominated by ‘small’ (steep power laws), ‘medium-sized’ (peak between 0.3 μm < r < 1 μm), ‘large’ (shallow power 

laws) and ‘very large’ particles (peak at r > 1 μm) are denoted respectively by S, M, L and XL. The arrows indicate the change directions (increasing or decreasing) of the 

real and the imaginary part of the refractive index within each block (see Table S1). 
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entre of the range. It can be seen that both the fitted and the

ffective parameters are in general in good agreement with those

f the original distributions. The trends observed in the effective

arameters are discussed below. 

This exercise is similar to comparing forward-modelled phase

unctions and integrated quantities for spheres and irregular parti-

les in order to observe the deviations of the scattering pattern of

he later with respect to the former. Thus, we also plot forward-

odelled phase functions for spheres obtained using Mie along-

ide the phase functions of irregular particles and the correspond-

ng Mie inversion fits (see e.g. first panel row of Fig. 7 ). This helps

n understanding what type of compensations are forced into the

etrieved size distributions when the inversion fits are performed. 

.2.1. Entanglement of the dependence of I ( θ , λ) on size, refractive 

ndex and irregularity 

Fig. 7 shows retrievals for scenarios #1 – #5 of agglomerated

ebris. The top panel row shows the forward modelled average

hase functions I ( θ , λ) for agglomerated debris and for spheres

blue squares and black lines, respectively) and the inversion fits

f the former (red lines). According to Eq. (7) -( 9 ), the LLS method

ses a Mie (or Fraunhofer) matrix K for equivalent spheres to fit

he average phase function of irregular particles by adjusting the

ize distribution S (log r ). Since the I ( θ , λ) of agglomerated debris

nd spheres are very close for θ < 10 °, the S (log r ) retrieved from

nversion of I ( θ , λ) is expected to be close to the original one at

he large particle end of the range. This is the case, as shown in

he middle panel row of Fig. 7 , except for the two largest size bins.

egularization smooths the edge of the retrieved distribution, at

he size where the distributions employed in forward modelling

re truncated due to the computational limitations of DDA calcu-

ations. By contrast, the large size wing of the log-normal distribu-

ion in scenario #6, which is not truncated by the upper limit of

he size range, is well retrieved (Fig. S5). Such sharp cut-offs are

ot expected in real samples. The smoothing of the cut-off is well

nderstood (see Fig. S2) and therefore we do not attempt to per-
orm a retrieval with improved resolution. Note that the wider def-

nition range of scenario #4 (higher upper limit r < 2.743 μm) is

eproduced, and that the smoothing appears at the higher cut-off

f this scenario (compare panels e-f to panel h). With the Fraun-

ofer model, results of similar quality to Mie are obtained in the

pper size of the range. The Fraunhofer analysis for spheres was

one at the typical LLS wavelength of 633 nm, while the results for

gglomerated debris in Fig. 7 are for λ= 442 nm. The lower limit

or spheres if the wavelength was λ= 442 nm can be estimated to

e at ~3 μm × (442/633) = 2.1 μm. For agglomerated debris good

esults are obtained down to ~0.8 μm. Thus, it appears that for

rregular particles the lower limit of applicability Fraunhofer ap-

roximation is lower than for spheres (see discussion below). 

Fig. 7 shows that at the small particle end of the size range,

he retrieved distributions deviate from the original ones to dif-

erent degrees (slumps and enhancements can be observed in the

 (log r ) distributions). In the inversion, the size distribution that

ptimises the retrieval needs to counterbalance the mismatch be-

ween the forward models for irregular and spherical particles at

ide scattering angles. As shown by Eqs. (6) and ( 7 ), the differences

etween the scattering properties of irregular and spherical parti-

les are condensed in Q scat ( r, λ) and P 11 ( θ , x ). These two quantities

re fixed as Mie (or Fraunhofer) scattering properties, which are

ignificantly different from those of irregular particles in the small

ize range, as illustrated by the comparison of Q scat in the bottom

anel row of Fig. 7 . Such differences between spherical and irreg-

lar particles are forced into the retrieved S (log r ). 

