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Resumen

La idea central que guía este trabajo es investigar modelos físicos que no son bien
entendidos desde el punto de vista de la Teoría Cuántica estándar. Por un lado, sistemas
no lineales y en particular, entre ellos, aquellos cuya no linealidad proviene del hecho
de tener variedades de soluciones no planas, es decir, con topología no trivial, incluso en
teorías de campos. Por otro lado, sistemas físicos que, aunque con variedad de soluciones
plana y dinámica lineal, incorporan cierto tipo de comportamiento disipativo.

Como ejemplos paradigmáticos de sistemas no lineales, con variedad de soluciones
no plana, nos fijaremos en modelos sigma no lineales (NLSM), tanto en el casos de
número de grados de libertad finito como infinito (teorías de campos). Esto nos permitirá
embarcarnos en una tarea más ambiciosa: el estudio de un mecanismo de generación de
masa para bosones vectoriales intermedios en teorías de Yang-Mills, es decir, el mecan-
ismo de Stueckelberg no abeliano, que se basa parcialmente en un NLSM.

El papel principal en nuestro estudio de sistemas disipativos lo jugará el oscilador
armónico amortiguado y los modelos cuánticos que lo describen: el modelo de Caldirola-
Kanai y sistema dual de Bateman. Sin embargo, la comprensión de estos modelos será útil
más allá, y sugerirá interesantes relaciones entre el conjunto de todos los sistemas lineales
de una partícula.

El tema recurrente de esta tesis, que guiará muchas líneas de razonamiento, será el
concepto de simetría de un sistema físico como el grupo de transformaciones que dejan
invariantes objetos que caracterizan dicho sistema, y su profunda conexión con la formu-
lación del correspondiente sistema cuántico. Es más, la simetría adquirirá el estatus de
piedra angular en la definición misma del sistema físico y consideraremos que, en cierto
sentido, un sistema físico fundamental es, él mismo, el conjunto de sus simetrías.

El proceso llamado “cuantización” está íntimamente relacionado con ciertas
propiedades de simetría. La Cuantización Canónica se basa, de hecho, en asumir que
la simetría de la variedad de soluciones es la del grupo de Heisenberg-Weyl, correspon-
diente al caso plano, y representarlo unitaria e irreduciblemente. Esto viene sugerido,
implícitamente, por el teorema de Darboux, que afirma que siempre es posible encon-
trar un conjunto de coordenadas canónicas localmente. Además, los teoremas de “no-go”
de Gronwald y van Hove establecen que es imposible cuantizar de manera consistente
más allá de los polinomios de segundo grado en las coordenadas canónicas básicas si nos
apoyamos en la prescripción de la cuantización canónica.

Para llegar a una teoría cuántica consistente en los sistemas físicos que se plantean en
la memoria, recurriremos a la Cuantización Sobre Grupos (GAQ en inglés). Se trata de un
algoritmo para obtener representaciones unitarias e irreducibles de grupos de simetría,
clasificadas según sus extensiones centrales por U (1). Al aplicar este algoritmo al grupo

xi



xii

de simetría básico de un sistema, es posible obtener la teoría cuántica directamente, sin
las obstrucciones propias de la Cuantización Canónica.

Nos acercaremos de tres formas a la cuestión de encontrar una estructura de grupo en
la que basar la GAQ:

1. La primera consistirá en seleccionar (y cerrar) una subálgebra de Poisson de fun-
ciones de las variables canónicas básicas y de la hamiltoniana. La exponenciación
de ese grupo permite aplicar GAQ y cuantizar. Sólo algunas funciones serán repre-
sentadas en la teoría cuántica correspondiente.

2. La segunda será buscar un sustituto del grupo básico de Heisenberg-Weyl de la
Cuantización Canónica, basándonos en un análisis de la simetría de la variedad
de soluciones del sistema concreto. Sólo algunos sistemas peculiares admiten este
tratamiento.

3. Hay otra posibilidad puramente algebraica, consistente en construir un modelo
físico directamente a partir de un álgebra de Lie abstracta que codifique lo fun-
damental del sistema físico.

El plan de la tesis empieza en el Capítulo 2 por una introducción detallada a las técni-
cas de Cuantización Sobre Grupos. El Capítulo 3 se dedica al estudio de varios modelos
con un número finito de grados de libertad, primero lineales (partícula en campos elec-
tromagnético y gravitatorio) y luego no lineales: partícula moviéndose en la variedad de
SU (2) vista como modelo sigma no lineal mecánico, potenciales de Pöschl-Teller y Morse
y el movimiento de una partícula en una esfera !2, donde las simetrías de la variedad de
soluciones son identificadas, así como un hamiltoniano que, si bien no cierra álgebra con
los operadores básicos seleccionados, respeta la representación dada por los mismos. No
es necesario un tratamiento explícito de las ligaduras, el grupo las incorpora de manera
natural, y el espectro de energía se obtiene sin términos inesperados en la curvatura. El
análisis de este último modelo será relevante para llegar al coso de sistemas tipo modelo
de Stueckelberg, que proporcionan una teoría de Yang-Mills masiva.

El Capítulo 4 se dedica a reconsiderar, desde primeros principios deis la teoría cuán-
tica, el modelo de Stueckelberg, que podría constituir una alternativa al mecanismo de
Higgs-Kibble de generación de masa en el Modelo Estándar de Física de Partículas. Con
las técnicas de Cuantización Canónica, dicho modelo resulta ser o bien no unitario o
bien no renormalizable. En este capítulo se encuentra el grupo relevante para la cuanti-
zación del sistema, y se proporciona un representación unitaria e irreducible del mismo.
Además, puede encontrarse de manera inambigua un hamiltoniano que respeta la repre-
sentación y cuya versión clásica proporciona las ecuaciones de movimiento.

No está dentro de los objetivos de la tesis tratar cálculos convencionales de teoría de
perturbaciones en teoría cuántica de campos, sino establecer los fundamentos en los que
éstos podrían apoyarse rigurosamente. En el Capítulo 5 planteamos una posible aprox-
imación a estos cálculos para el modelo sigma no lineal invariante O(N ) en un régimen
perturbativo diferente del usual, tratando de sacar partido de relaciones de conmutación
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no canónicas básicas adaptadas a la simetría O(N ) del sistema, que también dan cuenta
de la geometría y topología no triviales de la variedad en la que toman valores los campos
sigma.

Con una orientación diferente, el propósito del Capítulo 6 es arrojar algo de luz en
el estudio de la disipación cuántica, con la guía de la simtería. Se generaliza al rég-
imen cuántico la transformada de Arnold de la mecánica clásica, que relaciona todos
los sistemas cuya ecuación clásica es una ecuación diferencial de segundo orden no ho-
mogénea de coeficientes arbitrarios con el sistema de la partícula libre. Con la Trans-
formada de Arnold Cuántica (QAT), se importan operadores básicos de la partícula libre,
así como el grupo de Schrödinger, que puede a su vez realizarse sobre el oscilador amor-
tiguado de Caldirola-Kanai. Además, la QAT es muy útil para hacer cálculos rápidamente
en los que se obtienen funciones de onda, el propagador cuántico o el operador evolución
de manera exacta.

Con la ayuda de la QAT entre la partícula libre y el oscilador armónico simple, se
construye unas series de soluciones de la partícula libre que constituyen bases discretas
del espacio de Hilbert. Estas soluciones son normalizables, espacialmente localizadas,
y se caracterizan por ser autoestados de un cierto operador número importado del os-
cilador armónico. Se construyen a su vez los estados coherentes asociados. Estos esta-
dos se construyen también en dimensiones espaciales mayores y dan lugar a la versión
mecano-cuántica de los estados de Hermite-Gauss y Laguerre-Gauss de la óptica ondu-
latoria paraxial.

Las traslaciones temporales en el sistema no libre no pertenecen, en general, al grupo
de Schrödinger importado desde la partícula libre. Esto es esperable, ya que las ecua-
ciones clásicas de movimiento incluyen un término de fricción de manera que la en-
ergía del sistema no se conserva. La siguiente pregunta surge inmediatamente: ¿existe
algún grupo de simetría de dimensión finita que contenga las traslaciones temporales
y, al menos, los operadores básicos? La respuesta es “sí”. Para que esa simetría actúe
adecuadamente, es necesario modificar el sistema físico para que contenga, además,
un nuevo grado de libertad correspondiente a una nueva partícula con interesantes
propiedades. Esto podría entenderse como una versión muy simple del Principio de
gauge, en el que se impone una simetría mayor que la que tiene originalmente el sis-
tema libre. De hecho, el nuevo sistema con dos grados de libertad es el sistema dual de
Bateman. Aprovechando la estrategia basada en simetrías, iremos un poco más lejos y
proporcionaremos una ley de grupo correspondiente a las simetrías del sistema dual.

A la luz de esta ley de grupo, damos un análisis de la cuantización del sistema de
Bateman que hemos encontrado. En particular, mostramos que es posible encontrar
una ecuación de Schrödinger de primer orden, de la que se obtienen las funciones de
onda y el espectro de energía, así como la ecuación más convencional de segundo orden.
Ilustramos también cómo el sistema de Caldirola-Kanai puede reobtenerse mediante un
proceso de ligadura.

Esta memoria se basa fuertemente en los siguiente trabajos publicados y en
preparación:

• V. Aldaya, M. Calixto, J. Guerrero and F.F. López-Ruiz, Quantum Integrability of the
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Chapter 1

Introduction

The central idea guiding this work is to investigate physical models which are not well
understood from the point of view of the standard Quantum Theory. On the one hand,
non-linear systems and, in particular, those whose non-linearity comes from the fact that
their classical solution manifolds are not flat, that is, those possessing non-trivial topol-
ogy, even in field theories. On the other hand, physical systems that, although with a flat
solution manifold and linear dynamics, incorporate some kind of dissipative behavior.

As paradigmatic non-linear systems, with non-flat solution manifold, we will focus on
non-linear sigma models (NLSM), both in the case of finite degrees of freedom (the me-
chanical case), and in that of infinite degrees of freedom (field theories). This will allow us
to embark on a more ambitious program: the study of a mass-generating mechanism for
the intermediate vector bosons in Yang-Mills theories, namely, the non-Abelian Stueckel-
berg mechanism, which is partly based on a NLSM.

The main character of our study of dissipative systems will be played by the damped
harmonic oscillator and the quantum models describing it: the Caldirola-Kanai model
and the Bateman’s dual system. However, the insight gained in this analysis finds appli-
cability beyond this class of linear models and interesting relationships between all linear
systems will be established.

The recurring theme of this doctoral thesis, driving many of the lines of reasoning,
will be the concept of symmetry of a physical system as the group of transformations
leaving invariant the objects characterizing such system, and its deep connection with the
formulation of the corresponding quantized system. Furthermore, symmetry will acquire
the status of cornerstone in the very definition of a physical system and we will consider
that, in some sense, a fundamental physical system itself is the set of its symmetries.

The idea of quantization, that is, the process of obtaining a quantum theory out of
a given classical model, is in fact rooted in certain assumed symmetry properties. The
quantization method known as Canonical Quantization, which relies on Hamiltonian me-
chanics and in which Quantum Mechanics finds its original foundations at the beginning
of the 20th century, could be summarized as follows [1]: consider Cartesian coordinates qj

of configuration space of a given classical system and their corresponding conjugate mo-
menta pk ; then, the operators X̂ j and P̂k which represent these observables must satisfy
the commutation relations [X̂ j , P̂k ] = iħhδj k (the rest of the commutators are zero). This
rule can be easily generalized to the case of field theories, and has been considered ap-
propriate to deal with even non-linear systems. Implicitly, this prescription assumes that
the symmetry of the classical solution manifold of the physical system to be quantized

1
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corresponds globally to the Heisenberg-Weyl group in the corresponding (even infinite)
dimension. The replacement prescription of Canonical Quantization to get quantum op-
erators amounts (through the Stone-von Neumann theorem) to obtain one of the unitar-
ily equivalent, weakly continuous representations of this group and the corresponding Lie
algebra representations (“position” and “momentum” representations for instance, to be
intuitive) in terms of self-adjoint operators. However, the Darboux theorem of Classical
Mechanics, which states that choosing canonical coordinates in the solution manifold is
always possible locally, might turn out to be misleading at this point, suggesting taking
this “tangent-space approximation” for real. This would imply to take the symmetry un-
der the Heisenberg-Weyl group itself and therefore a proper representation of this group,
corresponding to Canonical Quantization, for granted. However, this is rarely true in non-
linear systems.

Moreover, Canonical Quantization turns out to be ambiguous in general when we try
to obtain the quantized operators corresponding to arbitrary functions of qj and pk be-
longing to the general Poisson algebra. The Heisenberg-Weyl representation is unique up
to unitary equivalence; it determines a unique projective representation of the symplectic
group from general principles of representation theory. The so-called “no-go” theorems
by Groenwald and van Hove [2, 3, 4] state that there is no way to extend the representa-
tion of the universal covering group of the symplectic group to include any nonquadratic
polynomial: we cannot get beyond quantizing quadratic polynomials. Usually, a prescrip-
tion of normal ordering for operators is given ad hoc to avoid ambiguities. Even in the
path integral approximation to quantization, this ambiguity is “hidden” in the necessity
of choosing a particular prescription for evaluating position differences (corresponding
to velocities in the continuum limit) at each point of the time slicing of the paths [5]. It is
clear that a neater guide in the whole program would be desirable.

A step ahead in looking for an improved strategy of quantization of non-linear systems
is to look for subalgebras of the entire Poisson algebra which are, in some sense, better
adapted to the actual global properties of the solution manifold than the Heisenberg-
Weyl one, and including, at least in their enveloping algebra, those functions physically
relevant, mainly the Hamiltonian. Projective representations (the relevant ones in Quan-
tum Mechanics) of this subalgebras would then constitute a quantization of the system.
This possibility will be exploited in this dissertation.

Generalizing this approach even further, we can try to identify the actual symmetry
group of the classical solution manifold, whichever it might be, and to find a unitary
and irreducible representation of this group. The basic, self-adjoint operators providing a
proper quantization would then be considered to be as those infinitesimal generators in
this representation. We can push forward and consider this a natural and fundamental
prescription, which generalizes canonical quantization.

According to this approach, it will be possible to represent in the emerging quantum
theory only constants of motion, i.e. conserved quantities well defined in the classical
solution manifold. This suggests to slightly rethink the case of linear systems. There, the
basic symmetry happens to be the Heisenberg-Weyl group and, in principle, Canonical
Quantization should work representing up to quadratic functions. However, it is impor-
tant to note that one should make sure that basic functions qj and pk , to be promoted to
basic quantum operators, are Noether invariants associated with this basic symmetry. As
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a consequence, X̂ j and P̂k will be symmetry generators. This observation is crucial in the
treatment of dissipative systems that will follow.

It could be argued that such an emphasis in finding proper basic operators to build
the quantum theory is not essential, considering that one should only care about having a
self-adjoint Hamiltonian operator to describe the system. This is far from being true. The
Hamiltonian operator provides the time evolution of the system and hence the dynamics.
But the kinematics is encoded in the basic operators and their commutation relations.
Then, the basic symmetry of the system is vital to determine the observable self-adjoint
operators, the physically realizable pure states or the superselection rules. The Hamilto-
nian by itself does not provide this information.

In the task of achieving the quantum description of some fundamental physical sys-
tems, and in the spirit of the improvements outlined above, we will appeal to the features
of a group-theoretical approach which is being developed over the last decades, a Group
Approach to Quantization (GAQ) [7]. It attempts to contribute to the big effort that had
been devoted to place Quantum Mechanics in a similar geometrical status to that of Clas-
sical Mechanics or, even, General Relativity, in that which was known as Geometric Quan-
tization (GQ) [8, 9, 10, 11], and is somewhat related to the methods developed by Isham
[103] or Klauder [12], among others.

The main ingredient in GAQ is the group structure taken to the ultimate conse-
quences, that is to say, symmetry is intended to contribute to Physics as a building block
rather than a practical tool for finding additional solutions to partially solved (symmetri-
cal) problems. Even more, this approach attempts to describe a quantum physical system
from the group manifold itself and its canonical structures, aiming at reducing the prob-
lem of establishing the physical postulates to that of choosing specific groups. In addi-
tion, it should be considered as a method for describing directly the quantum dynamics
since the intermediate step of solving the classical equation of motion is not required. In
fact, the quantum nature of a given system can be associated with the actual (compact)
topology of (part of) the addressing symmetry group, namely a central extension of a cer-
tain basic group by U (1), whereas the classical limit is obtained by simply taking a local
version (in the sense of taking a local chart) of this symmetry (opening the multiplicative
U (1) central subgroup to the additive real line#).

From a technical point of view, this method also represents significant advantages.
In particular, the biggest obstruction found by Geometric Quantization in dealing with
non-linear systems, that of achieving the complete reduction of the geometric represen-
tation (polarization), can now be much better addressed on the grounds of the algebraic
group structure. This is mainly due to the existence of two mutually commuting (left- and
right-) actions, so that the infinitesimal generator of one of them can be used to construct
the Poisson (classical) algebra representation (pre-quantization in the sense of Geometric
Quantization), whereas the other can be employed to reduce completely the representa-
tion (true quantization).

Although the requirement of the additional structure of Lie group might be seen as a
drawback, it should be remarked that after all, the Lie algebra structure is one of the few
bricks shared by all quantization methods, which look for unitary and irreducible repre-
sentations of a given Lie (Poisson) algebra somehow characterizing a physical system.
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We will consider three main attitudes, already outlined above, to confront the quanti-
zation of a given system using a symmetry group structure, summarized in the following
points:

1. The first one will consist in selecting a Poisson subalgebra, built out of functions of
the canonical variables and the Hamiltonian function. This will imply a proper de-
formation of these original functions which, in general, do not close an algebra of
observables and hence can not be exponentiated to a Lie group when considered as
an abstract structure. The obvious advantage is that this strategy will permit us to
use the machinery of the GAQ. Only some functions can then be represented, dis-
carding the quantized version of those original classical functions on the solution
manifold presenting possible ordering problems. This method was already applied
in [6] to study the dynamics of the modified Pöschl–Teller potential and here will be
further developed.

2. The second approach will be to look for a substitute of the basic Heisenberg-Weyl
group postulated by Canonical Quantization. On the representation space of this
substitute group, a Hamiltonian operator might be found, which respects the quan-
tum representation space. This will not be possible in general and only special sys-
tems allow this treatment.

3. There is yet another possibility, a pure algebraic one, consisting in building a phys-
ical model right through the construction of an abstract Lie algebra which encodes
the fundamentals of the particular physical system. This matches the frame of mind
of GAQ, and intuition on how the physics is encoded in these structures will then be
the main guide.

The plan of this thesis begins in Chapter 2 by a detailed introduction to the techniques
of the Group Approach to Quantization. General considerations about quantization are
made in Section 2.1. In Section 2.2 the notion of semi-invariance of a classical system
is introduced and the necessity of considering central extensions of symmetry groups to
describe a quantum system is also established. The precise formalism is reviewed in Sec-
tion 2.3 and, finally, in Section 2.4 the simple examples of the free Galilean particle and
the particle moving on a circle are worked out.

Chapter 3 is devoted to the study of some mechanical models with a finite number of
degrees of freedom. We start by illustrating the third above-mentioned strategy to build
a physical system revisiting the minimal coupling principle for a particle moving on a
external field, either electromagnetic or gravitational (Section 3.1). However, given a clas-
sical physical system we need a more flexible plan. Former point 1 will be exemplified
in Section 3.2 in the case of a relativistic free particle, regarded as a non-linear system.
This will be useful in the next two sections, where we face true non-linear systems: a
particle moving in the SU (2) manifold (Section 3.3) and in Pöschl-Teller and Morse po-
tentials (Section 3.4). Then we move to Section 3.5: the description of a particle moving
in a two-sphere !2. This system can be regarded as the classical analogue of a special
kind of non-linear sigma model, a “partial trace” NLSM on a group orbit. The analysis
of this simple, constrained system will be very relevant in going ahead to more complex
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models. We will identify the symmetries in the solution manifold so that we get a candi-
date to replace the Heisenberg-Weyl algebra of canonical commutation relations and we
will demonstrate the power of this approach. In particular, the possibility of identifying
the correct Hamiltonian operator, respecting the representation space of the quantum
system, even though it does not close a Lie algebra with just the basic ones. No explicit
constraint treatment is required nor ordering ambiguities do appear. Moreover, the en-
ergy spectrum is recovered without extra terms in the curvature of the sphere apart from
those coming from the Laplace-Beltrami operator. The fact that the partial trace NLSM
allows this treatment could be considered as an indicator of the special characteristic of
this system. It will be shown later in the next chapter that the field-theoretic version of
this model is the basis of a Stueckelberg mechanism for massive Yang-Mills theories, in
turn a building block for constructing an alternative to the Higgs-Kibble mechanism.

Chapter 4 is devoted to a reconsideration, from first principles of quantum theory,
of genuinely massive Yang-Mills models, which would give an alternative explanation of
the masses of the intermediate vector bosons W ± and Z 0. We refer to what is generically
known in the literature as “Stueckelberg models”.

The practical interest in massive Yang-Mills theories is fairly obvious. The theory
nowadays broadly accepted to describe electroweak interactions, the Standard Model of
Particle Physics, is formulated as a SU (2)L ⊗U (1)Y gauge theory. To find agreement with
experimental evidence, three of the associated gauge fields, W ± and Z 0, need to have non-
null mass, unlike the photon. This is achieved in the physical model by the Higgs-Kibble
mechanism, in which the gauge symmetry is spontaneously broken to the electromag-
netic gauge group U (1). The resulting theory, which is sketched in Section 4.1, is unitary
and renormalizable, and therefore suitable for perturbative calculations. Besides their
intrinsic theoretical interest, massive Yang-Mills theories can also be useful in the con-
struction of effective theories of strong interactions at low energies [49, 50].

