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Explanation of the size distributions

In the database we provide tables for the size distributions S(logr), N(logr), and V' (logr).
The main purpose of the text below is to provide definitions and interrelations for these
size distributions. We note that we have tabulated S(logr), N(logr), and V(logr) in the
database by numbers consisting of three figures to avoid rounding errors to accumulate
in calculations involving these functions, even though the actual uncertainties of these
functions are not known.

1 Number distributions

Consider a collection of randomly oriented particles with arbitrary shapes. Replace each
particle by a sphere having the same average (over all orientations) projected surface
area. This creates a collection of spheres which we shall call projected-surface-equivalent
spheres, or briefly spheres. Let r denote the radius of such a sphere. We introduce a
function v(r) so that v(r) dr is the number of spheres per unit volume (of space) having
radii between r and r + dr. Thus, the number of spheres per unit volume with radii

between between r; and 7, is given by [ v(r) dr. Units of v(r) are, e.g., pm~'cm ™.

The total number of spheres per unit volume is

N = /Z/(’I‘) dr. (1)

n(r) = v(r)/N. (2)

a normalized number distribution of the collection of particles. Units for the latter are,
e.g., pm~L. Hence n(r)dr is the fraction of the total number of particles per unit volume
having radii between r and r+ dr. Consequently, the relative contribution of spheres with
radii between r; and r, to the total number of particles per unit volume can be written
as

v dr / n(r) dr. 3)



Note that this quantity is dimensionless and can be expressed in percent.

Obviously, we have

which, in practice, gives a handy test for a normalized number distribution n(r).

2 Volume distributions

The total volume occupied by the (projected-surface-area-equivalent) spheres per unit
volume of space is

V= 0/ V(r)(gmﬁ) dr. (5)

Units of V are, e.g., um®cm™3. The relative contribution to this by spheres with radii
between r; and 7y is dimensionless and given by [/* v(r) dr, where the normalized volume
distribution of the collection of particles

v(r)imrd

v(r) = —2—. (6)

\

Units of v(r) are, e.g., um~'. A handy test is provided by

/v(r) dr =1. (7)

0

3 Projected-surface-area distributions

We can define projected-surface-area distributions analogous to volume distributions.
Thus, the relative contribution to the total surface area of projected-surface-area-equivalent
spheres with radii between r; and 5 per unit volume of space is the dimensionless quantity

[2v(r)yrr2dr [ u(r)rridr 7
n = In = [ s(r)d 8
I v(r)mr2dr S . s(r) dr, (8)



where S (in units of, for instance, um?cm™3) is the total projected surface area occu-
pied by the spheres per unit volume of space and the normalized projected-surface-area
distribution of the collection of particles

o v(r)r
S [Cv(r)ridr

(9)

Units of s(r) are, e.g., um™!. A handy test is provided by

/8(7‘) dr =1. (10)

0

Note that all three functions n(r), v(r), and s(r) are normalized size distributions of a
particular collection of arbitrary particles in random orientation.

4 Interrelations for the size distributions

According to Eqgs. (2),(6) and (9) we have the normalized number distribution

n(r) = v(r)/N, (11)

the normalized volume distribution

4 N
U(T) = 017’3n(T), with C1 = gﬂ-v (12)

and the normalized projected-surface-area distribution

N
s(r) = corn(r), with ¢y = TS (13)

If one of the functions n(r), v(r), or s(r) is given we can find the other two from
Egs. (11),(12), and (13) apart from constants, but these constants can be found directly
from the normalization conditions expressed by Eqs. (4),(7), and (10). In studies of light
scattering, the projected surface area is very important. Therefore, the so-called effective
radius is often used (1). This is given by

e rmr?n(r)dr 3V 70
= = —— = d
Tefl Jo° mr2n(r) dr 48 / rs(r)dr,

(14)



which shows that s(r) is the weighting function here. To characterize size distributions
with a few parameters, this effective radius and the effective standard deviation or the
effective variance can conveniently be used. The effective standard deviation is defined as

J I5°(r — reg)?mr?n(r) dr \l IS (r — re)?s(r) dr
Oeff = = .

r2g [o° mr?n(r) dr 2 Jo° s(r) dr

(15)

The effective variance veg equals o2;. When the sizes of the particles are considered relative
to the wavelength ) of the scattered light the effective size parameter zog = 277/ can
be employed. However, values for the effective radius and the effective standard deviation
may be misleading if the size distribution is, for example, bimodal. In such a case other
or more parameters are needed to describe the size distributions in a satisfactory way.

5 Plots

In plots we may like to use logr where r is expressed in micrometers instead of r as the
abscissa, especially when the range of r is very large. As an example we consider n(r). If
we plot n(r) versus logr we loose the simple interpretation of areas under the curve as
relative number of particles in a certain size range (see Eq. (3)). But we can change the
variable and define a new function N (logr) so that N(logr)dlogr is the relative number
of spheres per unit volume (of space) in the size range logr to logr + dlogr. So

7 ogre 7 dlogr TN (logT)
/ n(r)dr = / N(ogr)dlogr = / [N(logr)TTg] dr = / ﬁdr (16)
T1 logr1 T1 T1
where In 10 is the natural logarithm of 10. Consequently
N(logr) = In10rn(r) = 2.303rn(r). (17)

Eq. (16) shows that it is advantageous to plot N(logr) versus logr or in other words
In10rn(r) versus logr, because we can use the area rule again, i.e., equal areas under
parts of the curve means equal relative amounts of spheres per unit volume in the ranges
considered. In the literature cumulative size distributions, such as the cumulative number
distribution n.(r), are frequently encountered. Here n.(r) is the fraction of particles per
unit volume with radii smaller than r, i.e., n.(r) = J5 n(r") dr’ yielding for use in plots

dn.(r)
dlogr

= In10rn(r) = N(logr). (18)



So far we have considered n(r), but we can do the same for all absolute or relative
(normalized) distribution functions (see Facts and Figures). Thus, we define

S(logr) = In10rs(r) = 2.303rs(r) (19)

V(logr) = In10rv(r) = 2.303rv(r). (20)

It should be noted that N(logr), S(logr), and V (logr) are dimensionless functions which
are also called size distributions. For normalized distributions one often omits the factor
2.303 and performs the normalization by integration of the resulting curve over the entire
range (the total area under the curve).

A useful relation, that follows from using Eqgs. (12)-(14) and Egs. (19)-(20) is

S(logr) _s(r) _ ¢ _ res

V(ogr) w(r) car r (21)

Thus, s(reg) = v(rer) and S(logres) = V(logres). For this reason the curves for S(logr)
and V (logr) plotted versus logr intersect at logr.s. Consequently, r.¢ can be quickly
estimated from figures (see Facts and Figures) or tables like in the database. Furthermore,
we have S(logr) > V(logr) if logr < logres and S(logr) < V(logr) if logr > log 7eg-

Similarly, Eq. (13) gives in combination with Eqs. (17) and (19)

N(ogr) n(r) 1 81
S(logr) — s(r) ez wNr2’

(22)

So the curves for N(logr) and S(logr) intersect at logr = log \/ﬂEN and N(logr) > S(logr)
if logr < log \/WEN and N(logr) < S(logr) if logr > log \/WEN
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