The four scenarios whose size distributions include significant

ontributions from small particles are #1, #2, #4 and #5. Because

f the slumps, the effective radius and effective standard devia-

ions of the retrieved distributions for these scenarios are respec-

ively higher and lower than those of the original distributions ( Fig.

 ). The other scenarios have smaller numbers of smaller particles,

he slumps are therefore small and their impact on the retrieved

istributions are limited. The retrieved distributions for scenarios

ominated by particles closer to the upper limit of the range show
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Fig. 7. Retrievals of scenarios #1-#5 (power laws) sorted by the value of n = Re ( m ) in desdending order from left to right. Top panel row: average phase function of ag- 

glomerated debris at 442 nm (blue symbols), Mie inversion fit (red), Fraunhofer inversion fit (cyan symmbols) and average phase function of spheres (black). Middle row 

panel: original S(log r) (black symbols) and retrieved S (log r ) (red and green lines Mie, cyan Fraunhofer). Bottom panel row: scattering efficiency of irregular particles (black 

symbols) and of spheres (red and green lines, cyan Fraunhofer). 
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spurious modes at small sizes (see for example scenarios #6 and

#7 in Figure S5), which generally results in smaller effective radii

and larger effective standard deviations. 

Fig. 6 shows that deviations from the effective parameters of

the original distributions are more severe for scenarios with low n

or high k . Fig. 7 shows that as the real part of the refractive in-

dex decreases (scenarios #1 → #2 → #5 → #4), the scattering effi-

ciency peak of irregular particles and spheres shifts towards larger

sizes. The same happens therefore with the region of mismatch be-

tween Q sca for irregular particles and spheres. This reflects in the

slumps appearing in the retrieved size distributions between 0.3

μm and 0.7 μm, which also move towards larger sizes as n de-

creases (the situation is similar to underestimating the real part of

the refractive index for spheres, as shown in Fig. 5 ). The implica-

tion is that the lower limit of the retrieval is placed at larger sizes

for particles with low n . This effect is phased out for larger values

of k ( Fig. 7 , scenario #3). This dependence of the small size end of

the retrieved size distribution on refractive index is characteristic

of size distributions where small particles dominate, such as steep

power laws ( p < −2) or log-normal distributions centred at small

sizes. By contrast, for scenarios where large particles dominate, the

retrieved distributions tend to show enhancements at small sizes

(compare #6 and #7 in Figure S5). Such enhancements are stronger

for scenarios with higher k (compare #7 and #9 in Fig. S5). Fig. 8
c  
ummarizes this dependence of the fit results on the true refrac-

ive index and the abundance of small particles ( r < 0.7 μm). For

 log-normal distribution without large contribution of small sizes,

pheres (solid and dashed black lines in Fig. 8 g–i) scatter on aver-

ge approximately the same intensity (for k = 0, panel g) or lower

for k > 0, panels h and i)) than agglomerated debris (red and blue

ymbols) at side angles. This results in an enhancement of the re-

rieved S (log r ) for small r for scenarios with higher absorption

 Fig. 8 j–l). For a power law distribution with larger contribution of

mall sizes ( Fig. 8 a–c), spheres scatter higher (for k = 0), approxi-

ately the same (for k = 0.01) or lower intensity (for k = 0.1) than

gglomerated debris at side angles. This results in the slumps in

he retrieved S (log r ) at low k and their absence when the absorp-

ion is higher. Also, in Fig. 8 , the lower limits of the retrievals are

enerally lower for higher n . Fig. S5 shows that the lower limits

re wavelength dependent: they are lower for λ= 442 nm than for

= 633 nm. 