Despite of the extraordinary success of the Standard Model, for the time being the
Higgs boson, the footprint of the spontaneous symmetry breaking mechanism, has not
been confirmed to exist. The Large Hadron Collider is expected to experimentally deter-
mine this.

Section 4.2 is dedicated to the Stueckelberg model. It is based on the introduction
in the theory of scalar fields behaving exactly like gauge group parameters under gauge
transformations, and whose kinematical term in the Lagrangian is a NLSM. The Minimal
coupling prescription corresponding to theses fields automatically provides mass terms
for the gauge vector bosons, maintaining explicit gauge invariance and with no need for
a Higgs particle. In spite of that, conventional Canonical Quantization treatment of these
models seems to lead to a dichotomy between unitarity and renormalizability. We feel
that this analysis might be incorrect, as it is founded in a wrong, implicit assumption
about the symmetry of the NLSM.

Section 4.3 shows the general framework for GAQ to deal with field theories and
Section 4.4 analyzes a Stueckelberg model based on a “partial-trace” sigma-model La-
grangian on an orbit of the gauge group G , G /H . The minimal coupling of the new
(Goldstone-like) scalar bosons provides mass terms to those intermediate vector bosons
associated with the quotient G /H , while the H-vector potentials remain massless. The
main virtue of a partial trace on G /H , rather than on the entire G , is that we can find an
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infinite-dimensional symmetry, with nontrivial Noether invariants, which ensures quan-
tum integrability in our quantization scheme. Then, we analyze this symmetry group
of massive Yang-Mills theories and their quantization. On the quantum representation
space of this extended symmetry group, a quantum Hamiltonian preserving the repre-
sentation can be given, whose classical analog reproduces the equations of motion.

We end up the chapter in Section 4.5, where the present formalism is applied to the
case G = SU (2)×U (1), as a Higgsless alternative to the Standard Model of electroweak
interactions.

It is not within the scope of this thesis work to deal with conventional perturbative
computations which would allow a quantitative comparison with usual results in quan-
tum field theory, but to establish foundations to which they could be fixed rigorously,
pointing to weaknesses of previous analyses. In Chapter 5 we set up a possible approach
to this kind of calculations: we explore the O(N )-invariant Non-Linear Sigma Model
(NLSM) in a different perturbative regime from the usual (relativistic) one, attempting to
take advantage of the knowledge of non-canonical basic commutation relations adapted
to the underlying O(N ) symmetry of the system, which also account for the non-trivial
(non-flat) geometry and topology of the target manifold.

Changing the orientation of previous chapters, the purpose of Chapter 6 is to throw
some light on the subject of quantum dissipation with the guide of symmetry. In Sec-
tion6.1, we generalize to the quantum regime the classical Arnold transformation, by
which all dynamical systems whose classical equations of motion are non-homogeneous
linear second-order ordinary differential equations, including systems with friction lin-
ear in velocity, can be related to free particle dynamical systems. By using the quantum
Arnold transformation (QAT), we import basic operators from the free particle system,
which satisfy the condition of being integrals of the motion and close a Heisenberg-
Weyl algebra. Also, the complete set of symmetries of the quantum free particle, the
Schrödinger group, can be realized on the Caldirola-Kanai model of the damped har-
monic oscillator, providing as many conserved quantities as in the free particle. In addi-
tion, the transformation turns out to be extremely useful to compute objects that would
otherwise need laborious calculations, such as wave functions, the quantum propagator
or the evolution operator.

With the aid of the QAT between the free particle and the harmonic oscillator, an in-
finite discrete series of solutions of the free Schrödinger equation in one dimension is
constructed in Section 6.2. These solutions are normalizable, expand the whole space
of solutions, are spatially multi-localized and are eigenstates of a suitable defined num-
ber operator. Associated with these states new sets of coherent states for the free par-
ticle are defined representing traveling multi-localized wave packets. These states are
also constructed in higher dimensions, leading to the quantum mechanical version of the
Hermite-Gauss and Laguerre-Gauss states of paraxial wave optics.

Time translations in the non-free system do not belong to the imported Schrödinger
group from the free particle. This is to be expected, as the classical equation of motion
includes a friction term and the energy in this system is not conserved. The following
question immediately arises: Is there any finite-dimensional group of symmetry contain-
ing time translations and, at least, the basic operators? The answer is ‘yes’, and Section 6.3
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pays attention to this question in the case of the damped harmonic oscillator and the sur-
prising consequences of the subsequent calculation: for this symmetry to act properly, it
is necessary to enlarge the physical system with a new degree of freedom, corresponding
to a new particle with interesting properties. This could be understood as a very simple
version of the gauge principle, in which a bigger symmetry for the original “free” system
is imposed. In fact, this new system with two degrees of freedom is the Bateman’s dual
system. Taking advantage of the symmetry approach, we will go a bit further and provide
a group law corresponding to the symmetries of the dual system.

With the light of this group law, in Section 6.4 we give an analysis of the quantization of
the dual system that we have encountered. In particular, we show that it is possible to find
a first-order Schrödinger equation, from which the wave functions and the energy spec-
trum can be obtained, as well as the more usual second-order equation. We also illustrate
how the Caldirola-Kanai system can be recovered by means of a constraint process.

This dissertation is heavily based on the following published papers and in prepara-
tion, and a great part of the text is extracted from them.

• V. Aldaya, M. Calixto, J. Guerrero and F.F. López-Ruiz, Quantum Integrability of the
Dynamics on a Group Manifold, J. Nonlinear Math. Phys. 15, 1 (2008).

• M. Calixto, V. Aldaya, F.F. López-Ruiz and E. Sánchez-Sastre, Coupling Nonlinear
Sigma-Matter to Yang-Mills Fields: Symmetry Breaking Patterns , J. Nonlinear Math.
Phys. 15, 91 (2008).

• V. Aldaya, M. Calixto, J. Guerrero and F.F. López-Ruiz, Group-quantization of non-
linear sigma models: particle on !2 revisited, Rep. Math. Phys. 64, 49-58 (2009).

• J. Guerrero, F.F. López-Ruiz, M. Calixto and V. Aldaya, On the geometry of the phase
spaces of some SO(2,1) invariant systems, Rep. Math. Phys. 64, 329-340, (2009).

• V. Aldaya, M. Calixto and F.F. López-Ruiz, A Quantizable Model of Massive Gauge
Vector Bosons without Higgs, Mod. Phys. Lett. A 24, No. 34, 2731-2740, (2009).

• V. Aldaya, M. Calixto and F.F. López-Ruiz, Non-Canonical Perturbation Theory of
Non-Linear Sigma Fields, accepted for publication on Oct 18, 2010, in Mod. Phys.
Lett. A, arXiv:1007.2820.

• V. Aldaya, F. Cossío, J. Guerrero and F.F. López-Ruiz, The quantum Arnold transfor-
mation, accepted for publication in J. Phys. A; arXiv:1010.5521.

• V. Aldaya, M. Calixto and F. F. López-Ruiz, Symmetry group for massive Yang-Mills
theories, in preparation.

• V. Aldaya, M. Calixto, J. Guerrero and F. F. López-Ruiz, Symmetries of Non-Linear
Systems: Group Approach to their Quantization, in preparation.

• J. Guerrero, F.F. López-Ruiz, V. Aldaya and F. Cossío, Discrete basis of localized quan-
tum states for the free particle; arXiv:1010.5525.
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• V. Aldaya, F. Cossío, J. Guerrero and F.F. López-Ruiz, A symmetry trip from Caldirola
to Bateman damped systems, in preparation.



Chapter 2

Fundamentals of Group Approach to
Quantization

2.1 The postulate of quantization

The formalism of Quantum Mechanics is frequently introduced in textbooks through
the enumeration of a series of postulates, collecting the amount of physical insight about
the quantum world (see for instance the book by Galindo and Pascual [1]). We are in-
structed in the description of physical systems in terms of pure states represented by unit
rays in a complex Hilbert space# and observables represented by self-adjoint operators
in# ; in the probability of obtaining a given value when measuring an observable and the
subsequent collapse of the wave function; in the time evolution of the states described
by the Schrödinger equation; and finally, in a way to construct the self-adjoint operators
corresponding to the physical observables by means of the canonical quantization rules.
Clarify and formalize this last postulate of quantization rigorously is the main purpose of
Group Approach to Quantization (GAQ). The slogan that might summarize GAQ is “repre-
sent a true symmetry group irreducibly and unitarily”, instead of “canonically quantize”.
At the same time, GAQ achieves a conceptual generalization of the Schrödinger equation,
which is viewed as a polarization equation in the scheme.

The postulate of quantization formulated in [1] reads:

• Postulate VI. For a physical system in which the Cartesian coordinates are q1,
q2,. . .qN , with corresponding conjugate momenta p1, p2, . . . pN , the operators X̂r

and P̂s , which represent these observables in Quantum Mechanics, must satisfy the
commutation relations

[X̂r , X̂s ] = 0 , [P̂r , P̂s ] = 0 , [X̂r , P̂s ] = iħhδr s .

If the system has an observable whose classical expression is
A(q1, . . . ,qN , p1, . . . , pN ; t ), in usual applications of Quantum Mechanics the
corresponding operator is obtained from this expression, conveniently written, by
substituting the operators X̂r and P̂s for the variables qr and ps , respectively.

Thus, Canonical Quantization intends to transfer the Poisson structure of the Classi-
cal Hamiltonian mechanics to the “quantum representation” of the physical system. As
already mentioned in the Introduction, this presupposes a symmetry of the classical so-
lution manifold of the system that might not be there in the case of non-linear systems.

9
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This prejudgment is in part induced by the Darboux-Weinstein theorem of classical me-
chanics [3], which states that any two symplectic manifolds of the same dimension are
locally symplectomorphic to each other, and therefore to a flat one.

Even when flatness of the solution manifold comes to help, so that the applicability of
Canonical Quantization might seem undoubted, its topology must be taken into account.
A good example is the application of the canonical rule to a particle moving in a half line:
we are not able to describe all physical states. This system possesses a bound state that is
usually discarded on behalf of the self-adjointness of canonically commuting basic posi-
tion and momentum operators [13]. One must wonder whether a similar pathology might
happen when blindly applying the postulate of Canonical Quantization.

It should also be noted the phrase “conveniently written” in the Postulate VI when
referring to the obtention of operators representing arbitrary functions of the basic co-
ordinates. It reflects the ambiguity encompassed in this method of quantization. Any
function of the basic variables can be, in principle, quantizable, with the restriction of
arriving at a self-adjoint operator. There is not a general way to single out quantizable
functions nor a method to obtain their quantized version, and the specific expressions
are justified ultimately by experimental evidence. It is sometimes believed that one needs
only to generate the correspondence of these basic variables to the basic operators, or
even the correspondence between their quadratic versions, and that the operator sta-
tus of other (derived) observables will be automatically achieved. Combinations such as
qi p j are represented symmetrizing the two orderings but this supplemented rule however
causes problem. If ones tries to built operator for higher order combinations, one finds
that it is not possible to keep this rule consistently. Consider the Poisson bracket identity
in one dimension

1
9
{q 3, p 3}=q 2p 2 =

1
3
{q 2p , p 2q} .

If we call $̂( f (q , p )) the quantum operator corresponding to the function f (q , p ), the left
hand side of this equation leads to

1
9
[$̂(q 3),$̂(p 3)] = $̂(q )2$̂(p )2−2iħh$̂(q )$̂(p )− 2

3
ħh2 ,

while its right hand side gives

1
9
[$̂(q 2p ),$̂(p 2q )] = $̂(q )2$̂(p )2−2iħh$̂(q )$̂(p )− 1

3
ħh2 .

This shows that one could not consistently quantize observables beyond quadratic com-
binations of q’s and p’s, and it is the basic result of the theorems by Groenwald and van
Hove [2, 3, 4].

Geometric Quantization [8, 9, 10, 11] attempted to solve the situation, reformulat-
ing the ambiguous algorithm to provide some mathematical soundness. It succeeded
in bringing the quantum theory to a geometrical language, proposing a coordinate-free
framework. However, it finds severe problems in reducing the representation given by the
pre-quantization scheme, or even unitarity problems in the reduced representation.
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2.2 The role of central extensions of “classical” symmetries

Let us consider the symmetry of the Lagrangian of the free particle in 1+1 dimensions:

& = 1
2

m
.

x
2

Under the classical Galilean transformations

x ′ = x +A +V t , t ′ = t + B , (2.1)

the Lagrangian moves to & ′ = 1
2

m (
.

x +V )2 =& + d
d t
( 1

2
m V 2t +m V x ). That is, & is not

strictly invariant, but semi-invariant, due to the presence of the total derivative.
In infinitesimal terms something similar happens. Taking the Lie derivative of& with

respect to the generators of the group results in:

X B =
∂

∂ t
⇒ X B& = 0

XA =
∂

∂ x
⇒ XA& = 0

XV = t
∂

∂ x
+
∂

∂ ẋ
⇒ XV& =

d
d t
(m x ) )= 0

The same is also valid for the Poincaré-Cartan form:

ΘPC = p d x −Hd t =
∂&
∂

.
x

d x − ( .
x p −& )d t =

∂&
∂

.
x
(d x− .

x d t )+&d t

whose Lie derivative is:

L X BΘPC = 0, L XAΘPC = 0, L XVΘPC = d (m x ) )= 0. (2.2)

The quantum free particle suffers from the same “pathology" although it manifests
in a different manner. Let us apply the Galilean transformations (2.1) to the Schrödinger
equation. We get:

iħh ∂ Ψ
∂ t
=− ħh

2

2m
∇2Ψ → iħh ∂ Ψ

∂ t ′
=− ħh

2

2m
∇′2Ψ−iħhV

∂ Ψ
∂ x ′

.

The extra term can be compensated if we also transform the wave function by means of a
non-trivial phase:

Ψ→Ψ′ = e i m
ħh (V x+ 1

2 V 2t )Ψ. (2.3)

Then, we recover the original (fully primed) Schrödinger equation iħh ∂ Ψ′
∂ t ′ =−

ħh2

2m
∇′2Ψ′.

Joining together the Galilean transformations (2.1) and the phase transformation (2.3)
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we obtain a group of strict symmetry whose group law is:

B ′′ = B ′+ B

A ′′ = A ′+A +V ′B

V ′′ = V ′+V (2.4)

ζ′′ = ζ′ζe i m
ħh [A
′V+B (V ′V+ 1

2 V ′2)],

where the last line has the general form ζ′′ = ζ′ζe i m
ħh ξ(g

′,g ), with ζ ≡ e iφ ∈ U (1) and the
function ξ being that which is customarily named 2-cocycle on the Galilei group, charac-
terized by the mass m [20, 23, 24]. A constant ħh with the dimensions of an action has to
be introduced to keep the exponent dimensionless.

The infinitesimal version of the group law (2.4) is expressed by means of the extended
Lie algebra commutators:
!

X̃ B , X̃A

"
= 0,
!

X̃ B , X̃V

"
= X̃A ,
!

X̃A , X̃V

"
=−m X̃φ . (2.5)

One of the relevant points concerning both the strict invariance and, consequently,
the centrally extended symmetry is that the corresponding extended Lie algebra now prop-
erly represents the Poisson algebra generated by 〈H ≡ P2

2m
, K ≡ x − p

m
t , P ≡ p , 1〉 when

acting as ordinary derivations on complex functions, provided that we impose that the
new generator X̃φ acts on Ψ as X̃φΨ= iΨ, or, in finite terms, Ψ(ζg ) = ζΨ(g ). Notice that
the unextended algebra, with the commutator [XA , XV ] = 0, is not an isomorphic image
of the corresponding Noether invariants H , P, K algebra.

There is yet another remarkable advantage of requiring the strict symmetry of a given
arbitrary classical system. In fact, such a symmetry can only be realized faithfully if we
extend the classical phase space M parameterized by K , P (or solution manifold) by an
extra variable, to be identified with φ or ζ = e iφ . In the compact (U (1)) case, that is,
the choice of ζ, we thus arrive at the notion of a quantum manifold Q [8, 11]. In this
manifold, locally parameterized by K , P,ζ≡ e iφ , an extended Liouville form (ΘPC defines
the Liouville form ϑ on the solution manifold except for a total differential)

Θ= ϑ+
dζ
iζ
(or Pd K +dφ0)

substitutes successfully the ordinary one in the search for an invertible duality between
Hamiltonian functions and Hamiltonian vector fields. In fact, the Hamiltonian corre-
spondence

f 0→ X f such that i X f dϑ=−d f

has the real numbers# as kernel. However the correspondence

f 0→ X̃ f such that i X̃ f
dΘ=−d f , i X̃ f

Θ= f

has unique solution.
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This is, so to speak, the starting point for GQ, where the pair (symplectic manifold)
(M ,ω ≡ dϑ) is replaced with the pair (Q ,Θ) as a U (1)-principal bundle with connection
(quantum manifold) under the requirement that the curvature ofΘ defines on M the sym-
plectic formω with integer co-homology class (tantamount to say that the integration of
ϑ on closed curves results in an integer; this is a modern, geometric version of the Bohr-
Sommerfeld rules [11]). The association f 0→ f̂ ≈ X̃ f defines the pre-quantum operators,
as derivations on complex U (1)-functions on Q , which realize a unitary representation of
the Poisson bracket although non-irreducible. The true quantization, that is to say, the
irreducibility, is intended to be achieved after the polarization condition is imposed (see
Refs. [8, 11] and the analogous condition in next section).

It should be mentioned that the possibility exists of extending the classical phase
space by the real line and the classical group by the non-compact additive group #. In
that case the constant ħh is no longer needed and the resulting theory describes the clas-
sical limit in a global version of the Hamilton-Jacobi formulation (see Ref. [7]).

2.3 Group Approach to Quantization

The essential idea underlying a group-theoretical framework for quantization consists
in selecting a given subalgebra 2̃ of the classical Poisson algebra including 〈H , pi , x j , 1〉
and finding its unitary irreducible representations (unirreps), which constitute the possi-
ble quantizations. Although the actual procedure for finding unirreps might not be what
really matters from the physical point of view we proceed along a well-defined algorithm,
the group approach to quantization or GAQ for brief, to obtain them for any Lie group.

All the ingredients of GAQ are canonical structures defined on Lie groups and the very
basic ones consist in the two mutually commuting copies of the Lie algebra 2̃ of a group
G̃ of strict symmetry (of a given physical system), that is, the set of left- and right-invariant
vector fields:

3 L(G̃ )≈ 2̃ ≈3 R (G̃ )

in such a way that one copy, let us say 3 R (G̃ ), plays the role of pre-Quantum Operators
acting (by usual derivation) on complex (wave) functions on G̃ , whereas the other,3 L(G̃ ),
is used to reduce the representation in a manner compatible with the action of the opera-
tors, thus providing the true quantization.

In fact, from the group law g ′′ = g ′ ∗ g of any group G̃ , we can read two different left-
and right-actions:

g ′′ = g ′ ∗ g ≡ L g ′g , g ′′ = g ′ ∗ g ≡Rg g ′. (2.6)

Both actions commute and so do their respective generators X̃ R
a and X̃ L

b , i.e. [X̃ L
a , X̃ R

b ] =
0 ∀a ,b .

Another manifestation of the commutation between left an right translations corre-
sponds to the invariance of the left-invariant canonical 1-forms, {θ L a } (dual to {X̃ L

b }, i.e.
θ L a (X̃ L

b ) = δ
a
b ) with respect to the right-invariant vector fields, that is: L X̃ R

a
θ Lb = 0 and the
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other way around (L↔ R). In particular, we dispose of a natural invariant volumeω (the
Haar measure) on the group manifold since we have:

L X̃ R
a
(θ Lb ∧θ L c ∧θ L d

...)≡ L X̃ R
a
ω= 0 . (2.7)

We should then be able to recover all physical ingredients of quantum systems out of
algebraic structures. In particular, the Poincaré-Cartan form ΘPC and the phase space it-
self M ≡ (x i , p j ) should be regained from a group of strict symmetry G̃ . In fact, in the
special case of a Lie group which bears a central extension with structure group U (1) pa-
rameterized by ζ ∈C such that |ζ|2 = 1, as we are in fact considering, the group manifold
G̃ itself can be endowed with the structure of a principal bundle with an invariant con-
nection, thus generalizing the notion of quantum manifold.

More precisely, the U (1)-component of the left-invariant canonical form (dual to the
vertical generator X̃ L

ζ , i.e. θ L(ζ)(X̃ L
ζ ) = 1) will be named quantization form Θ ≡ θ L (ζ) and

generalizes the Poincaré-Cartan formΘPC of Classical Mechanics. The quantization form
remains strictly invariant under the group G̃ in the sense that

L X̃ R
a
Θ= 0 ∀a

whereas ΘPC is, in general, only semi-invariant, that is to say, it is invariant except for a
total differential.

It should be stressed that the construction of a true quantum manifold in the sense of
Geometric Quantization [8, 9] can be achieved by taking in the pair {G̃ , Θ} the quotient by
the action of the subgroup generated by those left-invariant vector fields in the kernel of
Θ and dΘ, that which is called in mathematical terms characteristic module of the 1-form
Θ,

8Θ ≡ {X̃ L / i X̃ L dΘ= 0= i X̃ LΘ}.