.2.2. Accounting for irregularity with an effective refractive index 

We have carried out a study of the sensitivity of the retrievals

o the input values of n and k for all the scenarios at λ= 442 nm in

able 1 . For this, we have used in the inversion of each I ( θ , λ) all

ossible combinations of 10 values of n (1.12 < n < 2.47) and 10

og-scale values of k (0 < k < 1). Such calculations allow to find the

omplex refractive index that best reproduces the original distribu-
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Fig. 8. Retrievals of scenarios #10-#15 (power law p = −1.8, panels a – f) and #16-#21 (log-normal r c = 1.26, panels g – l). Each column corresponds to a value of k (0, 10 −2 , 

10 −1 ), and each panel contains data for two values of n (1.4, 1.7). Average phase functions between 10 ° and 50 ° are plotted in the first and third planel rows, including: 

forward agglomerated debris (AD) for two values of the real part of the refractive index (red squares n = 1.4 and blue circles n = 1.7), inversion fits (red and blue solid lines, 

respectively) and forward Mie spheres (S) (solid and dashed black lines, respectively). Note that the vertical range of the average phase functions is the same in all panels 

to facilitate comparison. The original size distributions and the retrieved ones with Mie and Fraunhofer are plotted in the second and fourth panel row. Scenario #17 is the 

same as scenario #7. 
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ion, and whether this coincides or not with the complex refractive

ndex of the constituent material used in forward-modelling I ( θ ,

). Fig. 9 shows contour plots of the dependence of several indica-

ors of retrieval success on n and k for scenarios #4 and #18. 

The contour plot of the ratio of the effective radius of the re-

rieved distributions to that of the original distribution for scenario

4 ( Fig. 9 a ), is similar to the contour plots in the first panel row

f Fig. 4 for spherical particles. The retrievals are sensitive to un-

erestimating the real part of the refractive index and to overes-

imating the imaginary part beyond k ~ 0.05. On the other hand,

he sensitivity to overestimating n and underestimating k below k

0.05 is weaker. In the case of spherical particles, the best result

as obtained for the original m , while for irregular particles differ-

nt situations occur depending on the true m and size distribution.

he best retrieval in terms of similitude to the original distribution

or scenario #4 (white squares) is obtained for a slight overestima-

ion of the real and imaginary parts of the complex refractive index

 Fig. 9 b), which is in the opposite direction than suggested by ef-

ective medium approximations (triangles). Effective refractive in-

ices considering the volume fraction of the material with respect

o the volume of the circumscribing sphere are listed in Table S2.

his pattern is similar for scenarios #1, #2 and #5, with low ab-
orption and important contribution of small particles. By contrast,

he region of best results is confined to n > 1.3 and k > 0.05 for

cenarios with high absorption and dominated by large particles

ike #18 ( Fig. 9 d and f) and #21. In these cases, better retrievals

re obtained by adopting lower values of n and k , in the direction

ndicated by effective medium approximations, but with higher ef-

ective n . 

The Fraunhofer retrieval (star symbols in Fig. 9 ), which is equiv-

lent to using Mie with high n and k in the inversion, also pro-

uces reasonable results for r > 0.8 μm even for a low n and low

 case such as scenario #4, which is better than when applied to

pherical particles. This results from the smooth, almost flat de-

endence of the scattering efficiency of agglomerated debris to the

ight of the peak ( Fig. 7 i–l). As for spheres, using Fraunhofer to

etrieve the size distribution of irregular particles may yield better

esults than using Mie with an underestimated value of n (compare

ontour values for the star and triangle symbols in Fig. 9 ). Interest-

ngly, when the refractive index of agglomerate irregular particles

s unknown, it is a safer choice to overestimate n with Mie or by

sing Fraunhofer than using Mie with a low value of n suggested

y effective medium approximations to try to account for voids

ithin the particles. When the values of n and k are known, us-
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Fig. 9. Panels a and d: comparison between the effective radius of the original distribution of scenarios #4 and #18 and the effective radius of the distributions retrieved 

by inversion using Mie with different values of the real and imaginary parts of the refractive index. The contour plots show the ratios of the effective radii of the retrieved 

distributions to the one of the original distribution. Panels b and e: logarithm of the mean square error of the retrieved distribution with respect to the original one (for 

r > 0.1 μm) as a function of the values of n and k used in the retrieval. Panels c and f: logarithm of the norm of the residuals of the phase function fits as a function of 

the values of n and k used in the retrieval. In the six panels, the circle corresponds to the retrieval performed with the correct refractive index and the white square to the 

best size distribution retrieval (i.e. the minimum of the surface in panel c). The result equivalent to Fraunhofer is situated at the upper right corner of each panel (star). The 

results corresponding to effective refractive indices are marked by triangles. 
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ing Mie with these values in the retrieval yields better lower limits

than using Fraunhofer, as shown by Figs. 7 and 8 . 

It is worth noting that the minimum in the retrieval MSE n -

k contour (e.g. Fig. 9 c) is not far from a relative minimum in the

phase function residuals n - k contour ( Fig. 9 d), albeit they are gen-

erally different in all scenarios. Changing the values of k and n to

some effective values in the retrieval model may help to get better

agreement with the original S (log r ), but this does not necessarily

mean that the norm of the fit residuals of the average phase func-

tion is also at a minimum in the n - k surface. In addition, the best

retrieval of the size distribution is not obtained for a refractive in-

dex that brings the shape of the Mie Q sca ( r ) curve closer to that of

the irregular particle, i.e. by changing m in the retrieval in such a

way that the peak efficiencies match and the Mie oscillations are

smoothed. This is because the differences between the forward and
 s  
nversion scattering model phase functions P 11 ( x, θ ) also reflect in

he retrieved size distribution ( Eq. (7) ). In fact, there are signifi-

ant differences between the angular dependence of P 11 ( x, θ ) for

gglomerated debris and spheres, including the amplitude of oscil-

ations and the Q-space slopes [55 , 56] . We do not seek to investi-

ate the details of how the compensation of these differences for

ach x governs the trends observed in Figs. 8 and 9 . For the pur-

ose of this paper, the scattering efficiency diagnostic gives suffi-

ient insight into the origin of the submicron artefacts. 

.2.3. Varying particle morphology 

In principle, it could be expected that for particles with higher

acking density than agglomerated debris and generated with a

imilar procedure, the behaviour of the phase function would be
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Fig. 10. Comparison of retrievals of scenarios #4, #8 and #9 for agglomerated debris (red) and pocked spheres (blue) at 442 nm. Top panel row: average phase functions: 

forward DDA model for agglomerated debris (fw AD, red squares) and pocked spheres (fw PS, blue circles), respective Mie inversion fits (red and blue lines) and Mie forward 

model for spheres (size of AD: black line; size of PS: dashed black line). Middle panel row: retrieved S (log r ) for agglomerated debris (red lines), pocked spheres (blue 

lines Mie, cyan Fraunhofer) and the respective original S (log r ) distributions (black squares for agglomerated debris and black circles for pocked spheres). Bottom panel row: 

scattering efficiencies for agglomerated debris (red squares), pocked spheres (blue circles) and spheres (black lines). The size corresponds to the radius of the projected 

area-equivalent sphere. 
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loser to that of spheres and perhaps better in line with using Mie

heory with an effective medium approximation. 

Pocked spheres are model particles with agglomerated mor-

hology, but with some residual spherical surfaces and with higher

verage packing density than agglomerated debris [47] . Thus, in

rinciple they may be regarded as slightly less irregular than ag-

lomerated debris. We have performed calculations for three dif-

erent scenarios (#4, #8 and #9) to investigate the effect of particle

orphology on the LLS retrievals. Fig.10 shows that the scattering

fficiencies of agglomerated debris (AD) and pocked spheres (PS)