A further quotient by the structure subgroup U (1) provides the classical solution Manifold
M or classical phase space. Even more, the vector fields in8Θ constitute the (generalized)
classical equations of motion.

On the other hand, the right-invariant vector fields are used to provide classical func-
tions on the phase space. In fact, the functions

Fa ≡ i X̃ R
a
Θ (2.8)

are stable under the action of the left-invariant vector fields in the characteristic module
of Θ, the equations of motion,

L X̃ L Fa = 0 ∀X̃ L ∈8Θ

and then constitute the Noether invariants.
As a consequence of the central extension structure in G̃ the Noether invariants (and

the corresponding group parameters) are classified in basic and non-basic (or evolutive)
depending on whether or not the corresponding generators produce the central generator
by commutation with some other. Basic parameters (Noether invariants) are paired (and
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independent). Non-basic Noether invariants (like energy or angular momenta) can be
written in terms of the basic ones (positions and momenta).

As far as the quantum theory is concerned, the above-mentioned quotient by the clas-
sical equations of motion is really not needed. We consider the space of complex func-
tions Ψ on the whole group G̃ and restrict them to only U (1)-functions, that is, those
which are homogeneous of degree 1 on the argument ζ ≡ e iφ ∈U (1), or in infinitesimal
terms

X̃ L
φΨ= iΨ. (2.9)

On these functions the right-invariant vector fields act as pre-quantum operators by ordi-
nary derivation. They are, in fact, Hermitian operators with respect to the scalar product
with measure given by the invariant volume ω defined above (2.7). However, this action
is not a proper quantization of the Poisson algebra of the Noether invariants (associated
with the symplectic structure given by dΘ) since there is a set of non-trivial operators
commuting with this representation. In fact, all the left-invariant vector fields do com-
mute with the right-invariant ones, i.e. the pre-quantum operators. According to Schur’s
Lemma those operators must be trivialized to reduce the representation. To this end we
define a polarization subalgebra as follows:
A polarization9 is a maximal left subalgebra containing the characteristic subalgebra2Θ
and excluding the central generator.
The role of a polarization is that of reducing the representation which then constitutes a
true quantization. To this end we impose on wave functions the polarization condition:

X̃ L
bΨ= 0 ∀X̃ L

b ∈9 .

In finite terms the polarization condition is expressed by the invariance of the wave func-
tions under the finite action of the Polarization Subgroup GP acting from the right, that is:

Ψ(g ′g P ) =Ψ(g ′) ∀g P ∈GP . (2.10)

To be intuitive, a polarization is made of half the left-invariant vector fields associated
with basic (independent) variables of the solution manifold in addition to those associ-
ated with evolutive parameters as time or rotational angles. We should remark that the
classification above-mentioned of the Noether invariants in basic and non-basic also ap-
plies to the quantum operators so that the latter ones are written in terms of the formers.

As an additional comment regarding polarization conditions, it must be stressed that
when expressed as quantum equations, they contain, in particular, the evolution equation
properly, that is, the Schrodinger(-like) equation. In this respect these polarizations (and
the GAQ method itself) depart from those in Geometric Quantization, which are imposed
only after having taken the quotient by the classical evolution explicitly, that which means
having solved the classical equations. Another respect on which GAQ departs from GQ is
in that the entire enveloping algebra (both left and right ones) can be used to construct
higher-order Polarizations and higher-order operators.

The integration volume ω can be restricted to the Hilbert space of polarized wave
functions# by means of a canonical procedure a bit technical for the scope of this work.
We refer the reader to Ref. [25].
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Before ending this section let us mention that the existence of a polarization con-
taining the entire characteristic subalgebra (usually referred to as full polarization) is not
guaranteed in general and we then can resort to the left enveloping algebra to complete
the polarization in the same way that any operator in the right enveloping algebra can
be properly realized as a quantum operator (see Ref. [26]). Higher-order polarizations
are used by strict necessity, when no full polarization can be found (in this case the sys-
tem is anomalous in the standard physical sense [27]), or simply by pure convenience of
realizing the quantization in a particular “representation" adapted to given variables.

2.4 The Free Galilean Particle

We shall adopt the notation B ≡ t , A ≡ x , V ≡ v (p ≡m v ) for the parameters in the
group law to reinforce the fact that all physical variables do emerge naturally from the
group manifold itself and the dimension will be kept to 1+1 to reduce the expressions to
the minimum.

Reading the group law (2.4) in the new variables and deriving the double primed vari-
ables with respect to every non-primed and primed one at the identity we get the explicit
expressions of the left- and right-vector fields, respectively:

X̃ L
t =

∂
∂ t
+ v ∂

∂ x
+ 1

2
m v 2 ∂

∂ φ
X̃ R

t =
∂
∂ t

X̃ L
x =

∂
∂ x

X̃ R
x =

∂
∂ x
+m v ∂

∂ φ

X̃ L
v =

∂
∂ v
+m x ∂

∂ φ
X̃ R

v =
∂
∂ v
+ t ∂

∂ x
+m t v ∂

∂ φ

X̃ L
φ =

∂
∂ φ

X̃ R
φ =

∂
∂ φ

(2.11)

By duality on the left generators, selecting the U (1) component, or by using the direct
formula

Θ≡ θ Lφ =
∑

i

∂ φ′′

∂ g i
|g ′=g −1 dg i , (2.12)

one can compute the quantization form (the actual expression of the Poincaré-Cartan
part is defined up to a total differential depending of the particular co-cycle used in the
group law, which is defined in turns up to a co-boundary; see Ref.[20, 7]):

Θ≡ θ Lφ =−m x d v − 1
2

m v 2d t +dφ

From the commutation relations (the left ones change the structure constants by a global
sign)
!

X̃ R
t , X̃ R

x

"
= 0,
!

X̃ R
t , X̃ R

v

"
= X̃ R

x ,
!

X̃ R
x , X̃ R

v

"
=−m X̃ R

φ (2.13)

one rapidly identifies x , v as canonically conjugated (dynamical) variables and t as a kine-
matical parameter. In fact, the left generator X̃ L

t generates the characteristic subalgebra
2Θ and constitutes the classical equations of motion (generalized, since there is an extra
equation for the central parameter).
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The quantum wave functions are complex functions on G̃ , Ψ = Ψ(ζ,x , v, t ), restricted
by the U (1)-function condition (2.9), as well as the polarization conditions

X̃ L
aΨ= 0 (a = t ,x maximal set)

We then obtain:

X̃ L
φΨ = iΨ⇒ Ψ= ζΦ(t ,x , v )

X̃ L
xΨ = 0⇒ Φ )=Φ(x ), Φ=ϕ(t , v )

X̃ L
t Ψ = 0⇒ ∂ ϕ

∂ t
+

i
2

m v 2ϕ = 0 ⇒ i
∂ ϕ

∂ t
=

p 2

2m
ϕ ,

i.e. the Schrödinger equation in momentum space.
On the (reduced) wave functions the right-invariant vector fields act reproducing the

standard quantum operators in momentum space “representation":

X̃ R
x ϕ =m vϕ, X̃ R

v ϕ =
∂

∂ v
ϕ, X̃ R

t ϕ =−i
p 2

2m
ϕ, (2.14)

the operator Ê ≡ i X̃ R
t being a function of the basic one p̂ ≡ −i m X̃ R

x . Had we considered
the motion in 3+ 1 dimensions, we would have found also new operators in the charac-
teristic subalgebra associated with rotations acquiring the usual expressions in terms of
the basic operators *̂v and *̂x ≡−i X̃ R

*v .





Chapter 3

Mechanical models

3.1 Revisited Minimal Coupling Principle

In this section we attempt to describe group-theoretically the motion of a particle sub-
jected to an external field. Even though we do not intend to account for the field degrees
of freedom, the transformation properties of its “zero-modes” can be encoded into part
of a symmetry group. The general mechanism under which a free particle starts suffering
an interaction parallels the well-known Minimal Coupling Principle, which is now revis-
ited from our group-theoretical approach. We shall be concerned here with the classical
domain only.

Let G̃ be a quantization group generated by {X̃A}, A = 1, ..., n and {X̃a }, a = 1, ..., m < n
an invariant subalgebra:

[X̃A , X̃a ] =C b
Aa X̃b

If we make “local” the subgroup generated by {X̃a }, that is to say, if the corresponding
group variables are allowed to depend arbitrarily on the space-time parameters, we get
an infinite-dimensional Lie algebra:

{ f a ⊗ X̃a , X̃A}

with the following new commutators:
!

X̃A , f a ⊗ X̃a

"
= f a ⊗
!

X̃A , X̃a

"
+ L X̃A f a ⊗ X̃a

= f a ⊗C b
Aa X̃b + L X̃A f a ⊗ X̃a (3.1)

Now we just attempt to “quantize" this new (local) group G̃ (*x , t ).

3.1.1 Particle in an Electromagnetic Field.

We start from the U (1)-extended Galilei group, G̃ , and make the rigid group ζ= e iφ ∈
U (1) into “local", i.e. we allow the parameter to depend on the space-time variables, φ =
φ(*x , t ). The idea is to keep the invariance of the generalized Poincaré-Cartan form Θ =
pi d x i − *p 2

2m
d t +dφ under the locally extended Galilei group.

19
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According to the Revisited Minimal Coupling Principle [28] we only have to compute
the 1-formΘ associated with the Galilei group extended by the infinite dimensional group
U (1)(*x , t ). But, in order to parameterize properly the quantization group let us formally
write

φ(*x , t ) =φ(0, 0)+φµ(*x , t )xµ ≡φ+Aµ(*x , t )xµ

and compute the group law:

t ′′ = t ′+ t

*x ′′ = *x ′+R ′*x + *v ′t

*v ′′ = *v ′+R ′*v

A ′′*x = A ′*x +R ′A*x

A ′′t = A ′t +At + *v ′ ·R ′A*x

φ′′ =φ′+φ+m[*x ′ ·R ′*v + t (*v ′ ·R ′*v + 1
2

v ′2)]+q[*x ′ ·R ′A*x + t *v ′ ·R ′A*x + t A ′t ]

where two different co-cycles characterized by m and q , that is, the mass and the electric
charge, have been introduced.

From now on we shall disregard the rotation subgroup although the vector character
of the variables will be maintained. Also, and since we do not intend to describe quantum
aspects, the expression of the left-invariant generators will be omitted (see Ref. [28]) and
only the Lie algebra commutators are written:

!
X̃ L

t , X̃ L
*x

"
= 0

$
X̃ L

x i , X̃ L
Ax j

%
= qδi j X̃ L

φ

!
X̃ L

t , X̃ L
*v

"
=−X̃ L

*x (3.2)

!
X̃ L
*x , X̃ L

At

"
= 0

!
X̃ L

t , X̃ L
Ax

"
= 0

!
X̃ L

v , X̃ L
Ax

"
= X̃ L

At
(3.3)

!
X̃ L

t , X̃ L
At

"
=−qX̃ L

φ

!
X̃ L

v , X̃ L
At

"
= 0

!
X̃ L

x i , X̃ L
v j

"
=mδi j X̃ L

φ (3.4)

By duality from the explicit expression of the left-invariant generators, derived in turn
from the group law, or directly from the composition law corresponding to the U (1) pa-
rameter, through the formula (2.12), we obtain the quantization form

Θ=−m*x ·d *v −q *x ·d *A − (1
2

m *v 2+qAt )d t +dφ

in the kernel of which we find generator of time evolution: X such that i X dΘ= 0, that is,

X =
∂

∂ t
+ *v · ∂

∂ *x
− q

m

&
(
∂ Ai

∂ x j
− ∂ A j

∂ x i
)v j +

∂ A0

∂ x i
+
∂ Ai

∂ t

'
∂

∂ vi
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which implies the following explicit equations of motion:

d *x
d t
= *v , m

d *v
d t
=q [*v ∧ (*∇∧ *A)− *∇A0−

∂ *A
∂ t
] . (3.5)

Making the standard change of variables

*B ≡ *∇∧ *A, *E ≡−*∇A0−
∂ *A
∂ t

we finally arrive at the ordinary equation of a particle suffering the Lorentz force:

m
d *v
d t
=q [*E + *v ∧ *B ]

As a last general comment, let us remark once again the physical relevance of central
extensions. It might seem paradoxical the fact that a non-trivial vector potential (in the
sense that it is not the gradient of a function) can be derived some how from the function
φ(*x , t ), but it is the central extension mechanism what insures that Aµ can be something
different from the gradient of a scalar function. In other words, the generator XAµ in (3.4),
for q = 0, necessarily generates trivial (gauge) changes in Aµ.

3.1.2 Particle in a gravitational field.

Let us pass very briefly through this finite-dimensional example where the compu-
tations are made in dimension 1+ 1 although the vectorial notation is restored at the
end. We start from the U (1)-extended Poincaré group and make “local" the translation
subgroup, the Lie algebra of which can be written as

!
X̃ R

t , X̃ R
x

"
= 0 [P0, P] = 0 (3.6)

!
X̃ R

t , X̃ R
v

"
= X̃ R

x or [P0, K ] = P (3.7)

!
X̃ R

x , X̃ R
v

"
=− 1

c 2
X̃ R

t −m X̃ R
φ [P0, K ] =− 1

c 2
P0−m Xφ , (3.8)

and repeat the process of “localizing" translations in a way analogous to that followed for
the U (1) subgroup in the electromagnetic case. We formally write

f µ⊗Pµ = ( f µ(0)+ f µσ(x )xσ)⊗Pµ

and rename the functions f µν as hµσ, which will prove to be the non-Minkowskian part
of a non-trivial metric, that is: hµν ≡ g µν − ηµν

The Lie algebra must be explicitly written according to the general formula (3.1) and
the rigid algebra (extended Poincaré). We show in boldface the terms that survive af-
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ter an Inönü-Wigner contraction with respect to the subgroup generated by X̃t (the non-
relativistic limit):
!

X̃v , X̃x

"
=−X̃t +mcX̃φ

!
X̃t , X̃h0x

"
= X̃x

!
X̃v , X̃t

"
=−X̃x (3.9)

!
X̃x , X̃h0x

"
=−X̃t−gX̃φ

!
Xv , X̃h00

"
=−X̃h0x

!
X̃x , X̃hx x

"
=−X̃x (3.10)

!
X̃h00 , X̃h0x

"
= X̃v

!
Xv , X̃hx x

"
= X̃h0x

!
X̃h0x , X̃hx x

"
= X̃v (3.11)

!
X̃t , X̃h00

"
= X̃t +gX̃φ

!
Xv , X̃h0x

"
=−X̃h00 + X̃hx x (3.12)

It should be remarked that we have naively written a gravitational coupling constant
g in places that parallel those of the electric charge q in the Lie algebra that accounts for
the electromagnetic interaction; that is to say, on the right hand side of the commutators!

X̃t , X̃h00

"
and
!

X̃x , X̃h0x

"
, but the Jacobi identity requires the equality g =m c , which may

be properly identified with an algebraic version of the Equivalence Principle. Note that
both q and g = m c are true central charges (in the sense that they parameterize non-
trivial central extensions) in the non-relativistic limit. To be precise, q also parameterizes
non-trivial central extension in the Poincaré group, while g parametrizes just pseudo-
extensions (see [73]).

Now, the group law must be computed order by order, although it is enough to keep
the expansion up to the 3t h order for illustrating the dynamics. We remit the readers
to Ref. [28] for a detailed computation and here only the final equation of motion are
showed.
Geodesic Force: We introduce for simplicity the vector notation: h0i ≡ *h. In terms of
these variables the equations of motion, for low gravity and low velocity, are:

d *x
d t
= *v , m

d *v
d t
=−m

(
*v ∧ (*∇∧ *h)− *∇h00− ∂

*h
∂ t

)
+

m
4
*∇(*h · *h) .

They reproduce the standard geodesic motion, up to the limits mentioned, and in a
form that emulate the electromagnetic motion (3.5) for the electromagnetic-like vector
potential: = (h00− 1

4
*h ·*h, *h) according to that which is named “gravitoelectromagnetic"

description in the literature (see, for instance, Ref. [29, 30, 31, 32]).

3.2 Simple “Non-Linear” Systems

As a preliminary step towards non-linearity, we shall consider the simpler example of

the free relativistic particle with classical Lagrangian & = −m c 2
*

1− *̇x 2

c 2 . As was previ-
ously commented, even though the corresponding equations of motion are linear, the
“non-linearity" (non-quadratic, indeed) of the Lagrangian causes the impossibility of
closing a finite-dimensional algebra containing H , x i , p j . Let us present the problem very
quickly. The canonical momenta are derived in the standard way from& :

pi =
∂&
∂ ẋ i

=
m ẋi*
1− *̇x 2

c 2
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as well as the Hamiltonian:

H = ẋ i pi −& =
m c 2

*
1− *̇x 2

c 2

=
+
*p 2c 2+m 2c 4 ≡ p0c

where we make use of the traditional definition of four-momentum {pµ}= {p0, pi }.
Let us try to close the basic Poisson subalgebra including H . We find

{x i , p j }=δi
j 1 (canonical Poisson bracket)

{H , pi }= 0

but {H , x i }=−c
p i

p0
(≈−pi

m
− 1

c2

*p 2p i

2m 3
+ ...)

So, the classical functions 〈H , x i , p j , 1〉 do not close a finite Lie algebra. They “close" an
algebra with structure constants depending on the energy H ≡ p0c .

Here, two different options arise. One option consists in trying to close an infinite-
dimensional Poisson subalgebra by defining new functions which are quadratic and be-
yond in the basic functions x i and p j . This can be done order by order in the parameter
1

c 2 which now plays the role of “coupling constant". But there is another, far simpler when
possible, which consists in looking for new “basic functions", closing a finite-dimensional
subalgebra, in terms of which we can rewrite the old basic functions. Here we proceed
along this last line.

To this end we define the classical functions k i ≡ p0

m c
x i . Then, the new algebra

〈H , pi , k j , J k , 1〉 does close on the Poincaré algebra:

{p0, k i }= {p0,
p0

m c
x i }=−p i

m

{p0, pi }= 0

{k i , k j }=−η k
i j ·η

k
·m n x m p n ≡−η k

i j · J
k

{k i , p j }= {
p0

m c
x i , p j }=

p0

m c
δi

j

If we quantize the Poincaré group, we regain the original (infinite-dimensional) alge-
bra of quantum operators inside its enveloping algebra:

〈Ĥ , k̂ i , x̂ j ∼ m c
2
(p̂−1

0 k̂ j + k̂ j p̂−1
0 ), Ĵ k , 1̂〉

To do that we parameterize a central extension of the Poincaré group by (abstract) vari-
ables {a 0, *a , *ν , *ε, ζ} so that the, let us say, right-invariant generators reproduce the re-
spective functions {H , *p , *k , *J , 1} as Noether invariants as well as the Poisson brackets
above.
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We are not going to present here the precise details of the quantization of the Poincaré
group nor insist in those typical problems related to the “position operator" in quantum
relativity that can be read from, for instance, Ref. [81]. Let us just comment that the wave
functions are solutions of a higher-order Polarization9ψ= 0, with

9 = , X̃ LHO
a 0 ≡ (X̃ L

a 0)2− c 2(X̃ L
*a )

2− 2i m c 2

ħh X̃ L
a 0 , X̃ L

*ν , X̃ L
*ε

-

from which we arrive at a wave function which depends only on a 0 and *a and satisfies the
ordinary Klein-Gordon equation in variables x 0 and *x :

($+m 2)ψ= 0 ,

after the change aµ = p0

m c
xµ.

3.3 Particle moving on a group manifold: case of the SU (2)
group

Let us now adopt a similar point of view to that of the previous section, that is, we
shall start from the classical Lagrangian and try to close a Poisson subalgebra containing
〈H ,q , p 〉. However, except for simple examples such a subalgebra is infinite. To keep our-
selves in finite dimensions (that is, with a finite number of degrees of freedom) we may
alternatively resort to an auxiliary, different finite-dimensional Poisson subalgebra (clos-
ing a group G ) such that, in its enveloping algebra, the original functions 〈H ,q , p 〉 can be
found, and therefore quantized. In fact, in the GAQ scheme, not only the generators of the
original group G can be quantized, but also the entire universal enveloping algebra. This
procedure has been explicitly achieved in dealing with the quantum dynamics of a par-
ticle in a (modified) Pöschl-Teller potential[6], where the “first-order" (auxiliary) group G
used was SL(2,#).

We start by parameterizing rotations with a vector *ε in the rotation-axis direction and
with modulus

|*ε|= 2sin
ϕ

2

R(*ε)ij = (1−
*ε 2

2
)δi

j −
.

1− *ε
2

4
ηi
·j kε

k +
1
2
εiεj

In these coordinates the canonical left-invariant 1-forms read:

θ L(i )
j =



.

1− *ε
2

4
δi

j +
εiεj

4
*

1− *ε 2

4

+
1
2
ηi

.j mε
m




and in terms of these the particle-σ-Model Lagrangian acquires the following expression:

& = 1
2
δi jθ

L(i )
m θ L(j )

n ε̇m ε̇n =
1
2


δi j +

εiεj

4(1− *ε 2

4
)


 ε̇i ε̇ j ≡ 1

2
g i j ε̇

i ε̇ j
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Proceeding much in the same way followed in the previous section, we compute the
canonical momenta:

πi =
∂&
∂ ε̇i

= g i j ε̇
j

and the Hamiltonian:

# =πi ε̇
i −& = 1

2
g −1i jπiπj

We assume the canonical bracket between the basic functions εi and πj :

{εi , πj }=δi
j added with

{# , εi }=−g −1i jπj

{# , πi }=
1
2
(*ε · *π)πi ,

so that 〈# , εi , πj , 1〉 do not close a finite-dimensional Lie algebra.
However, we may define the following set of new “coordinates", “momenta" and even,

“energy" and “angular momenta":

〈p i ≡ 2g −1i jπj , k j ≡
<

2# ε j , E ≡ 2
<

2# , J k ≡ηk
·m nε

mπn 〉 .