re similar. For the same circumscribing sphere, pocked spheres

ave slightly larger cross sections, and therefore slightly larger

adii, which results in narrower phase functions, lower at side scat-

ering angles ( Fig.10 , first panel row). Note that the inversion de-

ects the larger size of pocked spheres (scenarios #4 and #9). For

ocked spheres, Q sca shows somewhat more structure and the peak

s slightly lower. The forward-modelled average phase functions for

pheres lie above the corresponding phase functions for pocked

pheres and agglomerated debris for the three scenarios, and for

gglomerated debris the difference with spheres is smaller. De-

pite the small difference between the scattering efficiencies, the

etrieved distributions for pocked spheres show wider slumps than

or agglomerated debris. Contrary to what could be expected, the

etrieved size distributions for pocked spheres are worse than for

gglomerated debris. 
. Discussion 

The LLS method works accurately for spherical particles of any

rbitrary complex refractive index when the model employed by

he inversion algorithm is Mie and the refractive index is well

nown. Under these circumstances, the upper size limit is deter-

ined by how close to θ = 0 is the first observation of the phase

unction. Similarly, the lower size limit is first determined by the

pper limit the scattering angle range, with increased sensitivity

owards smaller particles if larger scattering angles are available.

ltimately, the lower limit is determined by the Rayleigh regime

oundary and is dependent on the wavelength employed by the

nalyser. Some commercial particle sizers appear to claim sensitiv-

ty down to 20 nm [20] , which is clearly unrealistic as show by this

ork and previous studies [34] , at least for instruments only based

n the angular dependence of scattered intensity [39] . 

The results for spheres are sensitive to error in the refractive

ndex used with the Mie inversion model if the true distribution

ncludes a significant concentration of particles with sizes below

he size where the maximum of the scattering efficiency of spheres

ccurs, e.g. < 1.5 μm for n = 1.1, and below for larger n . Devia-

ions with respect to the original distribution are large when the

rue value of k is larger than ~ 0.05, and the guessed value used

n the inversion is smaller than this value, or vice versa. A similar

oundary for n can be tentatively placed at n ~ 1.5, although the
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sensitivity to small changes in n when the true n is less than 1.5

is much larger, and this is important when the dispersion medium

is not air. All these deviations can be understood by inspecting the

difference between the scattering efficiency of the inversion model

and of the forward model, considering the range of particles that

are encompassed by the original distribution. The limit value of k

~ 0.05 is in line with the kx ~ 1 criterion developed in the context

of Q space analysis [57] . The kx ~ 1 criterion indicates when the

imaginary part k affects the scattering by a sphere. For example, in

Fig. 4 , for x = 15.7 ( r = 1.58 μm at λ= 633 nm), kx = 0.8. 

If Fraunhofer is used instead of Mie as retrieval model, the

lower size limit depends on the true refractive index of the spher-

ical particles, being almost as good as Mie if the particles are very

absorbing and becoming poorer as n and k decrease. Using the

Fraunhofer approximation is similar to using Mie with high val-

ues of n and k . The limit of applicability of the Fraunhofer method

for spheres is conservatively placed at ~3 μm ( λ= 633 nm) to con-

sider the whole domain of relative refractive indices that can be

found in real dust samples ( n > 1, k ≥ 0). This is significantly lower

than the conservative theoretical lower limits usually found in the

literature [19 , 29] , and in agreement with empirical characteriza-

tions [39] . This limit would be slightly lower (~2 μm) if a blue

source was used instead of the typical, He-Ne laser in the com-

plete range of scattering angles. It is worth noting that Fraunhofer

is usually said to be valid for small scattering angles (mainly be-

cause of the mismatch of the first secondary scattering lobe), while

in practice a scattering angle range as wide as 0 ° ≤ θ ≤ 30 ° can

be used. 

The size distributions retrieved for different types of irregu-

lar particles show artefacts that depend on the specific devia-

tions of their phase functions with respect to those of spheres.

As shown by the comparison between agglomerated debris and

pocked spheres, these deviations are difficult to predict, since they

do not depend in a straightforward manner on parameters such

as packing density, even if the particle model precursors have

spherical shape. Spheres are, in fact, not representative of compact

particles, but only of themselves: ideal resonators with perfectly

smooth surface. They are far from being a generally representative

shape. The main reasons for using them as reference is that their

size is defined by a single parameter (radius) and their scattering

matrix can be exactly calculated using Mie theory with minimal

computational effort. They are a useful model in particle sizing as

far as shape effects do not become equal in magnitude to the size

and refractive index dependences of the phase function. In fact, the

LLS inversion method yields good retrievals even in the high end

of the submicron range if the refractive index of the constituent

material is known. It is worth highlighting that the behaviour rela-

tive to spheres described above is specific of agglomerated debris,

and that the artefacts appearing in size distributions retrieved for

other types of model particles may show different dependence on

the refractive index determined by a different angular and size de-

pendence of P 11 . 

It is not too surprising that effective medium approxima-

tions fail in providing better size distribution retrievals for ag-

glomerated debris. For hollow spheres and porous pseudo-spheres

with Rayleigh-sized inclusions, Mie theory combined with effec-

tive medium estimations of the refractive index provides good ap-

proximations to average phase functions and scattering efficiencies

[58 –60] . The manifestation of porosity (1- ρ) is an effective refrac-

tive index (lower n and lower k ), which implies a shift of the peak

Q sca towards larger sizes and an increase of the peak value itself

[61] . The integral scattering properties of random gaussian spheres

[62] are strongly influenced by their irregularity (characterized by

the relative standard deviation σ ), which smooths the oscillations

in the resonance regime and reduces the peak Q scat [12] . The ef-

fect of increasing irregularity is qualitatively similar to decreas-
ng n and increasing k for spheres. By analogy, the combined ef-

ect of porosity and irregularity in agglomerated debris and pocked

pheres could be expected to be an effective reduction of the real

art of the refractive index, and some kind of balance between a

orosity-related effectively reduced k and irregularity-related effec-

ively increased k . However, voids within the agglomerated debris

nd pocked spheres are larger than Rayleigh sizes, and therefore

pplication of effective medium approximations as a way of emu-

ating the effect of irregularity and porosity is dubious. Moreover,

n order to maintain the same porosity in small and larger parti-

les, the effective refractive index should be size-dependent (more

oids are required in small spheres in order to simulate the same

orosity than in large ones). 

The consequences of the present study could be far reach-

ng. Scattering matrix elements measured in conjunction with

LS-retrieved size distributions (e.g. from the Amsterdam-Granada

atabase [17,42] ) have been used in the past to tune atmospheric

erosol retrieval algorithms. The AERONET retrieval method [16 , 63]

s based on a similar principle than the inversion method em-

loyed in this work, using mixtures of spheroids rather than

pheres. This inversion method was trained on a cloud of small

eldspar particles from scattering matrix laboratory measurements

available at [17] ), to retrieve its size distribution and compare

t to the distribution reported for this sample using LLS sizing

ith the Fraunhofer approximation [16 , 64] . The LLS-derived dis-

ribution includes a significant number of submicrometric parti-

les. Although the presence of a fraction of small particles can

e real, the authors of this study noted that the Fraunhofer

ethod is not suited for sizing submicrometric particles. This is

onfirmed by our study, which shows that the Fraunhofer ap-

roximation produces spuriously enhanced abundances of submi-

ron particles for low k materials, while, for micron-sized irreg-

lar particles it yields valid results. Thus, the AERONET inver-

ion method can be considered to be well trained for irregu-

ar particles with sizes down to 1 μm. Below, it is possible that

pheroids have similar problems than spheres in matching the

hape-dependent features of the scattering properties of irregu-

ar particles. A hint of this is that they are not able to repro-

uce simultaneously the scattering matrix elements of feldspar at

wo wavelengths ( λ= 441 and λ= 633 nm) with the same size dis-

ribution. Thus, it cannot be entirely ruled out that extra modes

nd slumps appearing in some of the retrieved distributions are

ctually resulting from such a mismatch. Agglomerated debris

o a better job in reproducing the scattering matrix elements

f the same feldspar sample at the two wavelengths simultane-

usly in forward modelling [13] , which suggests that inversion al-

orithms need to incorporate more elaborated models of irregu-

ar particles. This should also enable a more systematic imple-

entation of the inversion of polarisation measurements by LLS

article sizers. 