They close the Lie algebra of SO(3, 2) i.e. an Anti-de Sitter algebra. That is, the basic brack-
ets:

{E , p i }= k i

{E , k j }=−p j

{k i , p j }=δi
j E ,

along with the induced ones:

{k i , k j }=−ηi j ·
k J k {p i , p j }=−ηi j ·

k J k

{J i , J j }=ηi j ·
k J k {J i , k j }=ηi j ·

k k k

{J i , p j }=ηi j ·
k p k {E , *J }= 0,

close a finite-dimensional Lie algebra to which we may apply the GAQ. (Note the minus
sign in the first line, which states that the involved group is SO(3, 2) and not SO(4, 1)).

We then quantize the Anti-de Sitter group so that the original operators #̂ , π̂i , ε̂ j can
be found in its enveloping algebra through the expression:

,#̂ ≡ 1
8

Ê 2, π̂i ≡ 1
4

5
ĝ i j p̂ j + p̂ j ĝ i j
6

, ε̂i ≡ 1

2
<

2

5
#̂ −1/2k̂ i + k̂ i#̂ −1/2

6
, 1̂
-
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In so doing we parameterize a central extension of the Anti-de Sitter group by (ab-
stract) variables {a 0, *a , *ν , *ε, ζ}, which mimic those for the Poincaré group. In the same
way we hope that the right-invariant generators associated with those parameters re-
producing corresponding functions {E , pi , k j , J k , 1} as Noether invariants satisfying the
Poisson brackets above.

At this point it should be stressed that the parameters *ε and the corresponding quan-
tum operators (essentially the right generators X̃ R

*ε ) are associated with ordinary rotations
on Anti-de Sitter space-time, whereas the *ε parameters correspond to “translations” on
the SU (2)manifold.

We shall not give here the explicit group law for the group variables (which can be
found in Refs. [33]), limiting ourselves to write the explicit expression for the left-invariant
vector fields on the extended SO(3, 2) group:

X̃ L
a 0 =

1
qa
{(ω

2

2c 2
a 0(*a · *v )qv +(1−

ω2

4c 2
(a 0)2)kv )

∂

∂ a 0
+(2qv *v +

ω2

4c 2
(2qv (*a · *v )−a 0kv )*a ) ·

∂

∂ *a

− 1
qv

ω2

4c 2
[((2(1+ *v 2)(*a · *v −2a 0qv )+ *a · *v )*v + *a ) ·

∂

∂ *v

+(2qε(*a × *v )− *ε× (*a × *v )) ·
∂

∂ *ε
]}+ { 1

qa
(
ω2

2c 2
a 0(*a · *v )qv +(1−

ω2

4c 2
(a 0)2)kv )−1}Ξ

X̃ L
*a =

1
qa

R(*ε){(ω
2

4c 2
a 0(*a +2(*a · *v )*v )+2qv (1−

ω2

4c 2
(a 0)2)*v )

∂

∂ a 0

+
∂

∂ *a
+(2+

ω2

4c 2
(1+2*a · *v ))*v *v − ω

2

2c 2
a 0qv *v *a ) ·

∂

∂ *a

− 1
qv

ω2

4c 2
[(2qv (*a · *v )−a 0kv )(

∂

∂ *v
+ *v (*v · ∂

∂ *v
))

+ (−2qεqv *a +2qεa 0*v +qv (*ε× *a )−a 0(*ε× *v ))× ∂
∂ *ε
]

+ (
ω2

4c 2
a 0(*a +2(*a · *v )*v )+2qv (1−

ω2

4c 2
(a 0)2)*v )Ξ}

X̃ L
*v =

1
qv

R(*ε){ ∂
∂ *v
+ *v *v · ∂

∂ *v
− (2qε*v − *ε× *v )×

∂

∂ *ε
}

X̃ L
*ε = X R

(*ε)
SU (2)

X̃ L
φ = iζ

∂

∂ ζ
+ h.c .≡ Ξ ,
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where:

qa =

.
1+
ω2

4c 2
(*a 2− (a 0)2) , qv =

+
1+ *v 2 , kv = 1+2*v 2 and qε =

.
1− *ε

2

4
.

Following the same steps as those given in the case of the Poincaré group we look for a
higher-order polarization leading to the configuration-space “representation”. In fact, the
simplest possibility turns out to be generated by a combination of generators formally
analogous to that of the Poincaré case, although now the generators are obviously differ-
ent.

From the polarization condition9ψ= 0 we again arrive at a wave function depending
only on a 0, *a and satisfying a Klein-Gordon-like equation with SO(3, 2) D’Alembertian
operator given by

$= 1
16q 2

a

{[16− (a 0)2
ω2

c 2
(8+

ω2

c 2
(r 2

a − (a 0)2))]
∂ 2

∂ a 02
−a 0ω

2

c 2
[40+7

ω2

c 2
(r 2

a − (a 0)2)]
∂

∂ a 0

− [16+ r 2
a

ω2

c 2
(8+

ω2

c 2
(r 2

a − (a 0)2))]
∂ 2

∂ r 2
a

− 1
ra
[32+

ω2

c 2
(40+7

ω2

c 2
(r 2

a − (a 0)2))]
∂

∂ ra

−2a 0ra
ω2

c 2
(8+

ω2

c 2
(r 2

a − (a 0)2))
∂ 2

∂ a 0∂ ra
}+

*L2

q 2
a r 2

a

,

where

*L2 =− 1
sinθa

∂

∂ θa
(sinθa

∂

∂ θa
)− 1

sin2θa

∂ 2

∂ ϕ2
a

is the square of the standard orbital angular momentum operator (save for a factor ħh) and
ra ≡
<
*a · *a .

The wave functions are

φ(*a , a 0) = e
−2i cλnl arcsin( ωqa a 0<

4c 2+ω2q2
a r 2

a

)
Y l

m (θa ,ϕa )(1+
ω2

c 2
q 2

a r 2
a )
− λnl

2 (qa ra )lφ
λnl
l (ra )

where

λnl ≡
E
ħhω

E ≡ (3
2
+2n + l +

1
2

.
9+4

m 2c 2

ħh2ω2
−48ξ)ħhω

φλnl
l = 2F1(−n , n + l +

3
2
−λnl , l +

3
2

;−ω
2

c 2
q 2

a r 2
a )

and ξ is a free parameter related to the “zero-point energy". On this representation the op-
erators corresponding to the original functions εi , πj and the energy# can be realized.
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Although one can verify by an explicit computation thatφ(*a , a 0) is actually a solution
of the wave equation, a large amount of time can be saved by performing in Ref. [35], eqn.
(64)-(66), the change of variables

t =
2c
ω

arcsin

7
ωqa a 0

+
4c 2+ω2q 2

a *a
2

8
, *x = qa *a ,

which leads to expressions analogous to ours, although intended to describe the quantum
evolution of a free particle moving on an Anti-de Sitter space-time.

As a general comment, we would like to bring the attention of the reader to a potential
normal-ordering problem appearing in going from the enveloping algebra of the auxil-
iary group to the quantum version of the canonical variables in the original Lagrangian
formalism. We are referring in particular to the “change” of quantum variables of the form
x̂ j ∼ m c

2
(p̂−1

0 k̂ j + k̂ j p̂−1
0 ) (in the case of the free particle). A more general prescription for

normal-ordering can be addressed following some sort of “perturbative” group approach
to quantization. In fact, it is possible to close order by order in some constants (like 1/c 2 in
the relativistic particle, the structure constants themselves for the sigma model, or cou-
pling constants in general) a Lie algebra which joins together the original variables and
those in the auxiliary group. Then, applying the group-quantization technique up to a
certain order we arrive at the correct prescription of any operator at the given order.

To conclude we must recognize that at present we are unable to state the class of non-
linear systems to which this mechanism can be applied, although much effort is being
done in this direction. We will see more examples in next section.

3.4 Phase spaces of SO(2, 1) invariant systems

In this section we shall study the family of 1-D mechanical systems characterized by a
Lagrangian of the form:

L =
1
2

m ẋ 2−V (x ) (3.13)

and Hamiltonian H = p 2

2m
+V (x ) such that we can find functions = = g (H ),3 = h(H ) f (x )

and9 = {3 ,= } closing a Poisson subalgebra isomorphic to the Lie algebra of SO(2, 1) or
SO(3).

We shall see that the function = = g (H ) can always be taken as = = <±H , and h(H )
will be h(H ) =

<±H or h(H ) =H .
This transformation will relate an open subset of the phase space of these systems

(that with a definite sign of the energy, either positive or negative) with (an open subset
of) the coadjoint orbits of the Lie groups SO(2, 1) or SO(3). This transformation is not
symplectic and in some cases it fails to be differentiable at some points (H = 0), although
when restricted to the open subsets of positive or negative energy it is differentiable. This
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has important implications at the quantum level, where these systems are realized as cer-
tain representations of these groups. We will not carry out the full quantization here.
However, some relevant considerations in this respect will be given.

Although there is a large family of potentials fulfilling this property (see for instance
[82]), we shall concentrate on the Pöschl-Teller potentials (both trigonometric and hyper-
bolic) and the Morse Potential since they have many applications in Molecular and Solid
State Physics.

The Pöschl-Teller potentials are a family of potentials which can be classified in two
types:

• Trigonometric Pöschl-Teller potentials (TPT):

V (x ) =D
9

λ

cos2(αx )
+

κ

sin2(αx )

:
(3.14)

• Hyperbolic (Modified) Pöschl-Teller potentials (MPT)

V (x ) =−D
9

λ

cosh2(αx )
+

κ

sinh2(αx )

:
(3.15)

They have many applications in different branches of Molecular Physics, where they
describe out-of-plane bending vibrations, with some variations like the Rosen-Morse Po-
tential [83], and in Solid State Physics, where they model 1-D crystals (Scarf Potential) [84].
The PT potentials also appear in generalizations of the harmonic oscillator potential to
spaces of constant curvature [85, 86, 87]. The PT potentials have the same solutions as an
harmonic oscillator with position dependent mass, or with energy dependent frequency
[88, 6]. They are integrable and related to a SO(2, 1) (or SO(3)) dynamical symmetry1.

Let us study the phase space associated with these systems, in particular the case of
the symmetric TPT and MPT potentials.

3.4.1 Trigonometric Pöschl-Teller Potential

We shall concentrate on the Trigonometric PT of the form:

V (x ) =
D

cos2(αx )
(3.16)

which is symmetric and has the form given in Fig.3.1a. The parameter D > 0 is the mini-
mum of the potential (the value at the origin), andα is related to the width of the potential.

1We are referring here to the dynamical group as the one generating the spectrum of the system. This
should not be confused with the degeneracy group which span the set of states with the same energy. For in-
stance, in the Hydrogen atom, the groups SO(2, 2), SO(4) and E (3) appear as degeneracy groups for positive,
negative and zero energy, respectively.
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The trajectories in phase space for the TPT potential can be derived from the equation
of motion, either in Lagrangian or Hamiltonian form, and are given by:

x (t ) =
1
α

arcsin
&

sin(αx0)cos(ω(E )t )+
α

mω(E )
p0 cos(αx0)sin(ω(E )t )

'
(3.17)

p (t ) = m ẋ (t )

where (x0, p0) are the initial coordinate and momentum parameterizing each solution and

E = p 2
0

2m
+ D

cos(αx0)2
is the energy of this trajectory. In the last expressionω(E )≡

*
2α2E

m
is an

energy dependent frequency2.
These trajectories are shown in Fig.3.1b. If we represent these trajectories in a 3D-

phase space (x , p , H ), we obtain the graphic shown in Fig.3.1c. Note that in this case E ≥
D > 0.

(a) (b) (c)

Figure 3.1: Symmetric PT potential (a) and trajectories in 2D (b) and 3D phase space (c).

Closing a subalgebra of the Poisson algebra

We are now interested in closing a Lie algebra with functions of the energy and the
position. We start with the basic Poisson bracket, derived from the Poincaré-Cartan 1-
form taking the quotient by the solutions of the equation of motion (3.17), which has the
canonical form:

{x , p}= 1 , (3.18)

with p = ∂ L
∂ ẋ

. Although {H ,x , p} do not close a Poisson subalgebra, we can find the func-
tions closing the algebra SO(2, 1):

= ≡ 2
<

D
<

H , 3 ≡ 2<
mΩ
<

H sin(αx ) , 9 ≡
<

2p cos(αx ) , (3.19)

with Ω = ω(D), i.e. the frequency at the bottom of the potential, corresponding to the
limit of small oscillations.

2The solutions of the classical equation of motion correspond to that of an harmonic oscillator with
energy dependent frequency (see [6] and also [89]).
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In fact, we find:

{= ,9 }=mΩ23 , {= ,3 }=− 1
m
9 , {3 ,9 }= 1

D
= . (3.20)

This is an SO(2, 1) algebra where the compact generator is = and the Casimir is:

1
D
= 2−mΩ23 2− 1

m
9 2 = 4D > 0 . (3.21)

The coadjoint orbit of SO(2, 1) associated with this system is the upper sheet of a two-
sheet hyperboloid, since the Casimir is positive and = > 0.

The Quantum TPT oscillator

It should be stressed that the transformation (3.19) is not symplectic since {3 ,9 } =
1
D
= )= 1. This is not a drawback, however, and the dynamics (both classical and quan-

tum) can be derived entirely from SO(2, 1). In this case the transformation (3.19) is dif-
ferentiable, and the phase space shown in Fig.3.1c is mapped to a full coadjoint orbit of
SO(2, 1). This implies that at the quantum level this system will be realized as a unitary
irreducible representation of the discrete series of representations of SO(2, 1) (see, for in-
stance, [90]), the one associated with the upper sheet of a two-sheet hyperboloid in the
sense of the Coadjoint Orbit Method of Kirillov [10] (see also [25]).

3.4.2 Modified Pöschl-Teller Potential

We shall concentrate on the MPT of the form:

V (x ) =− D

cosh2(αx )
(3.22)

which is also symmetric and has the form given in Fig.3.2a. The parameter D > 0 is the
potential depth and α is related to the width of the potential.

(a) (b) (c)

Figure 3.2: Symmetric MPT potential (a) and trajectories in 2D phase space for E > 0 (b) and E < 0 (c).

The trajectories in phase space for the MPT potential are given by:

x (t ) =
1
α

arcsinh
&

sinh(αx0)cosh(ω(E )t )+
α

mω(E )
p0 cosh(αx0)sinh(ω(E )t )

'
(3.23)

p (t ) = m ẋ (t )
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where (x0, p0) are the initial coordinate and momentum parameterizing each solution and

E = p 2
0

2m
− D

cosh2(αx0)
is the energy of this trajectory. Hereω(E ) has the same meaning as in the

TPT case. Note that when E < 0 the time-dependent hyperbolic functions change to their
trigonometric counterparts. These trajectories are shown in Fig.3.2b for E > 0 and Fig.3.2c
for E < 0. For E = 0 they degenerate to x (t ) = 1

α
arcsinh
!

sinh(αx0)+ cosh(αx0)
αp0

m
t
"

which
is a free motion in the coordinate ξ = sinh(αx ), ξ = ξ0+ ξ̇0 t with constant velocity ξ̇0 =
α
m

p0

+
1+ξ2

0, and p0 related to x0 through the constraint E = 0.
The trajectories in a 3D-phase space (x , p , H ) are show in Fig.3.3a for E > 0, Fig.3.3b

for E < 0 and Fig.3.3c for the union of both cases.

(a) (b) (c)

Figure 3.3: Trajectories in 3D phase space for E > 0 (a), E < 0 (b) and the union of both cases (c), for the MPT Potential

Closing a subalgebra of the Poisson algebra

The basic Poisson bracket, derived as in the case of the TPT, has the canonical form:

{x , p}= 1 . (3.24)

Although {H ,x , p} do not close a Poisson subalgebra, we can find functions closing an
algebra , but we must distinguish between the cases E > 0 and E < 0.

• E > 0

The following functions close a SO(2, 1) algebra:

= ≡ 2
<

D
<

H , 3 ≡ 2<
mΩ
<

H sinh(αx ) , 9 ≡
<

2p cosh(αx ). (3.25)

In fact, we find:

{= ,9 }=−mΩ23 , {= ,3 }=− 1
m
9 , {3 ,9 }= 1

D
= , (3.26)

where again Ω=ω(D). This is a SO(2, 1) algebra where the compact generator is9
and the Casimir is:

1
m
9 2− 1

D
= 2−mΩ23 2 = 4D > 0 . (3.27)

The coadjoint orbit of SO(2, 1) associated with this system is a half of a two-sheet
hyperboloid, shown in Fig.3.4a.
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(a) (b) (c)

Figure 3.4: Coadjoint orbits of the group SO(2, 1) for E > 0 (a), SO(3) for E < 0 (b) and the union of both cases (c).

• E < 0

The following functions close a SO(3) algebra3:

= ≡−2
<

D
+
−H , 3 ≡ 2<

mΩ

+
−H sinh(αx ) , 9 ≡

<
2p cosh(αx ). (3.28)

In fact, we find:

{= ,9 }=mΩ23 , {= ,3 }=− 1
m
9 , {3 ,9 }= 1

D
= . (3.29)

This is an SO(3) algebra with the Casimir function given by:

1
D
= 2+mΩ23 2+

1
m
9 2 = 4D > 0 . (3.30)

The coadjoint orbit of SO(3) associated with this system is a hemisphere, shown in
Fig.3.4b.

Putting the two orbits together we obtain a phase space, shown in Fig.3.4c, resembling
that of Fig.3.3c.

As in the TPT case, the transformations (3.25) and (3.28) are not symplectic. In this
case they are not even differentiable at H = 0. As shown in Fig.3.4c, the whole E = 0
closet subset of phase space in (x , p , H ) is mapped to two points in (3 ,9 ,= ), namely
(0,±2
<

m D, 0). This means that the two cases, E > 0 and E < 0 are disconnected, and
there is no way to connect them in the framework of the groups SO(2, 1) and SO(3).

The Quantum MPT Oscillator

At the quantum level, this system has special features, since we must distinguish be-
tween the cases E > 0 and E < 0, and in neither cases the phase space is a coadjoint orbit,
but a half of it.

3Note the minus sign in = in order to have the same sign as H .



34 Mechanical models

• E > 0

The system will be realized as a part of the sum of two unitary and irreducible rep-
resentations of the discrete series (positive and negative) of (the universal covering
group of) SO(2, 1). The Hamiltonian is a non-compact operator with positive con-
tinuum spectrum. This result seems to be in agreement with [91], where the discrete
series of SO(2, 1) is used to describe the continuum spectrum of the MPT potential.

• E < 0

The system will be realized as a part of an irreducible representation of SU (2). The
Hamiltonian is a compact operator with discrete spectrum, but only one half of the
2s +1 states of the SU (2) representations are realized.

In the last case, there is a better interpretation as a non-unitary, finite-dimensional
representation of (the universal covering group of) SO(2, 1) (see [6]). The reason is that in
the context of SU (2) there is no explanation for the fact that half of the states are missing,
and that the potential depth should have only definite values, since it is related to the
values of the Casimir, which in turns depends on the discrete values of the spin.

Here SO(3) appears as contained in the complexification of SO(2, 1), but then it should
be realized in a non-unitary way. But SO(2, 1) admits non-unitary, finite dimensional rep-
resentations, which in many respects behave as those of SU (2). The lack of unitarity man-
ifest itself in that half of the states are non-normalizable, and therefore are outside of the
Hilbert space of the physical (normalizable) states. These non-normalizable states are
precisely the antibound states (ABS), which represent outgoing states growing at±∞ (see
[92]).

3.4.3 The Morse Potential

The Morse Potential is given by:

V (x ) =D(e−2αx −2e−αx ) (3.31)

and is shown in Fig.3.5a.

(a) (b) (c)

Figure 3.5: Morse potential (a) and trajectories in 2D phase space for E > 0 (b) and E < 0 (c).
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The trajectories in phase space for the Morse potential can be obtained by solving the
equations of motion, and are given by:

x (t ) =
1
α

log
&
−D

E
+(e αx0 +

D
E
)cosh(ω(E )t )+

α

mω(E )
p0e αx0 sinh(ω(E )t )

'
(3.32)

p (t ) = m ẋ (t )

where (x0, p0) are the initial coordinate and momentum parameterizing each solution and

E = p 2
0

2m
+D(e−2αx0−2e−αx0) is the energy of this trajectory. Hereω(E ) has the same mean-

ing as in the MPT and TPT case. Note that when E < 0 the time-dependent hyperbolic
functions change to their trigonometric counterparts. These trajectories are shown in
Fig.3.5b for E > 0 and Fig.3.5c for E < 0. The trajectories in a 3D-phase space (x , p , H ) are
show in Fig.3.6a for E > 0, Fig.3.6b for E < 0 and Fig.3.6c for the union of both cases.

For E = 0 they degenerate to x (t ) = 1
α

log
!

e αx0 + e αx0
αp0

m
t
"

which is a free motion in the
coordinate ξ = e αx + D

E
, ξ = ξ0+ ξ̇0 t with constant velocity ξ̇0 = α

m
p0e αx0 , and p0 related

to x0 through the constraint E = 0.