. Summary and conclusions 

In this work we have revisited the problem of sizing particles

y inversion of an observed phase function at the core of the LLS

izing technique. This method is widely used in different scien-

ific contexts, but it appears that there are several misconceptions

bout the meaning of its results and its range of applicability. We

ave performed a systematic analysis of the method for spherical

articles using typical wavelengths and a range of common size

istributions, which constrains the intrinsic applicability method

sing the Mie model with the correct refractive index to r > 0.1

m ( r = radius of the projected area equivalent sphere), i.e. to the

ie scattering regime and above. Claims of sensitivity below this

imit must be regarded with scepticism if additional supporting

echniques (e.g. polarimetry) or aprioristic information (extrapola-
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ion) are not considered or insufficiently explained. Fraunhofer ap-

roximates a particular case of the Mie scattering model, that can

e applied for r > 0.5 μm for very absorbing particles and gener-

lly for r > 3 μm ( λ= 633 nm) if the refractive index is unknown.

hese limits would be reduced by a factor of ~ 0.7 if the measure-

ents were carried out with a blue light source. Poor guesses of

he refractive index manifest strongly when the estimated n or k

re at the other side of the limits given by n ~ 1.5 and k ~ 0.05 with

espect to the true index. Making extreme errors in the estimation

f a refractive index is unlikely, but simulating them and visualiz-

ng the mismatch between the scattering efficiency of the forward

odel and the inversion model helps in understanding why the

esults of the LLS method for submicron irregular particles may be

naccurate. Note however that if the dispersion medium is water, a

id-range refractive index typical of e.g. silicates corresponds to a

elative refractive index closer to the lower end of the range, where

he sensitivity to the value of n used in the retrieval is higher. 

When using Mie with the same relative refractive index than

he constituent material of the irregular particles to retrieve their

ize distribution, artefacts appear, which are related to the mis-

atch between the true and the Mie model scattering efficiency

urves and normalized phase functions for single size bins. The on-

et of the artefacts depends on the real part of the relative com-

lex refractive index and can be as low as r ~ 0.3 μm for n = 1.7

 λ= 442 nm). Because dispersion media other than air are often

sed by LLS particle sizers, the lower limit of validity of the re-

rieved size distribution depends on the refractive index of the

edium. Thus, for n p = 1.7 and n m 

= 1.333 (water), n = 1.27, and the

ower limit is placed at r ~ 0.5 μm instead. The shape of these

rtefacts depends on the value of k and on the abundance of par-

icles with sizes comprised within the size range where the mis-

atch occurs. The upper limit of the range where artefacts appear

s placed conservatively at r ~ 1 μm ( λ= 442 nm). This accounts

or the worse results for pocked spheres than for agglomerated de-

ris, as well as the poorer lower limit for low values of n . Effec-

ive refractive index approximations do not help in obtaining bet-

er results (i.e. an improved lower limit) – only for high absorption

hese approximations give some qualitative information. Owing to

he smoothing effect of irregularity on Q sca , the limit of Fraunhofer

s lowered to r ~ 1 μm ( λ= 442 nm) even for transparent particles.

or samples with unknown n , Fraunhofer may even give a better

ower limit for the retrieved distribution than an underestimation

f n . Note however that Fraunhofer cannot be generally trusted for

 < 1 μm ( λ= 442 nm), while Mie extends the validity almost to

he lower limit for spheres if n is high. If n is uncertain, it is safer

o assume values at the upper end of the uncertainty range when

sing the Mie model in the retrieval. 

It appears unfortunately that a large uncertainty exists in the

LS method for aggregate irregular particles for r < 1 μm. The

odel particles used as illustrating examples in this work are ex-

remely irregular and porous, and therefore we may be looking at

orst case scenarios. Usually laboratory mineral and cosmic dust

nalogue samples present smoother surfaces and less porosity [42] ,

hich should make the mismatch in scattering efficiency less se-

ere. Inspection of particle structure by obtaining scanning elec-

ron microscopy images of the samples analysed with the LLS tech-

ique, and a thorough analysis of the dependence of the retrieved

ize distribution on the assumed refractive index, should guide in

eciding about their validity in the submicron range. 
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