(a) (b) (c)

Figure 3.6: Trajectories in 3D phase space for E > 0 (a), E < 0 (b) and the union of both cases (c) for the Morse Potential.

Closing a subalgebra of the Poisson algebra

The basic Poisson bracket, derived as in the previous cases, has the canonical form:

{x , p}= 1 . (3.33)

Although {H ,x , p} do not close a Poisson subalgebra, we can find again functions clos-
ing an algebra , but we must also distinguish between the cases E > 0 and E < 0.

• E > 0

The following functions close a SO(2, 1) algebra:

= ≡ 2
<

D
<

H , 3 ≡
<

2
αD

He αx +
<

2
α

, 9 ≡
<

2H<
D

e αx p . (3.34)

In fact, we find:

{= ,9 }=−mΩ23 , {= ,3 }=− 1
m
9 , {3 ,9 }=− 1

D
= . (3.35)



36 Mechanical models

This is a SO(2, 1) algebra where the compact generator is3 . The Casimir is:

mΩ23 2− 1
D
= 2− 1

m
9 2 = 4D > 0 . (3.36)

The coadjoint orbit of SO(2, 1) associated with this system is a half of the upper sheet
of a two-sheet hyperboloid, shown in Fig.3.7a

(a) (b) (c)

Figure 3.7: Coadjoint orbits of the group SO(2, 1) for E > 0 (a), SO(3) for E < 0 (b) and the union of both cases (c),
for the Morse Potential

• E < 0

The following functions close a SO(3) algebra:

= ≡−2
<

D
+
−H , 3 ≡

<
2
αD

He αx +
<

2
α

, 9 ≡
<−2H<

D
e αx p . (3.37)

In fact, we find:

{= ,9 } = −mΩ23

{= ,3 } = 1
m
9 (3.38)

{3 ,9 } = 1
D
= .

This is a SO(3) algebra, with the Casimir given by:

1
D
= 2+mΩ23 2+

1
m
9 2 = 4D > 0 . (3.39)

The coadjoint orbit of SO(3) associated with this system is a hemisphere, shown in
Fig.3.7b.
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Putting the two orbits together we obtain a phase space, shown in Fig.3.7c that resem-
bles that of Fig.3.6c.

As in the TPT and MPT cases, the transformation (3.34) and (3.37) is not symplectic,
and as in the MPT case, it is not differentiable at H = 0. The same comments as in the
MPT case apply here, with the difference that now the E = 0 states are mapped to the
single point (

<
2
α

, 0, 0).

The Quantum Morse Oscillator

At the quantum level, this system has special features, since we must distinguish be-
tween the cases E > 0 and E < 0, and in neither cases the phase space is a coadjoint orbit,
but a half of it.

• E > 0

The system will be realized as a part of a unitary and irreducible representations of
the positive discrete series of (the universal covering group of) SO(2, 1). The Hamil-
tonian is a non-compact operator with positive continuum spectrum.

• E < 0

This system will be realized as a part of an irreducible representation of SO(3). The
Hamiltonian is a compact operator with discrete spectrum, but only one half of the
2s +1 states of the SU (2) representations are realized.

In this last case, there is a better interpretation as a non-unitary, finite-dimensional
representation of (the universal covering group of) SO(2, 1), see [93]. The same comments
as in the MPT case applies here, the lacking states can be interpreted as non-normalizable
antibound states (see [92]).

Comments

In this section a transformation of (an open subset of) the phase space of some SO(2, 1)
invariant systems into an open subset of a coadjoint orbit of SO(2, 1) or SO(3) is given.
For the case of the TPT potential, the transformation maps the whole phase space into
a whole coadjoint orbit of SO(2, 1), and therefore the group-theoretical interpretation of
this case seems rather clear. For the MPT and Morse potentials, we must distinguish be-
tween positive and negative energies, and in both cases each open subset of phase space
is mapped into an open subset of a coadjoint orbit, which in addition belong to different
Lie groups, SO(2, 1) for positive energy and SO(3) for negative energy.

This behaviour is rather unpleasant, and a unified description, into a single Lie group,
would be desirable. Probably this would require an infinite-dimensional group able to ac-
comodate the Hamiltonian, which has a mixed spectrum (both positive continuum and
negative discrete spectra), as a single generator. However, an intermediate step can be
done including both groups into a finite-dimensional group, the price we must pay being
that the Hamiltonian is associated with different generators for the positive and nega-
tive energy cases. The minimal algebra including both SO(2, 1) and SO(3) algebras is the
complexification of any of them, the SL(2,%) algebra, which is isomorphic to SO(3, 1), the
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Lorentz algebra. The complexification appears here in a natural way due to the pres-
ence of the square root of the Hamiltonian in the transformations (3.25) and (3.34). Thus,
SL(2,%) is the natural framework to study this problem from a group-theoretical point of
view (this was already anticipated in [6]).

For instance, if in the MPT potential for positive energy, besides the functions (3.25)
we introduce= ′ ≡ i= ,3 ′ ≡ i3 and9 ′ ≡ i9 , the set {= ,3 ,9 ,= ′,3 ′,9 ′} closes a SL(2,%)
algebra where the SO(2, 1) subalgebra is the original {= ,3 ,9 } and the SO(3) subalgebra
is {= ′,3 ′,9 }, which coincides with the one given in (3.28) and that are real for negative
energies.

A similar construction can be done for the Morse Potential case. What remains to be
done is to relate the phase spaces of these systems to the coadjoint orbits (or open subsets
of them) of SL(2,%), and to derive Hilbert space of quantum states from the unitary (or
non-unitary) representations of SL(2,%). This is work in progress.

Finally, we would like to comment on the appearance of = = <±H in all the trans-
formations studied in this Section. The reason for this is that, in our approach, both the
classical and quantum equation of motions of the systems, which are non-relativistic and
therefore are linear in the Hamiltonian, are obtained through the Casimir function or op-
erator of semisimple Lie algebras, which are quadratic in all generators (they could be
seen relativistic Klein-Gordon equations of motion, as opposed to the Schŕ’odiger equa-
tion which is linear in the Hamiltonian).

In fact, when we apply our procedure to a relativistic system like a free relativistic
particle, with a quadratic equation of motion, a similar construction can be done but in
this case the transformation does not contain

<
H . In fact = = H and h(H ) = H , leading

to the Poincaré algebra (see Section 3.2 for details), that it is not a semisimple algebra but
its Casimir is still quadratic.

3.5 Particle on a sphere !2

The quantization of simple second-class constrained mechanical systems has usually
been accomplished by adopting as canonical commutation relations those given by the
so-called Dirac algorithm. This method, although successful in many situations, can po-
tentially lead to wrong results, and additional strategies or physical considerations are
needed. This, which is not a serious problem when the system under consideration con-
tains “known physics”, as in the case of the free particle constrained to move on a sphere
surface [67, 68, 69], could become dramatic if we want to unfold new physical features.

In general, canonical quantization makes extensive use of Hamiltonian formulation
of classical mechanics, trying to put the classical theory in a form in which the quantiza-
tion would be straightforward and/or as unambiguous as possible. However, it should be
recalled once again that it is the quantum system what contains the physical entity, the
classical theory being a mere approximation.

This Section is devoted to show how, in the case of the partial-trace non-linear sigma
model (NLSM) at least, a proper quantum theory can be obtained straightforwardly if one
leaves aside the idea that the classical theory must lead to the quantum one through the
inherently ambiguous process of quantization. Here we suggest that the quantized system
should be directly obtained through a deeper knowledge of the corresponding dynamical
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symmetry transformations, i.e. those that are able to span the whole space of physical
states (and/or parameterize the classical solution manifold by means of Noether invari-
ants). We aim at obtaining the quantum theory not from an appropriate treatment of
canonical classical quantities, but from the clear algorithm GAQ based on the complete
symmetry of the system, which naturally selects the basic quantum operators.

After introducing the general setting of the problem we shall be explicitly concerned
with the example of SU (2).

3.5.1 Symmetries

We shall restrict ourselves to the quantum mechanical case D = 1, so that the fields
εi (xµ) are just curves εi (t ) on Σ, which we shall take as a (semisimple, linear) Lie group
manifold G , or a given coset G /Gλ (see later). Let us denote by g = e εi Ti an element of
G , where Ti , i = 1, . . . , dim(G ), stands for the Lie algebra generators, with commutation
relations [Ti , Tj ] = C k

i j Tk . For the sake of simplicity, we shall choose Ti in the adjoint

representation, whose matrix elements are (Ti )kj = C k
i j . Then the Killing form, used to

raise and lower indices, is given by Ki j ≡ C k
i l C l

j k = TrG (Ti Tj ). With this notation, the
NLSM Lagrangian acquires the simple algebraic form:

&G =
1
2
κTrG (θθ ) , (3.40)

where θ ≡ g −1 ġ and here κ is intended to have the dimensions of an inertia moment.
It is well-known the difficulty found by canonical quantization in dealing with non-

linear systems. Even symmetry-based quantization techniques face the impossibility of
parameterizing the solution manifold by a finite dimensional Lie group. This is essentially
because g −1 ġ is not a total derivative, except for Abelian groups. However, this obstruc-
tion disappears when the manifold Σ is considered to be a coset G /Gλ of G , Gλ being the
isotropy subgroup of a given Lie algebra element λ under the adjoint action λ→ gλg −1.
To be precise λ should have been defined as an element of the dual of the Lie algebra,
which is equivalent to the Lie algebra since G is semisimple. In this sense λ, which can
be seen as an ordinary vector, may be endowed with length dimensions so that κ would
appear as a mass m rather than an inertia moment.

In this case, the (total-trace) NLSM Lagrangian (3.40) takes the (partial-trace) form:

&G /Gλ =
1
2

m TrG /Gλ(θθ )≡
1
2

m TrG (θλθλ), (3.41)

where we have defined

θλ ≡ [θ ,λ] .

It can be realized that, defining

S ≡ gλg −1, g ∈G ,

we have an alternative way of writing (4.14) as

&G /Gλ =
1
2

m TrG (ṠṠ) =
1
2

m Ki j Ṡi Ṡ j , . (3.42)
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where Si ≡ TrG (T iS). Note that this Lagrangian is singular due to the existence of con-
straints like, for example, TrG (S2) = TrG (λ2)≡ r 2. We shall not deal with constraints at this
stage. They will be naturally addressed inside our quantization procedure below.

We can try to find two sets of generators mimicking the basic symmetry of the Galilean
particle (i.e., translations and boosts). For the first set, we choose the generators of the
group itself:

Xi =C k
i j S j ∂

∂ Sk
+C k

i j Ṡ j ∂

∂ Ṡk
. (3.43)

The Lagrangian (3.42) is strictly invariant under the action of these generators, i.e.:

L Xi&G /Gλ = 0 , ∀i = 1, . . . , dim(G ) ,

where L X stands for the Lie derivative with respect to a generator X . In this computation,
the fact that the product Kl m C l

i j ≡Ci j m is fully antisymmetric has been used.
As far as the second set of symmetries is concerned (those playing the role of boosts),

we propose the following one:

X ′i =
1
r 2

C k
i j C n

l k Sj Sl ∂

∂ Ṡn
. (3.44)

These generators leave the Lagrangian semi-invariant in the sense that they give a total
derivative (thus leaving the action strictly invariant), much in the same way the generators
of boosts do in the free Galilean particle, that is,

L X ′i&G /Gλ =mṠi , ∀i = 1, . . . , dim(G ) . (3.45)

The generators (3.43) and (3.44) close a finite-dimensional Lie algebra with commu-
tation relations
!

Xi , X j

"
=−C k

i j Xk ,
$

Xi , X ′j
%
=−C k

i j X ′k ,
$

X ′i , X ′j
%
= 0. (3.46)

The corresponding symmetry group is the (co-)tangent group of G and will be denoted
by G (1) (see [70] as regards gauge theory).

We shall assume this algebra (in fact, a central extension of it) as the basic symmetry
of the quantum particle constrained to move on the manifold G /Gλ. In fact, the semi-
invariance (4.11) of the Lagrangian suggests the presence of a central extension G̃ (1) of the
group G (1), as happens in the quantum Galilean particle [71]. At the Lie algebra level, this
central extension only affects the second commutator in (3.46), which now reads
$

X̃i , X̃ ′j
%
=−C k

i j X̃ ′k −C k
i j λk

m
ħh Ξ (3.47)

where Ξ denotes the central generator.
This centrally extended group G̃ (1) is the group of strict invariance of the system, and

contains the necessary information to obtain the quantum theory. Although this central
extension is trivial from a strict mathematical point of view, in the sense that a redefinition
of a generator eliminates the central generator from the r.h.s. of the Lie algebra commuta-
tors, physically it behaves as a non-trivial one, since under an Inönü-Wigner contraction
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(limit process) leads to a non-trivial extension of the contracted group [72] (see also [73]
and references therein).

It should be remarked that the commutation relations providing the central term on
the right hand side generalize those of the Heisemberg-Weyl algebra, where X̃i play the
role of (non-Abelian) “translation” generators, and X̃ ′j the role of “boost” generators, al-
though restricted to the coset space G /Gλ. This point will be further clarified in the exam-
ple of the SU (2) group.

3.5.2 Quantum Theory

The leading idea is to obtain an irreducible and unitary representation (unirep) of the
basic group suggested in the previous section, i.e. the (centrally extended) G̃ (1) . The
central extension will select a specific representation, associated with a given coadjoint
orbit.

The procedure presented above is quite simple when applied to the case of a parti-
cle moving on the coset space !2 ≡ SU (2)/U (1). We begin with a specific realization of
the basic group G̃ (1), which in this case turns out to be a centrally extended Euclidean
Group. In it, the fields Xεi , i = 1, 2, 3 generate ordinary rotations, parameterized by vectors
*εwhose direction determines the axis of rotation and its modulus the angle of rotation χ
by |*ε| = 2 sin χ

2
. In the same way, the fields Xθ i , i = 1, 2, 3 correspond to the (co-)tangent

subgroup, parameterized by θ i . In terms of these variables the group law is:

R(*ε ′′) =R(*ε ′)R(*ε )

*θ ′′ =R−1(*ε )*θ ′+ *θ

ζ′′ = ζ′ζexp
;

i
m r
ħh
*λ ·
5
*θ ′′ − *θ ′ − *θ
6<
= ζ′ζexp
;

i
m r
ħh
*λ ·
5

R−1(*ε)*θ ′ − *θ ′
6<

=
R(*ε )ij ≡ (1−

*ε 2

2
)δi

j −
.

1− *ε
2

4
ηi
·j kε

k +
1
2
εiεj

>
,

where *λ is an arbitrary, constant vector in the (co-)algebra with modulus r , and ζ≡ e iφ is
the quantum mechanical phase. The ħh constant has been introduced to keep the expo-
nent dimensionless.

We can immediately calculate the corresponding infinitesimal generators of the left
action, which are the right-invariant vector fields:

X̃ R
*ε = X R (SU (2))

*ε

X̃ R
*θ
=R−1 ∂

∂ *θ
+

m r
ħh (R

*λ−*λ)tΞ

X̃ R
φ =Re
9

iζ
∂

∂ ζ

:
≡ Ξ.
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Needless to say that this set of generators closes (a particular case of) the Lie algebra that
we found in the previous section:

!
X̃ R
εi , X̃ R

εj

"
=−η k

i j · X̃ R
εk

!
X̃ R
εi , X̃ R

θ j

"
=−η k

i j ·

?
X̃ R
θ k +

m r
ħh λkΞ
@

!
X̃ R
θ i , X̃ R

θ j

"
= 0 .

We can compute as well the infinitesimal generators of the right action, which are the
left-invariant vector fields:

X̃ L
*ε = X L (SU (2))

*ε − *θ ∧ ∂
∂ *θ
−m r
ħh
*θ ∧*λΞ

X̃ L
*θ
=
∂

∂ *θ

X̃ L
φ =Re
9

iζ
∂

∂ ζ

:
≡ Ξ,

closing the same Lie algebra but with opposite structure constants.
The characteristic module, i.e., the sub-algebra generated by those vector fields which

do not produce a central term under conmutation, and therefore without dynamical con-
tent, is generated by two fields:

2Θ = 〈*λ · X̃ L
*ε , *λ · X̃ L

*θ
〉,

A polarization sub-algebra is given by the characteristic module together with half of
the conjugated pairs:

9 = 〈*λ · X̃ L
*ε , X̃ L

*θ
〉.

This must not be interpreted as constraint conditions, since they preserve the action
of the right-invariant vector fields, i.e., those which will be the physical operators. An
alternative treatment, making explicit use of constraints can be seen, for instance, in [74].

An irreducible representation of the group is given by the action of the right-invariant
vector fields of the group on the complex functions valued over the group manifold, pro-
vided that these functions are polarized and satisfy the condition of U(1)-function:

9 Ψ= 0, ΞΨ= iΨ.

It can be easily checked that such functions (now true wave functions) are of the form

Ψ
5

R(*ε )*λ, *θ ,ζ
6
= ζΦ
5

R(*ε )*λ
6

,
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where Φ is an arbitrary function, or equivalently, in terms of the variable *S ≡ R(*ε )*λ (the
positions on the surface of a sphere of radius r ):

Ψ(*S, *θ ,ζ) = ζΦ(*S).

The explicit action of the right-invariant vector fields on these wave functions is com-
puted to give:

X̃ R
*εΨ= ζ
5
*S ∧ *∇Φ
6
= *S ∧ *∇*SΨ

X̃ R
*θ
Ψ= i

m r
ħh
5
*S−*λ
6
Ψ.

It is possible to redefine the vector fields to obtain the actual quantum operators, act-
ing only on the arbitrary part of the wave functions. Thus, we end up with the explicit
representation over the wave-functions Φ depending only in the variable *S =R*λ,

*̂LΦ(*S)≡ iħh*S ∧ *∇Φ(*S)

*̂SΦ(*S)≡ *SΦ(*S).

It becomes evident at this point that the domain of the wave functions have been naturally
selected without imposing any constraint condition as such.

As was previously emphasized, the *̂L operators now play the role of “generators of
translations” on the surface of the sphere, *̂S playing that of a “position operator” on the
sphere surface4.

Finally, to obtain a Hamiltonian, we proceed as in the free particle: it is defined as the
generator of “translations” squared, so that

Ĥ =
*̂L

2

2m
=− ħh

2

2m
∇2.

There is no ambiguity in this expression, since it corresponds to the squared action of
*̂L as a “basic operator”. Ĥ thus provides the energy spectrum

El =
ħh2

2m
l (l +1)

with no extra terms, in contrast with standard Dirac quantization, as remarked in [75].
Note that Ĥ coincides with the Casimir of SU (2) restricted to !2. In the general case, the
energy operator will be the quadratic Casimir of G restricted to G /Gλ, and this turns outto
be the Laplace-Beltrami operator on G /Gλ.

4Note that, in this representation of the Euclidean Group, the relation *̂S · *̂L = 0 is fulfilled. However,
the Euclidean Group admits another family of central extensions, where *̂S · *̂L )= 0, and the corresponding
representations can realize a magnetic monopole in the center of the sphere.





Chapter 4

Massive Yang-Mills Theories

In the 1960’s the mechanism of spontaneously broken symmetry, usually referred to as
the Higgs-Kibble mechanism [94], came into the particle physics scenario [95], imported
from solid state physics (mainly in relation to Meissner effect), to match the masses of
the intermediate vector bosons with renormalizability [96]. However, in spite of the wide
acceptance today of the Standard Model of electroweak interactions as a whole and of
its phenomenological accuracy (putting aside the existence of the Higgs particle), there
exists a rather extended feeling that a deeper structure is underneath, owing specially to
the artificiality of the mass generation mechanism.

In this chapter we face the chief point of the mass generation mechanism aiming at
outlining a conceptually and mathematically neat framework within which the funda-
mentals of the Standard Model can be reproduced. This framework is essentially based
on the inclusion of the gauge-group parameters into the theory as scalar dynamical fields
paralleling the standard Goldstone bosons. With a proper Lagrangian for these new fields
of the σ-model type and appropriate rewriting of the traditional Minimal Coupling Pre-
scription we arrive at a general Massive Gauge Theory explicitly exhibiting gauge symme-
try. When applied to the electroweak symmetry the new prescription provides mass to
the W (±) and Z vector bosons without the need for the Higgs particle, leaving naturally
the electromagnetic field massless. It might also be used to address low energy effective
models for the strong interaction according to the schemes handled in Refs. [49].

The explicit use of the Goldstone bosons in the description of physical processes is by
no means new in the literature. In fact, as a consequence of the widely named “Equiva-
lence Theorem” [97, 98], according to which a very heavy Higgs particle can be eliminated
from the broken symmetry programme in favour of non-linear σ-like Goldstone bosons,
the actual computation of Feynman diagrams involving the longitudinal polarizations of
the (massive) vector bosons in electroweak interactions can be resolved in terms of the
corresponding diagrams among those scalar fields. But even more, the possibility of in-
corporating explicitly the Goldstone bosons into the theory as some sort of matter fields
has also been considered in the framework of non-abelian (generalized) Stueckelberg the-
ory without Higgs [53]. Unfortunately, the use of a non-linear σ-Lagrangian, as a trace
over the whole gauge group, has led to an insoluble dichotomy unitarity-renormalizability
[48, 99, 56, 59, 62] (see also the review [46] and references therein).

We will introduce a simple, though essential, modification to the non-abelian Stueck-
elberg model. We shall adopt a non-linear partial-trace σ-model Lagrangian on G /H in-
stead of on the whole G . The minimal coupling of the new (Goldstone-like) scalar bosons

45
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provides mass terms to those intermediate vector bosons associated with the quotient
G /H , without spoiling gauge invariance, so that the H-vector potentials remain massless
in a natural way. The advantage of considering a partial trace on G /H , rather than on the
entire G , lies on the existence of an infinite-dimensional symmetry enlarging the gauge
symmetry group, providing as many non-zero Noether invariants as field degrees of free-
dom in the solution manifold of the physical system. This ensures quantum integrability,
at least under a non-canonical quantization scheme based on symmetry grounds, as has
been widely demonstrated in those systems bearing enough symmetries as happens in,
for instance, conformal field theories.

It is well known that the non-linear sigma model, in general, suffers from unavoid-
able renormalizability problems under the canonical quantization programme (see, for
instance, [100]). In fact, the trouble that canonical quantization faces in dealing with
systems bearing non-trivial topology could be traced back to the “tangent space” approx-
imation imposed at the very beginning of the (canonical) quantization program [103].
Already in the simple case of “free” particles moving on spheres, a proper quantization
requires the replacement of canonical commutators with the Lie-algebra commutators
of the Euclidean group (see previous chapter; see also [103, 43]). Going further in this
direction, we shall replace canonical commutators between coordinates and momenta
with Lie-algebra commutators between group generators of the enlarged local symme-
try. In fact, the new “canonical” structure of the solution manifold can be derived directly
from the symmetry group as one of its canonical invariant forms (giving the symplectic
potential).

Let us sketch the usual approach including the Higgs-Kibble mechanism in next sec-
tion.

4.1 Standard Model of Weak interaction and Higgs mecha-
nism

4.1.1 Gauge invariance and minimal coupling

The Principle of Gauge invariance establishes that interactions are recovered impos-
ing that the internal (rigid) symmetries of a given free theory turn into local ones. Ac-
cording to this, let us consider a matter Lagrangian &m a t t =&m a t t (ψ,∂µψ), which is in-
variant under the action of a given symmetry group G , acting unitarily on the internal
states of its fields ψ through the infinitesimal action δ(a )ψα ≡ T α

(a )β ψ
β (a = 1, . . . , dimG ).

This group will characterize the obtained interaction. We then impose that this original,
rigid symmetry becomes a local or gauge one, generated by the local group G (*x , t ), the
parameters of which now depend on space-time coordinates1. It is therefore necessary
the introduction of new fields, the gauge potentials Aµ. The specific coupling with mat-
ter fields is achieved by modifying all derivatives of matter fields in the Lagrangian, ∂µψ,

1Conceptually, this demand corresponds to the idea that two observers must see the same physics, re-
gardless their gauge choice. Although this rationale is superfluous if we adopt the requirement of gauge
invariance as a principle.
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with an additive term of the form qA (a )µ T(a )ψ. This derivative Dµψ ≡ ∂µψ− qA (a )µ T(a )ψ
is the so-called covariant derivative, associated with the connection Γµ ≡ A (a )µ T(a ). This
is the minimal coupling. The word “minimum” refers to the fact that the gauge field is
coupled to the matter fields only through its derivative. The non-tensorial behavior of
the gauge field (a connection) under local symmetry transformations compensates the
bad transformation properties of conventional derivatives, so that the new Lagrangian
is gauge invariant. The Lagrangian governing the dynamics of the gauge fields them-
selves,&0, must be such that it depends on Aµ and derivatives through the tensorial object
F (a )µν ≡ 1

q
[Dµ, Dν ](a ) = A (a )µ,ν −A (a )ν ,µ+

q
2

C a
b c (A

(b )
µ A (c )ν −A (b )ν A (c )µ ) (where C a

b c are the structure con-
stants of the Lie algebra of the rigid symmetry group), also known as the curvature of the
connection associated with gauge potentials.

This prescription provides a gauge theory where bosons mediating the interaction are
massless. If mass terms are put by hand, gauge invariance is broken. In the Abelian case,
the symmetry group being U (1), the electrodynamics is obtained with a massless photon,
in agreement with phenomenology. However, in the electroweak interaction, with gauge
group SU (2)⊗U (1), the particles W ± y Z 0 possess mass.

In order to find agreement with such circumstance keeping the power of a gauge the-
ory, a mass-generating mechanism is required to build a gauge invariant gauge theory.

4.1.2 Spontaneous symmetry breaking

The most widely accepted solution to mass generation, in the context of the Stan-
dard Model of Particle Physics, makes use of the spontaneous symmetry breaking phe-
nomenon, based on the fact that the solutions of basic equations describing a physical
system need not to have the same set of symmetries as the equations themselves. This is
applied, in particular, to the ground state of the system.

Let us consider a Lagrangian describing a multiplet of self-interacting, real scalar fields
Φi (x ), with potential V (Φ):

& = 1
2

5
∂µΦi

6
(∂ µΦi )−V (Φi ) ,

invariant under the action of a global group G on Φi (x ):

δaΦi (x ) = T a
i jΦ

j (x ) ,

where T a
i j , a = 1, . . . N are the N generators of G . Then,

0=δa V =
∂ V
∂ Φi
δaΦi =

∂ V
∂ Φi

T a
i jΦ

j = 0.

Differentiating we find that the invariance of& under G requires

∂ 2V
∂ Φi∂ Φk

T a
i jΦ

j +
∂ V
∂ Φi

T a
i k = 0.

Let us consider the case in which the potential V has a minimum in Φi ≡ vi )= 0, that is
to say, the ground state (corresponding to the vacuum expectation value of the quantum
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system) does not have zero energy. Then

∂ 2V
∂ Φi∂ Φk

|Φi=vi T a
i j v j = 0 , (4.1)

and for small oscillations around the vacuum state, we can write

V (Φ) = V (vi )+
1
2
∂ 2V
∂ Φi∂ Φk

|Φi=vi (Φi − vi )(Φk − vk )+ . . . .

It is then obvious that

(M 2)i k =
∂ 2V
∂ Φi∂ Φk

|Φi=vi

are mass terms for the shifted fields Φ′i =Φi − vi .
In general, a subgroup H of G can exist under which the ground state is invariant

T̂ â
i j v j = 0, â = 1, . . . , N̂

Then, N̂ of the N equations in (4.1) are trivially satisfied and M 2 > 0. The rest of the N −N̂
equations in (4.1) require eigenvalues M 2 = 0. The corresponding field excitations are
called Goldstone bosons.

4.1.3 Higgs-Kibble mechanism in the Standard Model

Let us see what happens if we consider a theory with a non-Abelian local gauge sym-
metry, where scalar fields Φi are incorporated, minimally coupled to the gauge vector
bosons.

The gauge bosons corresponding to the broken symmetry become massive and Gold-
stone bosons do not appear. This means that the Goldstone modes are transformed into
the longitudinal components of the gauge fields.

Let us consider a self-interacting complex scalar field (the Higgs field), represented
by a doublet of SU (2)L (here L indicates that this symmetry acts only on fermions with
left-handed chirality):

Φ(x ) =
A
Φ1

Φ2

B
,

which is invariant under local transformations of the symmetry group SU (2)L ⊗U (1)Y

&H = (DµΦ)†(DµΦ)−V (Φ)

V (Φ) =−µ2(Φ†Φ)+λ(Φ†Φ)2, λ> 0

Dµ = ∂µ+ i g
τa

2
W a
µ + i g ′

YH

2
Bµ .

The Spontaneous symmetry breaking (SSB) takes place when we choose the sign µ2 >
0 for the mass term. The desired SSB pattern is:

SU (2)L ⊗U (1)Y −→U (1)e m ,



4.1 Standard Model of Weak interaction and Higgs mechanism 49

in such a way that three gauge vector bosons become massive and the one corresponding
to U (1)e m , the photon, remains massless (the vacuum state is invariant under U (1)e m ).
Thus, we choose fields and corresponding charges Φ2 = Φ0 with Q = 0 and YH = 1

2
, and

also Φ1 =Φ+ with Q = 1 and YH = 1
2

.

The potential V minimizes for a constant field Φ†Φ= v 2

2
= µ

2

2λ
. To a first approximation,

the expectation value of the quantum system is given by the minimum energy state of the
classical potential

|〈0|Φ|0〉|= v<
2

; v =
µ<
λ

The orientation of the ground state in the weak isospin space is not fixed

|〈0|Φ|0〉|= e i T aξa

A
0
v<

2

B

It is the choice of a ground state what spontaneously breaks the SU (2) symmetry.
Let us consider vacuum excitations and lets perform the substitution Φ′ = Φ− v . By

construction |〈0|Φ′|0〉|= 0. Then we see that the combination Φ
′†
2 +Φ′2 acquires mass

V (Φ′)≈λv 2

2
(Φ′†2 +Φ

′
2)

2 ,

and the other three excited modes of the Higgs field remain massless (Goldstone bosons).
Let us see what happens with these Goldstone modes when the Higgs field minimally

couples to the gauge bosons. As the Higgs field is described by a SU (2)-invariant La-
grangian, we can parametrize the Higgs field as follows:

Φ(x ) = e i T aξa (x )

A
0

v+η(x )<
2

B

with |〈0|ξa (x )|0〉| = 0 and
CC〈0|η(x )|0〉
CC = 0. Then, choosing the unitary gauge, where the

would-be Goldstone bosons ξa do not appear:

Φ(x ) =
A

0
v+η(x )<

2

B
.

Then, performing a change to the “spherical” basis in the gauge fields and the Weinberg
rotation to arrive to the physical fields (mass eigenstates), we find mass terms for the
vector bosons W ± and Z 0:

&H =M 2
W W µ−W +

µ +
1
2

M 2
ZZµZµ−

1
2

M 2
ηη

2+ . . .

M W =
v g
2

MZ =
v
2

+
g 2+ g ′2 ,

and no mass term for the photon Aµ. The choice g s e nθw = g ′cosθw has been made.
The Goldstone bosons do not appear: it is said that the gauge bosons “eat” that degree of
freedom to give rise to their longitudinal mode. A physical scalar field survives, the Higgs
boson, with Mη =

<
λ

2
v . In addition, mass terms for the fermions can be obtained in an

invariant way through Yukawa couplings to the Higgs field.
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4.2 Stueckelberg mechanism

The Stueckelberg [51] provides a way of implementing gauge invariance in electrody-
namics with a massive photon, with no need of a spontaneous symmetry breaking mech-
anism. The generalization of the Stueckelberg model to the non-Abelian case would con-
stitute, in principle, an alternative to the Higgs-Kibble mechanism in the Standard Model.
The quantum Abelian version is unitary and renormalizable in the conventional sense.
This was proven rigorously in [52]. However, we will see that this seems to be no longer
true for the non-Abelian generalization usually considered in the literature [53].

The idea in the original Stueckelberg model was to introduce a scalar field B , that
compensates the bad transformation properties of the gauge fields mass terms. The La-
grangian for massive electrodynamics, as described by the Stueckelberg model (with no
matter fields), is

& = 1
4

F 2+
M 2

2

5
Aµ− ∂µB
62

,

which is obtained from the Proca Lagrangian by means of the shift (mimicking a gauge
transformation) Aµ→ Aµ−∂µB . This does not affect the form of the coupling with matter
fields because, due to gauge invariance, such shift can be compensated. This Lagrangian
is now gauge invariant under transformations

δAµ = ∂µϕ,

provided that the new field transforms as the gauge parameter itself, that is

δB =δϕ.

We see that two elements in the theory behave the same way: the Stueckelberg field
B (x ) and the U (1) gauge group parameter, ϕ(x ).

The natural non-Abelian extension of the Stueckelberg formalism for a general gauge
group G follows similar steps to the Abelian case [53]. Now U (x ) = e iϕa (x )Ta ∈ G (M ),
where Ta , a = 1, . . . , dim(G ) are the Lie-algebra generators of G with commutation rela-
tions [Ta , Tb ] =C c

ab Tc . We shall restrict ourselves to unitary groups and set the normaliza-
tion Tr(Ta Tb ) = δab . When referring to the canonical 1-form on G , we must distinguish
between the left- and right-invariant ones: θ L

µ = −iU †∂µU and θµ ≡ θ R
µ = −i∂µUU †, re-

spectively. The G -invariantσ-model Lagrangian now reads:

& G
σ =

1
2

Tr(∂µU∂ µU †) =
1
2

Tr(θµθ µ) =
1
2

Tr(θ L
µ θ

Lµ)≡ 1
2

g ab (ϕ)∂µϕa∂ µϕb (4.2)

which is highly non-linear and chiral. The minimal coupling is formally analogous to the
Abelian case, namely

&̃ G
σ =

1
2

Tr((DµU )(DµU )†) =
1
2

Tr((θµ−Aµ)(θ µ−Aµ)), (4.3)

although Aµ must be understood as Aµ = Aa
µTa . This Lagrangian is invariant, in particular,

under

U → V U , Aµ→ VAµV †− i∂µV V †. (4.4)
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Adding the standard kinematical Lagrangian for Yang-Mills fields & G
YM = − 1

4
Tr(F µνFµν ),

with

Fµν (A)≡ ∂µAν − ∂νAµ+[Aµ, Aν ], (4.5)

to (4.3), we arrive at the full Lagrangian for Massive Yang-Mills bosons

& G
MYM =& G

YM+m 2&̃ G
σ . (4.6)

As already mentioned in the introduction, this model prevents the massive Yang-Mills
theory from being both unitary and renormalizable, at least in the canonical quantization
approach.

4.2.1 Unitarity and renormalizability debate

The Stueckelberg model, in its non-Abelian version, has been object of a big amount
discussions in the literature2, mainly to determine whether it constitutes a good mass-
generating mechanism for the electroweak intermediate vector bosons. Many authors
feel that unitarity and renormalizability can not be established simultaneously. Roughly
speaking, the reason is the non-polynomial form in terms of the Stueckelberg fields of
the Lagrangian, so that renormalizability can not be determined in conventional terms.
Transformations leading to a polynomial form break unitarity (i.e., they lead to a non-
equivalent system).

Given that massless Yang-Mills theories are renormalizable, one could expect that so
are the corresponding massive theories if the limit m → 0 exists. However, this limit is sin-
gular. The reason for this singularity can be understood easily by the counting of degrees
of freedom: a massive vector particle has three field degrees of freedom, while a massless
one has only two.

In [48] an overview of different versions of the Stueckelberg model is given, focus-
ing on the conflicts between unitarity and renormalizability. The first example is the one
given in [53], supported by [65] y [66]. In this last reference, they establish the unitarity
of the gauge boson propagator to one loop in perturbation theory, working on the Lan-
dau gauge. It is explicitly shown that the compensation for the imaginary part of this
propagator comes from the Faddeev-Popov ghosts contribution as well as the Stueckel-
berg field contribution. This means that, in the limit of zero mass, the massless Yang-
Mills theory is not recovered, as already commented. This analysis is repeated for the
fermion-antifermion scattering till order g 4 by Delbourgo et al. in [48], finding again that
the Stueckelberg scalars contributes with the correct sign.

Then, they study the high-energy behavior of longitudinally polarized vector bosons,
computing their inelastic scattering. In a theory with Higgs boson the corresponding
amplitude is bounded, in agreement with unitarity. For the Stueckelberg case, even if
S†S = 1 is satisfied order by order in g 2, it turns out that the amplitude in increasing orders
scales with increasing powers of E 2

m 2 . They conclude that renormalizability is not pertur-
batively satirsfied in the generalized Stueckelberg scheme. However, [48] points out that

2In this subsection we will follow the review by Ruegg [46] and references therein, and also [48].
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in [54] renormalizability of two-dimensional massive Yang-Mills theory was established
in a non-conventional way.

A more complete discussion about limits on unitarity can be found in [55]. There, the
concept of tree-unitarity is introduced. They highlight that “an important advantage of
the Stueckelberg formalism is that the whole bad behavior can be isolated in the vertexes.
They conclude that tree-unitarity is only satisfied in models with spontaneous symmetry
breaking.
[48] concludes that renormalizability and unitarity seem to be confronted character-

istics of non-Abelian massive theories: “The original Stueckelberg formulation, with its
inherent non-polynomiality, is unitary but not renormalizable. This is in itself quite inter-
esting, implying that the naive massive Yang–Mills action is of the correct form to ensure
unitarity, and as we have seen any tampering with this leads us astray”.

The non-Abelian Stueckelberg Lagrangians contain non-polynomial terms in the
canonically quantized fields. Maybe a correct understanding of these terms could lead to
a unitary and renormalizable Stueckelberg model. The work by Dragon et al. [58] discards
this possibility showing that the non-polynomial structure can be algebraically reduced
to a polynomial version of the Stueckelberg model. But then results by Hurth in 1997 [59]
can be applied: it turns out that this model is non-unitary but renormalizable.

This last attempt illustrates the efforts to modify the theory so that it is tractable with
conventional methods based on Canonical Quantization and subsequent perturbation
theory. Maybe this is not the correct way. As said in [61]: “It is quite plausible that
the physical sector of massive Yang–Mills theory be renormalizable although it is not by
power counting and although it is not unitary at each order of the perturbation expansion.
This is particular to massive Yang–Mills theory and the existence of such a renormaliz-
ability is still an open question which merits further attention especially if Higgs bosons
remain experimentally undetected.”

As a concluding observation, we mention the open possibility in the work by Del-
bourgo et al. [48]: “(...) we see that in such desired gauges as the Landau gauge, the boson
propagator is well behaved, however the action remains nonpolynomial. The theory turns
out not to be conventionally renormalizable, though there is some hope that if one moves
outside of conventional perturbation theory, by using the methods introduced by Efimov
[60] for dealing with nonpolynomial interactions, sense may still be made of the theory.”

4.3 Quantum field theory with symmetries

Toward a group-theoretical formulation of the Stueckelberg model, we now outline
the general scheme to deal with field theories in GAQ. Typical infinite-dimensional sys-
tems in Physics appear as mappings from a space-time manifold M into a (not necessarily
Abelian) target group G

ϕ : M →G , x 0→ϕ(x ). (4.7)

If a is an invertible, differentiable transformation of M , i.e. a is an element in Diff(M ),
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or a subgroup of it, the following semi-direct (Diff(M )⊗s G (M )) group law holds:

a ′′ = a ′ ◦a , ϕ′′(x ) =ϕ′(a (x )) ∗ϕ(x ), (4.8)

where ◦ is the composition group law in Diff(M ) (composition of mappings), ∗ denotes
the composition group law in the target group G and a (x ) stands for the action of Diff(M )
on M . When the group G is not a (complex) vector space %n , the group of mappings is
usually called gauge, local or current group G (M ). Specially well-known are the unitary
gauge groups on Minkowski space-time and the loop groups which correspond to the case
in which M is the circle S1. However, the actual physical fields correspond to the elements

in the centrally extended group DDiff(M )⊗s G (M ). In the case of M =S1 the group (4.8) has
a specially rich structure (that is Virasoro ⊗s Kac-Moody) [36] with many applications
in conformal field theory in 1+ 1 dimensions [37]. As a general comment, the ability in
parameterizing the infinite-dimensional group (4.8) will play a preponderant role in the
corresponding physical description.

4.3.1 The Klein-Gordon Field

As a very simple example of the general scheme above-mentioned let us consider the
case in which M is the Minkowski space-time parameterized by (x 0 ≡ c t , *x ), Diff(M ) is
restricted to its Poincaré subgroup (or even just the space-time translations subgroup, for
the sake of simplicity), parameterized by (a 0 ≡ cb , *a ), and G is simply a complex vector
space, let us say%, parameterized by ϕ.

There is a natural parameterization of the group above associated with a factorization
of M as Σ×R , that is, a Cauchy surface Σ times Time. In fact, we can use 〈b , *a ;ϕ(*x ), ϕ̇(*x )〉.
In these variables, however, whereas the space translations *a act on ϕ(*x ) by just moving
the arguments as *x + *a : ϕ(*x + *a ) = exp(i *a · ∂*x )ϕ(*x ) , making b an action on ϕ(*x ), ϕ̇(*x )
requires the knowledge of the equation of motion, though not necessarily their solutions.
For the Klein-Gordon field the time evolution equations are

..
ϕ (*x ) = (*∇2−m 2)ϕ(*x )

and the time action ϕ′(b (*x )) reads:

ϕ′(b (*x ))≡ e ib c∂0ϕ′(*x ) = cos
E

b c
+

m 2− *∇2
F
ϕ′(*x )+ i

sin
E

b c
+

m 2− *∇2
F

+
m 2− *∇2

ϕ̇′(*x )

This way, all canonical operations on groups can be easily performed. For instance, the
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right-invariant vector fields are:

X R
b =

∂

∂ b

X R
ϕ(*x ) = cos
?

b
+

m 2− *∇2
@ ∂
∂ ϕ(*x )

−
+

m 2− *∇2sin
?

b
+

m 2− *∇2
@ ∂
∂ ϕ̇(*x )

X R
ϕ̇(*x ) = cos
?

b
+

m 2− *∇2
@ ∂
∂ ϕ̇(*x )

+
1+

m 2− *∇2
sin
?

b
+

m 2− *∇2
@ ∂
∂ ϕ(*x )

,

and their commutation relations:
$

X R
b , X R

ϕ(*x )

%
=−(m 2− *∇2)X R

ϕ̇(*x )

$
X R

b , X R
ϕ̇(*x )

%
= X R

ϕ(*x )

$
X R
ϕ(*x ), X R

ϕ̇(*x ′)

%
= 0
G
δ(*x − *x ′)X R

φ when centrally extended
H

Notice that the actual solutions of the equations of motion of a more general system are
not required since the corresponding Lie algebra can be exponentiated (at least) order by
order giving rise to the finite action of b on both ϕ(*x ) and ϕ̇(*x ).

As mentioned above, what really matters for the physical description is the corre-
sponding centrally extended group. In order to motivate such extension we shall proceed
in a way analogous to that followed in the case of Mechanics. Let us go then temporarily
to the standard Lagrangian formalism for classical fields. The real Klein-Gordon field of
mass m is described by the Lagrangian

& = 1
2
(∂µϕ∂ µϕ−m 2ϕ2) (4.9)

which is well-known to realize the Poincaré symmetries (see, for instance Ref. [38]). How-
ever, the Noether invariants associated with space-time symmetries are not relevant in
studying the solution manifold A in the sense that they are not the basic, indepen-
dent functions parameterizing the phase space. In fact, quantities such as the energy-
momentum tensor or the generalized (rotations and Lorentz) angular momenta are writ-
ten in terms of the Fourier coefficients a (k ), a ∗(k ), where the four vector kµ runs on
the Lorentz orbit k µkµ = m 2. Here we are primarily interested in characterizing those
Fourier coefficients as Noether invariants of certain generators leaving semi-invariant the
Lagrangian (4.9). To this end we consider the following vector fields on the complete (in-
cluding the field derivatives) configuration space for the Klein-Gordon Field (x ν ,ϕ,ϕµ):

X̄a ∗(k ) ≡ i e i k x ∂

∂ ϕ
−kν i e i k x ∂

∂ ϕν
(4.10)



4.3 Quantum field theory with symmetries 55

Computing the Lie derivative of the Lagrangian with respect to this vector (note that
the second components of this vector are simply the derivatives of the components onϕ)
we obtain:

L X̄a∗(k )& = ∂µβµ, βµ ≡−k µe i k xϕ, (4.11)

where explicit use of the mass-shell condition for k has been made. The Noether theorem
establishes that the current

J µa ∗(k ) = Xϕa ∗(k )π
µ−βµ

(where Xϕa ∗(k ) is the ϕ-component of the generator, i.e. the infinitesimal variation δϕ and
πµ ≡ ∂&

∂ ϕµ
is the field covariant momentum) is conserved: ∂µ J µ = 0. The Noether charge

reads:

QXa∗(k ) =
∫

d 3x J 0 = i

∫
d 3x e i k x (ϕ̇− i k 0ϕ) (4.12)

which turns out to be just the Fourier coefficient a (k ). In the same way we obtain the
charge a ∗(k ) and so a coordinate system for the solution manifoldA made of Noether
invariants.

Analogously, an equivalent configuration-space parameterization can be considered.
In fact, the vector fields:

Xπ(*y ) ≡ i

∫
d 3k
2k 0

&
e i*k ·*y e i k x ∂

∂ ϕ
−h.c
'

(4.13)

Xϕ(*y ) ≡−
∫

d 3k
2k 0

k 0

&
e i*k ·*y e i k x ∂

∂ ϕ
+h.c
'

have as Noether invariants the values of ϕ and π = ϕ̇ on each one of the points of the
Cauchy surface Σ. In terms of these “configuration-space" variables the symplectic form
onA adopts the aspect and properties of that of Classical Mechanics:

wK−G = dΛK−G = d

A∫
d 3x π(*x )dϕ(*x )

B
,

the symplectic potential ΛK−G , or Liouville form, being semi-invariant under the basic
symmetries (4.13).

To end up with the (semi-)invariance properties of the Klein-Gordon field it should be
mentioned that the symmetries of this Lagrangian can be given the aspect of some sort of
“residual gauge" symmetry, even for m )= 0. In fact, for any real function f on M satisfying
the Klein-Gordon equation, the vector field

X f = f
∂

∂ ϕ
+ fµ

∂

∂ ϕµ

leaves (4.9) semi-invariant.
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Once the necessity of a central extension of the semi-invariance group (4.8) has been
stated and motivated, we write the quantization group for the Klein-Gordon field in co-
variant form [39] as follows:

a ′′ = a ′+Λ′a

Λ′′ =Λ′Λ

ϕ′′(x ) =ϕ′(Λx +a )+ϕ(x )

ϕ′′µ(x ) =ϕ
′
µ(Λx +a )+ϕµ(x )

ζ′′ = ζ′ζexp

J
i
2

∫

Σ

dσµ
$
ϕ′(Λx +a )ϕµ(x )−ϕ′µ(Λx +a )ϕ(x )

%K

The exponential is well-defined, even though the fields have been written on the whole
space-time, because the integrand is a conserved current. Further details can be found in
[39] and references therein.

4.4 Group-theoretical treatment of the Stueckelberg
model

Now we turn to the Stueckelberg mechanism with the eyes of a group-theorist. From
the point of view of GAQ, the idea is to give dynamics to the gauge group parameters. That
is the way we introduce the Stueckelberg fields: they are the living, dynamical part of the
gauge group parameters.

A Group quantization of non-Abelian gauge groups had been only achieved consis-
tently in 1+ 1 dimensions by representing the corresponding Kac-Moody group [36]. In
fact, the special structure (non-trivial cohomology) of such groups allow for a central
extension providing a quantum representation of the Poisson algebra associated with a
WZW-type Lagrangian. In 3+ 1 dimensions, however, the Mickelsson central extension
(two-cocycle) is absent and a bit more involved construction is required. One of the new
required ingredients will be the consideration of an enlarged symmetry group G 1(M ),
containing the gauge group G (M ) (the standard gauge group only contribute with null
Noether invariants) parametrized by the Goldston-like scalar fields ϕa (x ), along with the
corresponding vector potentials Aa

µ(x ) parametrizing the rest of the new group [64].The
other ingredient refers to the use of a class of central extensions (two-cocycles) that, even
though they are trivial from some mathematical points of view, they define central ex-
tensions of the group (and select therefore specific projective representations of the un-
extended group) endowed with a canonical (left- or right-) invariant form which gives a
physical Lagrangian for fields living on a coadjoint orbit of G 1(M ). The corresponding
Lagrangian can then be seen as a (covariant) partial-trace of the standard σ-model full-
trace (chiral) Lagrangian Tr (U−1∂µUU−1∂ µU ), U ∈ G , coupled to the vector potentials
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according to a Minimal Coupling prescription addressed by the proper structure of the
central extension of the local group. The fact that the Minimal Coupling in these partial-
trace Lagrangians/groups, leaves the vector potentials associated with the subgroup H
addressing the co-adjoint orbit G /H massless, makes the mechanism specially suited to
describe alternatives to the Standard Model without Higgs particles.

4.4.1 Partial-trace massive non-Abelian Yang-Mills system: classical
theory

4.4.1.1 Lagrangian formalism

With respect to the Stueckelberg model described above, based on a total trace sigma
model Lagrangian, the situation is soundly improved by restricting the whole trace on
G to a partial trace on a quotient manifold G /H . H is the isotropy subgroup of a given
direction λ = λa Ta , in the Lie-algebra of G , under the adjoint action λ → VλV †, where
λa are real numbers subjected to Tr(λ2) = 1. From a strict group-theoretical point of
view and thinking of our specific quantization technique, the main advantage of dealing
with partial-trace Lagrangians is that they, or the corresponding Poincaré-Cartan (also
named Hilbert or canonical) forms [40, 41, 42], can be derived from a centrally-extended
Lie group in much the same way the Lagrangian, and the entire (quantum) theory of a
free particle can be derived from a U (1) central extension of the Galiley group. And this
fact might be related to the particular fact that partial-trace Lagrangians can be written
as the square of a total derivative. In fact, by defining Λ ≡ UλU †, the claimed G /H −σ
Lagrangian can be written with the following expression:

& G /H
σ =

1
2

Tr([−iU †∂µU ,λ]2)≡ 1
2

Tr([θ L
µ ,λ]2) =

1
2

Tr([θµ,Λ]2) =
1
2

Tr((∂µΛ)2). (4.14)

Let us proceed with its minimally coupled version:

&̃ G /H
σ =

1
2

Tr([−iU †DµU ,λ]2) =
1
2

Tr([θµ−Aµ,Λ]2) , (4.15)

which is again gauge invariant under (4.4). As in (4.6), the partial-trace (G /H ) Massive
Yang-Mills Lagrangian now follows:

& G /H
MYM =& G

YM+m 2&̃ G /H
σ . (4.16)

We should remark that the change of variables

Ãµ =U †(Aµ−θµ)U =U †AµU + iU †∂µU , (4.17)

and the fact that F (A) =U F (Ã)U †, renders the Lagrangian (4.16) into the simple form

& G /H
MYM =−

1
4

Tr(F µν (Ã)2)+
1
2

m 2Tr([Ãµ,λ]2). (4.18)

This change of variables, formally mimicking the shift to the unitary gauge, turns the ac-
tual degrees of freedom of the theory apparent; that is to say, those of dimH massless
vector fields (in the λ direction) and (n−dimH )massive ones. On the other hand, it must
be eventually completed with the change of variablesφ =U †ψwhen the fermionic matter
fieldψwill be introduced.
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4.4.1.2 Symplectic structure

Linear systems provide a Poisson algebra of classical observables in the solution man-
ifold realizing the Lie algebra of the Heisenberg-Weyl group in the corresponding dimen-
sion. In field theories, this suggests to approach the corresponding quantum theory by
postulating equal-time commutation relations between fields and their time derivatives,
or conjugate momenta, [φ(*x ),π(*y )] = iδ(*x − *y ). Going to non-linear systems with non-
flat phase space should require a different approach [103, 100]. This is precisely the situa-
tion we are facing now, as a result of the introduction of the group parameters as physical
degrees of freedom, with a (curved) compact target space G /H . We must look for a re-
placement of the Heisenberg-Weyl group with a (more involved) symmetry group of the
solution manifold, keeping the general idea of considering as basic conjugate coordinates
those giving central terms under commutation. Therefore, we should be able to identify
such symmetry group by analyzing the symplectic potential (or Liouville 1-form) in the
solution manifold, which generalizes J ≡ pi dq i from particle mechanics. The symplec-
tic potential for a generic scalar field φ can be obtained by integrating the Lagrangian
Poincaré-Cartan form

ΘPC ≡
∂&
∂ φµ

(dφ−φνd x ν )∧dσµ+&d4x (4.19)

on a Cauchy hypersurface Σ, leading to the canonical, Darboux-like, expression

J& =
∫

Σ

J&µ dσµ =
∫

Σ

πµδφdσµ , (4.20)

that becomes
∫
Σ
π(*x )δφ(*x )d 3x for the hypersurface x 0 = const, where π(*x ) ≡ π0(*x ) and

φ(*x ) are the Noether-invariant field momentum and field coordinate, respectively. The
symplectic structure then becomesω≡δ J& .

The expression (4.20) for the symplectic potential is in general of local character and
only becomes global for linear systems. In fact, for a Klein-Gordon fieldφ this expression
is global and can be derived as the canonical symplectic potential on the co-adjoint or-
bits of the infinite-dimensional Heisenberg-Weyl-like group law (see the next section for
details):

φ′′(x ) = φ′(x )+φ(x )

φ′′µ(x ) = φ′µ(x )+φµ(x )

ζ′′ = ζ′ζexp

J
i
2

∫

Σ

dσµ
$
φ′(x )φµ(x )−φ′µ(x )φ(x )

%K
, (4.21)

which constitutes a central extension by U (1), parametrized by ζ, |ζ|2 = 1, of the Abelian
group parametrized by “coordinates” φ(x ) and (covariant) “momenta” πµ(x ) = ∂µφ(x ). It
will be understood that a quantization of the field φ(x ) is achieved by means of a unitary
and irreducible representation of this group.
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Coming back to our present system and regarding the sigma sector, which is the tipi-
cally non-linear part, the symplectic potential can be written as:

J&σ =
∫

Σ

πµaδϕ
a dσµ =
∫

Σ

Tr([θµ,Λ][−iδUU †,Λ])dσµ =
∫

Σ

Tr([θµ,Λ]δΛ)dσµ , (4.22)

where the conserved momentum current is

πµa = Tr ([θ µ,Λ][−i
∂U
∂ ϕa

U †,Λ]) , (4.23)

and from (4.14), we may rewrite the Liouville form on G /H as

J&σ
CC
G /H

=
∫

Σ

Tr([[θµ,Λ],Λ]δΛ)dσµ . (4.24)

The natural question now arises of up to whether or not the potential (4.24) can also
be derived fron a (non-Abelian) group generalizing the Heisenberg-Weyl one. The new
group has to be the basic symmetry of the solution manifold of our partial-trace non-
linear sigma model, which must appear as a co-adjoint orbit. In fact, the following group
law, with parameters ϕa (x ), or in matrix form, U (x ) = e iϕa (x )Ta , playing the role of coordi-
nates, θ a

µ as corresponding momenta, and ζ ∈U (1) parametrizing the central generator,
accomplishes this task:

U ′′ = U ′U

θ ′′µ = U ′θµU ′†+θ ′µ

ζ′′ = ζ′ζexp{i
∫

Σ

Trλ(U ′(x )θµ(x )U ′†(x )−θµ(x ))dσµ} . (4.25)

Unlike the group law (4.21), the cocycle addressing the group law for the U (1) sub-
group is a coboundary with a non-trivial physical content (see [101, 102] and references
therein). Once again, a unitary and irreducible representation of this group will consti-
tute a proper (though non-canonical) quantization of the non-linear sigma fields living
on G /H .

The Lie algebra of this symmetry group is intended to provide a faithful representa-
tion of the Poisson bracket among the corresponding Noether invariants in the solution
manifold. They are (see the next section):

Iφa (*x ) = [θµ(*x ), Λ(*x )]nµ(*x )

Iθ a
µ nµ(*x ) = Λa (*x )≡ Tr(T aU (*x )λU †(*x )) ,

where the vector nµ(x ) characterize the volume on Σ, that is, dσµ = nµdσ, and Tr(ΛµΛ) =
0, Λµ ≡ [θµ,Λ]. The zero component of [θµ,Λ], to be named simply &, plays the role of
conserved local (internal) “angular momentum” associated with the “displacement” on
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the solution manifold δΛ or −iδUU †. The choice of the Noether invariants Λ and L as
coordinates on the solution manifold makes apparent the actual number of degrees of
freedom.

Now that we have analyzed to some extent the symplectic structure and symmetries
of the σ sector of the theory, the construction of symplectic potential of the complete
theory proceeds without special difficulty. In fact, the pure Yang-Mills sector behaves as
in the case of a Klein-Gordon field and the mixed terms follow from the minimal coupling
replacement. We then have for the complete symplectic potential for the Massive Yang-
Mills theory the expression:

J&M Y M =
∫

Σ

Tr(F µν (Ã)δÃν −m 2[Aµ−θ µ, Λ]δΛ)dσµ , (4.26)

which can be rewritten, on account that it is living on the orbit G /H , as

J&M Y M

CC
G /H

=
∫

Σ

Tr(F µν (Ã)δÃν −m 2[[Aµ−θ µ, Λ], Λ]δΛ)dσµ (4.27)

≈
∫

Σ

Tr(F µν (Ã)δÃν +m 2Ãµ[U †δU , λ])dσµ , (4.28)

where in the last line we have discarded a total (functional) differential (
∫
Σ

Tr(λδÃµ)dσµ).
The expression (4.28) tells us directly the actual conjugate couples of basic “coordi-

nates” and “momenta” to be quantized. It is apparent now that the components of Ãµ per-
pendicular to Σ and λ (in space-time and group directions, respectively) have the gauge
group parameters U themselves as conjugate coordinates.

Let us finish this Section by writing the explicit form of the classical Hamiltonian, con-
sidered as the Noether charge associated with the time-translation symmetry of (4.16) in
the simplest way:

H =
1
2

∫
d3x Tr{(E 2

i + B 2
i )+m 2([θ0, Λ]2+[θ i −Ai , Λ]2)} , (4.29)

where E and B are defined in the standard way in terms of the curvature tensor F .
To arrive at this expression we have chosen the vector n in the form (1, 0, 0, 0) and the

gauge-invariance freedom has been used to fix A0 = 0, required to make the Hamiltonian
positive-definite.

4.4.2 Group Approach to Quantization of Massive Yang-Mills Fields

4.4.2.1 The Massive Yang-Mills Symmetry Group and Noether Invariants

We are now in conditions to write a group law, GM Y M , providing the solution mani-
fold of our Massive Yang-Mills system, as a co-adjoint orbit, along with the symplectic
potential ΘG /H

M Y M , as the U (1)-component of the left-invariant 1-form (except for a total
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differential). We write for such a group,

U ′′(x ) = U ′(x )U (x )

θ ′′µ (x )n
µ = U ′(x )θµ(x )nµU ′†(x )+θ ′µ(x )n

µ,

A ′′µ(x ) = U ′(x )Aµ(x )U ′†(x )+A ′µ(x ),

F ′′µν (x ) = U ′(x )Fµν (x )U ′†(x )+ F ′µν (x ), (4.30)

ζ′′ = ζ′ζexp

A
i

∫

Σ

dσµ(x )Jµ(U ′, A ′, F ′;U , A, F )
B

,

Jµ = J YM
µ + J σµ ,

J YM
µ =

1
2

Tr
=
(A ′ν −θ ′ν )U ′(Fµν − Fνµ)U ′†− (F ′µν − F ′νµ)U

′(Aν −θ ν )U ′†
>

,

J σµ = m Tr
5
λ(U ′(Aµ−θµ)U ′†− (Aµ−θµ))

6
.

where all fields are assumed to be defined on the Cauchy surface Σ, so that, the time
translation can not be directly implemented, in contrast with the case of free fields [102].
However, we shall construct an explicit Hamiltonian operator to account for the time evo-
lution on the quantum states (see below)3. This group constitutes the minimal symmetry
necessary to reproduce the solution manifold associated with the classical Lagrangian
(4.16). Apart from the possible inclusion of the Poincaré subgroup (see below), this group
could also be added with those local transformations parametrized by parameters ϕa (x )
not subjected to satisfy the equations of motion, but they are gauge in the strict sense so
that they preserve the solution manifold pointwise.

Before proceeding further in any actual computation according to the general GAQ
scheme, let us comment on several facts. Firstly, the objects Aa

µ and θ a
µ behave exactly in

the same manner under the local group G (M ) and θ a
i (spacial components) are particular

cases of Aa
i , that is, the cases in which the Yang-Mills potentials are pure gauge. Secondly,

there are some extra unexpected parameters Aa
0 , with respect to the massless case, which

are the zero (time) components of those vector potentials living on the orbit G /H . They
also behave as the time components of θ a

µ but they never are pure gauge, as they fix the
initial values of the derivatives of the fields ϕa on the Cauchy surface Σ. We then require
non-trivial (non-gauge) four components Aa

µ for each index a of the orbit of G . We accord-
ingly add a time component for the “electric” field E a , E a

i = F a
0i , namely E a

0 =m 2Tr(T aΛ),

3The coboundary piece Jσµ in (4.31) does not exhaust all possibilities of encoding dynamical content in
the group. In fact, the coboundary current J ′µ

σ = iκnµTr (λ(ln(U ′U )− ln(U ′)− ln(U ))) was considered in
([19]), as a preliminary attempt to give mass to vector bosons, but we shall not pursue this possibility any
further here.
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constituting, somehow, a new component, “F00”, of the curvature F a
µν . From the mathe-

matical point of view, the appearance of this non-conventional field degrres of freedom
are a consequence of the piece J σ of the current in (4.31).

From this group law (4.31), the generators of the left group action (the right-invariant
vector fields) can be written:

X̃ R
ϕa (x ) = X R (G )

ϕa (x )−C c
ab

7
θ b
ν (x )n

ν δ

δθ c
µ (x )n

µ
+Ab

ν (x )
δ

δAc
ν (x )
−C c

ab F b
µν (x )

δ

δF c
µν (x )

8

+
9
−C c

ab m (Ab
ν (x )−θ b

µ (x ))λc +
1
2
∂ ν (Faµν − Faνµ)

:
nν (x )Ξ

X̃ R
θ a
µ (x )n

µ =
δ

δθ a
µ (x )n

µ

X̃ R
Aa
µ(x )

=
δ

δAa
µ(x )
− 1

2
(F µνa (x )− F νµa (x ))nν (x )Ξ

X̃ R
F a
µν (x )

=
δ

δF a
µν (x )
− 1

2

5
(Aµa (x )−θ µa (x ))nν (x )− (Aνa (x )−θ νa (x ))nµ

6
Ξ

X̃ R
ζ = Re(iζ

∂

∂ ζ
)≡ Ξ . (4.31)

The corresponding non-null (equal-time) Lie bracket are:

$$
X̃ R
ϕa (x ), X̃ R

ϕb (y )

%%
= −C c

abδ(x − y )X̃ R
ϕc (x )

$$
X̃ R
ϕa (x ), X̃ R

θ b
µ (y )n

µ

%%
= −C c

abδ(x − y )X̃ R
θ c
µ (x )n

µ +mC c
abλcδ(x − y )Ξ

$$
X̃ R
ϕa (x ), X̃ R

Ab
µ(y )

%%
= −C c

abδ(x − y )X̃ R
Ac
µ(x )
−mδµ0 C c

abλcδ(x − y )Ξ

$$
X̃ R
ϕa (x ), X̃ R

E b
j (y )

%%
= −C c

abδ(x − y )X̃ R
E c

j (x )
−δb

a∂
x

j δ(x − y )Ξ

$$
X̃ R

Aa
j (x )

, X̃ R
E b

k (y )

%%
= δj kδabδ(x − y )Ξ , (4.32)

where double bracket indicates the commutator in the Lie algebra GM Y M (as oposed to the
commutator in the Lie algebra of G ). In the same way we derive the left-invariant vector
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fields:

X̃ L
ϕ(x ) = X L (G )

ϕ(x ) +
1
2
∂ µ(U †(Fµν − Fνµ)U )nµΞ

X̃ L
θµ(x )nµ

= U
δ

δθµ(x )nµ
U †−m (U †λU −λ)Ξ

X̃ L
Aµ(x )

= U
δ

δAµ
U †+
9

m (U †λU −λ)ηµν − 1
2

U †(F νµ− F µν )U
:

nνΞ

X̃ L
Fµν (x )

= U
δ

δFµν (x )
U †+

1
2
[U †(Aν −θ ν )Unµ−U †(Aµ−θ µ)Unν ]Ξ

X̃ L
ζ = Re(iζ

∂

∂ ζ
)≡ Ξ . (4.33)

Directly from the group law or by duality on (4.33) the left-invariant 1-form in the ζ-
direction, ΘG

M Y M , can be computed (the tensor F will be considered anti-symmetric from
now on):

ΘG
M Y M =
∫

Σ

dσνTr
=

FνµδAµ− 1
2
(δFνσ−δFσν )(Aσ−θσ)+m (Λ−λ)δ(Aν −θν )

+ Fνµ[θ µ,−iδUU †]+ ∂ µFνµ(−iδUU †)
>
+

dζ
iζ

=
∫

Σ

dσνTr(
5

Fµνδ(Aµ−θ µ)− (Aµ−θ µ)δFµν
6
+m (Λ−λ)δ(Aν −θν ))+

dζ
iζ

. (4.34)

and from it the Noether invariants (I = i X RΘG
M Y M ):

IAµ =
5

Fνµ+m (Λ−λ)ηνµ
6

nν

IFµν = (Aµ−θµ)nν − (Aν −θν )nµ

Iϕ = ∂ νFµνnµ+[(Aµ−θ µ), mΛηµν + Fνµ]nν

Iθµnµ = m (Λ−λ) , (4.35)

For the particular, though standard, choice of the Cauchy surface n = (1, 0, 0, 0) they ac-
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quire the expressions:

IA0 = m (Λ−λ)≡m'0−mλ

IAi = F0i ≡'i

IF 0i = −(Ai −θi )≡−(i

Iϕ = m [(A0−θ 0), Λ]+ [(Ai −θ i ), F0i ]+ ∂ i F0i ≡−m &̌− *∇ · *'+[(i , 'i ]≡)

Iθ 0 = m (Λ−λ) = IA0 , (4.36)

where we have denoted &̌ ≡ [(θ 0−A0), Λ] the minimally coupled version of the intrinsic
internal “spin” &, which already appeared in the sigma sector. Note that the expression of
)would look very much like Dµ'µ = ∂µ'µ+[(µ,'µ] had we identified−&with some sort
of formal time derivative “∂ 0'0” and A0 with“(0”, where the quotation marks mean that
neither “∂ 0'0” is a time derivative nor A0 itself is a Noether invariant.

We should observe that the Noether invariants Iθ 0 and IA0 coincide, so that the group
parameter A0 − θ 0 is actually a gauge parameter in the strict sense (the corresponding
subgroup leaves the solution manifold invariant pointwise). Notice also that the Noether
invariant IA0 in the direction of the H subalgebra is a function of the invariants IA0 in the
direction of the G /H orbit (the same dependence ocurrs for Iθ0 ). Then, the independent
parameters in the solution manifold are:

((a
i ,'a

j ,'b
0 ,)b ) a = 1, ..., dim G , b = 1, ..., co-dim H . (4.37)

The 1-form (4.34) naturally comes down to the quotient G /H , which can be identified
with the coadjoint orbit of G , reproducing (4.27) up to a total differential. It can also be
written in terms of Noether invariants. In fact, we have

ΘG
M Y M =
∫

Σ

dσνTr
M
(IAµδIFµν − IFµν δIAµ)+ Iθµnµδ([Iϕ, IAν ])

N
+

dζ
iζ

. (4.38)

The Noether invariants (4.35) close the standard Poisson bracket along with those
corresponding to the new variables E a

0 , which are absent from the conventional theory
[38, 27]. The non-zero brackets, choosing Σ = #3 in the time direction (i.e., dσµ → d3x ),
are:
O)a (*x ),)b (*y )
P
= −C c

ab)c (*x )δ(*x − *y ),

Q
(a

j (*x ),'k
b (*y )
R
= −δk

j δ
a
bδ(*x − *y ), (4.39)

Q
)a (*x ),(b

j (*y )
R
= −C b

a c(c
j (*x )δ(*x − *y )+δb

a∂
x

j δ(*x − *y ),

M
)a (*x ),'µb (*y )
N
= −C c

ab'µc (*x )δ(*x − *y )+mδµ0 C c
abλcδ(*x − *y ) .
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Even though we have not included space-time translations (nor Lorentz transforma-
tions) explicitly in the group law, this Poisson algebra can be added with a quartic func-
tion of the Noether invariants, *, constituting the classical Hamiltonian in our group-
theoretical scheme. In fact, the function

*= 1
2

∫
d3x Tr{(*'2+ *+2)+m 2&̌2+m 2(*∇'0− [*(, '0])2} (4.40)

where we have designed by &̌ the “internal” part of the) (also a constant of motion), that
is,

m &̌a ≡−)a +[(i , 'i ]a + ∂ i'a
i , (4.41)

recovers the classical equations of motion, using the Poisson brackets, from the solution
manifold4.

It should be remarked that in comparing the expressions of the (classical) Hamilto-
nians (4.29) and (4.40), both written in terms of variables in the corresponding solution
manifolds, we must carry out the correspondence

Ei↔'i , Λ↔'0, Ai↔(i

and realize that [θi , Λ] = ∂iΛ.

4.4.2.2 The Quantum Representation

According to the general scheme of GAQ we start from complex U (1)-functions Ψ on
the entire centrally-extended group to be represented, that is, functions which are homo-
geneus of degree one on the parametre ζ ∈U (1). In order to obtain an irreducible repre-
sentation these functions must be restricted by the Polarization condition stablished by
means of a polarization subgroup GP of the finite left action. A look at the Lie algebra
commutators of our symmetry group reveals that the actual Polarization subgroup (see
(2.10)) is constituted by the following elements:

g P = (UH ,θ µnµ, Ǎ, F = 0,ζ= 1) , Ǎ ≡ (A −θ ) , (4.42)

which act on the original complex functionsΨ(g ′) =Ψ(U ′,θ ′µnµ, A ′ν , F ′µν ,ζ′) from the right:
Ψ(g ′)→Ψ(g ′g P ).

The key point in searching for the appropriate form of the wave functions, invariant
under the Polarization subgroup, is to notice the factor which appears in front of the wave
function as a consequence of the cocycle in the composition law of the U (1) argument (Ψ
is homogeneous of degree one on it). This factor must be canceled out by some U (1) term
factorizing an arbitrary function Φ of given arguments. It is easy to see that the following
wave functionψ is the general solution to the polarization equation (2.10):

ψ= ζe i
∫
Σ dσµTr(mλ(U †ǍµU−Ǎµ)+ 1

2 ǍνFµν)Φ((Λ−λ), F ) (4.43)

4Remind that Poisson brackets are defined between Noether invariants only and that if Q is the Noether
invariant associated with a parameter q evolving in time with the Hamiltonian H , the Poisson bracket Q , H
is the Noether invariant Q̇ associated with the time derivative q̇ of q (obviously, Q̇ is not a time derivative of
Q , since it is a Noether invariant).
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where Φ is an arbitrary function of its arguments. In fact, choosing dσµ as d 3x , without
loss of generality,

ψ(g ′g P ) = ζ′e i
∫

d 3xTr[mλ((U ′UH )†(U ′Ǎ0U ′†+Ǎ ′0)(U ′UH )−U ′Ǎ0U ′†−Ǎ ′0)+ 1
2 (U
′ǍνU ′†+Ǎ ′ν )F ′0ν ]

× e i
∫

d 3xTr[mλ(U ′Ǎ0U ′†−Ǎ0)− 1
2 F ′0νU ′ǍνU ′†]Φ(U ′UHλ(U ′UH )†−UHλU †

H , F ′)

= ψ(g ′) (4.44)

For the usual choice of Σ, the arbitrary part of ψ can be written in terms of the vari-
ables (4.37). Φ=Φ('a

µ), if we adopt the convention that 'c
0 = 0 , ∀c running on H . That is,

we arrive at the (generalized) “electric field representation”.
The action of the right-invariant vector fields preserve the space of polarized wave

functions, due to the commutativity of the left and right actions as already stated, so that
it is possible to define an action of them on the arbitrary factor Φ in the wave functions.
It is not difficult to demonstrate that on this space of functions the quantum operators
acquire the following expression:

Ê µaΦ≡ iζ−1e−i
∫
Σ dσµTr(mλ(U †ǍµU−Ǎµ)+ 1

2 ǍνFµν)X̃ R
Aa
µ
ψ='µaΦ

Âi
aΦ≡−iζ−1e−i

∫
Σ dσµTr(mλ(U †ǍµU−Ǎµ)+ 1

2 ǍνFµν)X̃ R
F a

0i
ψ=−i

δ

δ'i
a

Φ (4.45)

ĜaΦ≡−iζ−1e−i
∫
Σ dσµTr(mλ(U †ǍµU−Ǎµ)+ 1

2 ǍνFµν)X̃ R
ϕaψ

=
9
*∇ · *'a +C c

ab ('b
0

δ

δ'c
0

− *'b · δ
δ*'c
)
:
Φ .

The last expression accounts for the non-Abelian “Gauss law" if the constraint condition
ĜaΦ(') = 0 is required.

On the quantum representation space we can construct the Hamiltonian operator Ĥ
that represents, without ambiguity, the classical Hamiltonian (4.40):

ĤΦ=
1
2

∫
d3x {(Ê 2

i + B̂ 2
i )+m 2L̂2+m 2(∂ i Ê0− [Âi , Ê0])2}Φ . (4.46)

It is of remarkable relevance the fact that this operator preserves the Hilbert space of
quantum states.

It should be stressed that the central term proportional to λc in the last commutator
of (4.32) could also be considered as a remnant of some sort of “symmetry breaking” in
the sense that it can be hidden into a redefinition of Ê 0

a ,

Ê 0
a → Ê ′0a ≡ Ê 0

a +mλa , (4.47)

which now acquires a non-zero vacuum expectation value proportional to the mass
m 2λa , that is:

〈0|Ê 0
a |0〉= 0−→ 〈0|Ê 0

a |0〉=mλa . (4.48)
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4.5 The SU (2)×U (1) group and the Standard Model

Now we shall denote by Bµ = B a
µTa , a = 1, . . . , 4, the SU (2)×U (1) Lie-algebra valued

vector potential, keeping Aµ for the electromagnetic potential, as usual. The new genera-
tor T4 (≡ 1

2
Y , the halved hypercharge) corresponds to the direct factor U (1).

The key point in this section consists in combining the construction above for G =
SU (2) with the traditional Stueckelberg model for a selected H⊥ = U (1). However, this
time we shall choose λ in the electric charge (mixed) direction

λ∝Q ≡ T3+T4, (4.49)

according to the usual Gell-Mann-Nishijima relation, and we shall choose H⊥ in the or-
thogonal direction:

Q⊥ = T3−T4, (4.50)

in the sense that Tr(QQ⊥) = 0. This way we shall provide mass to three vector bosons,
say W ±

µ ∝ B 1
µ ± i B 2

µ and Zµ ∝ Tr(Q⊥Bµ), out of the original four vector potentials B a
µ , a =

1, . . . , 4, leaving the electromagnetic potential Aµ massless. In fact, the Standard Model
Lagrangian for the Yang-Mills sector will be

& SM
MYM =−

1
4

Tr(Fµν )2+
1
2

m 2Tr([θµ− Bµ,UQU †]2)+
1
2

m ′2Tr(((θµ− Bµ)UQ⊥U †)2)

=−1
4

Tr(Fµν )2+
1
2

m 2Tr([B̃µ,Q]2)+
1
2

m ′2Tr((B̃µQ⊥)2) (4.51)

≡−1
4

F a
µνF µνa +m 2

W W̃ +
µ W̃ µ−+

1
2

m 2
ZZ̃µZ̃µ, (4.52)

where B̃µ is related to Bµ in a way similar to that of Eq. (4.17). This Lagrangian reproduces
the Yang-Mills sector of the Standard Model for electroweak interactions when we intro-
duce the usual coupling constants g , g ′, e according to B̃ 3

µ ≡ gD3
µ, B̃ 4

µ ≡ g ′D4
µ,Z̃µ ≡ g g ′

e
Eµ.

WritingEµ in terms ofD3
µ andD4

µ, we have:

Eµ =
e

g g ′
Z̃µ =

e
g g ′
(gD3

µ− g ′D4
µ)≡ cos(ϑW )D3

µ− sin(ϑW )D4
µ, (4.53)

which, together with the orthogonal relation

:µ ≡ sin(ϑW )D3
µ+ cos(ϑW )D4

µ, (4.54)

(the electromagnetic vector potential) defines the usual Weinberg rotation of angle ϑW .

4.5.1 Giving mass to fermionic matter

The introduction of mass for fermionic matter can be accomplished by a nontrivial
mixing between space-time and internal symmetries. Although the general setting of this
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symmetry mixing is rather ambitious, here we shall consider the consequences of the sim-
plest, nontrivial, mixing between the Poincaré group 9 and the electromagnetic gauge
subgroup H =U (1)Q , which has been widely developed in [64] and references therein. A
more general symmetry mixing scheme, involving conformal symmetry and larger inter-
nal symmetries, is under consideration [105].

To be precise, we propose a mass-generating mechanism associated with a non-trivial
mixing of the Poincaré group and SU (2)×U (1). This mixing takes place through a linear
combination P ′0 ≡ P0+κQ between the time translation generator P0 and Q , in much the
same way the generator Q had to be found as a linear combination of T3 and T4. The spirit
of the redefinition P ′0 is the same as the shifting (4.47) [with λ∝Q], ultimately responsible
for the mass mW . In fact, with the new mass operator

M ′2 ≡ P ′0
2− *P ′2 (4.55)

the mass shell condition for fermionic fieldsψ becomes

M 2ψ = (P0
2− *P2)ψ=m 2

0ψ→ M ′2ψ= (m 2
0 +2κP0Q +κ2Q2)ψ. (4.56)

At the rest frame we have

M ′2ψ = (m 2
0 +2κm0Q +κ2Q2)ψ . (4.57)

Then, for “originally” massless particles (m0 = 0),

M ′2ψ = κ2Q2ψ , (4.58)

so that only charged particles acquire mass. This is in agreement with the fact that there
is no elementary fermionic massive particles without electric charge.



Chapter 5

Perturbation theory for non-linear sigma
models

From an abstract (mathematical) point of view, a Non-Linear Sigma Model (NLSM)
consists of a set of coupled scalar fields πa (xµ), a = 1, . . . , N , in a D-dimensional
(Minkowski) spacetime M with coordinates xµ,µ = 0, 1, 2, . . . , D − 1, and action integral

Sσ(π,∂µπ) =
∫

M

& (π,∂µπ)dDx =
λ

2

∫

M

g ab (π)∂ µπa∂µπ
b dDx , (5.1)

where ∂ µ = ηµν∂ν ,∂ν = ∂ /∂ x ν , η= diag(+,−, . . . ,−) is the Minkowski metric and λ a cou-
pling constant. The field theory (5.1) is called the NLSM with metric g ab (π) (usually a
positive-definite field-dependent matrix). The fields πa themselves could also be consid-
ered as the coordinates of an internal Riemannian (target) manifold Σ with metric g ab .
This model proved to be relevant in String Theory where g ab is the Einstein metric and
M is a two-dimensional manifold named “worldsheet”. An interesting case for us is that
in which Σ is a Lie group manifold G , namely G =O(N ), or a quotient (coset) space G /H
by a closed subgroup H , namely H =O(N − 1) (see [45] for G =U (N ) and its cosets G /H :
complex projective, Grassmann and flag manifolds).

Apart from String Theory, the NLSM is related to a great number of physical systems
(see e.g. [100] for a review). It was originally introduced to describe pion dynamics in
the theory of strong nuclear interactions. Also, some particular two-dimensional O(N )-
invariant NLSM are used in connection to antiferromagnetic spin chains, quantum Hall
effect and superfluid helium-3. At a more fundamental level, NLSM describes the dynam-
ics of Goldstone bosons in spontaneously broken field theories like the Standard Model of
electro-weak interactions. In the previous chapter we have proposed a Higgs-less mech-
anism to provide mass to the electro-weak gauge vector bosons W± and Z through a
coupling to a U (2)-invariant NLSM à la Stueckelberg. Actually, according to the widely
named “Equivalence Theorem” [97, 98], a very heavy Higgs particle can be eliminated
from the broken symmetry programme in favor of non-linear σ-like Goldstone bosons,
so that the actual computation of Feynman diagrams involving the longitudinal polariza-
tions of the (massive) vector bosons in electroweak interactions can be resolved in terms
of the corresponding diagrams among those scalar fields. Unfortunately, the use of a
NLSM Lagrangian has led to an apparent insoluble dichotomy unitarity-renormalizability
[62, 56, 99, 48, 59] (see also the review [46] and references therein). Canonical perturba-

69
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tion theory proceeds from the action (5.1) by expanding g ab (π) = δab +O(π2) and per-
turbing around massless fields fulfilling ∂µ∂ µπa = 0. However, this perturbation scheme
is subject to criticism. On the one hand, massless solutions do not exhaust the whole so-
lution manifold, as other (soliton, instanton, skyrmion) solutions are known to exist [106].
On the other hand, the non-trivial (non-flat) geometry and topology of the target mani-
foldΣ and its possible symmetries are not being taken into account or properly exploited.
Regarding the last issue, references like [66] tackled the perturbation theory for NLSM in
terms of left-G -invariant quantities Lµ(x ) = g −1(x )∂µg (x ), g ∈G , which do not depend on
the parametrization of G .

As in Reference [103], we think that the trouble that canonical quantization faces in
dealing with systems bearing non-trivial topology can be traced back to the “tangent
space” approximation imposed at the very beginning of the (canonical) quantization pro-
gram. Already in the simple case of “free” particles moving on spheres, a proper quan-
tization requires the replacement of canonical commutators with the Lie-algebra com-
mutators of the Euclidean group [103, 43]. We shall pursue this idea and construct a per-
turbation theory adapted to non-canonical (namely, Euclidean) commutation relations
for the particular case of G = O(N + 1) invariant NLSM with Σ = SN = O(N + 1)/O(N )
the N -dimensional sphere. The discretization of the corresponding equations of motion
provides a mechanical picture of the O(N )-invariant NLSM as a (D − 1)-dimensional lat-
tice model of coupled rotators connected by springs (see later on Sec. 5.1). Actually, this
equivalence has already been considered in, for instance, [107, 108] who used the so-
called “coupled cluster method” to approach this problem. Our aim here is to explore the
NLSM in a different regime from the usual (relativistic) one, by using non-canonical basic
commutation relations adapted to the underlying O(N ) symmetry of the system.

5.1 O(N +1)-Invariant NLSM

The O(N +1)-invariant NLSM Lagrangian in (5.1) can be obtained from the quadratic
one

& ( *φ,∂µ *φ) =
1
2
∂µ *φ · ∂ µ *φ, *φ = (φ1, . . . ,φN+1)∈#N+1, (5.2)

with the constraint *φ2 = ρ2 =constant. A NLSM action of type (5.1) can be recovered
from this Lagrangian by eliminatingφN+1 in terms of *π= (φ1, . . . ,φN ) or its stereographic
projection on #N . Here we shall work with *φ and keep in mind the constraint *φ2 = ρ2.
Using Lagrange multipliers, the Euler-Lagrange equations of motion can be cast in the
form:

$ *φ = $
*φ · *φ
*φ2

*φ, *φ2 =ρ2, (5.3)

where$= ∂µ∂ µ denotes the d’Alembertian or wave operator. For N = 3, D = 2, extra Wess-
Zumino-Novikov-Witten terms can be added to the Lagrangian (5.2) so that the model is
known to be integrable since one is able to find an infinite number of conserved quantities
closing a Kac-Moody Lie algebra (see e.g.[100]).
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Let us briefly remind how the NLSM above also arises from a φ4-theory by “freezing
out” the Higgs field degree of freedom (as in the above-mentioned Equivalence Theorem).
Actually, the term “sigma” makes reference to the original model for an effective theory of
the meson part of the low-energy nuclear theory. The Lagrangian (5.2) is modified by a
Higgs potential

&g =
1
2
∂µ *φ · ∂ µ *φ+

g
4
( *φ2−ρ2)2, (5.4)

with g a positive constant. It is customary to write

φN+1 =ρ+σ, φa =πa , a = 1, . . . , N , (5.5)

for small perturbations around *φ(0) = (0, . . . ,ρ). The Lagrangian (5.4) acquires then the
following form in terms of (*π,σ):

&g =
1
2
∂µ*π · ∂ µ*π+

1
2
∂µσ∂

µσ+
m 2
σc 2

2
σ2+ . . . , (5.6)

which states that the σ-meson (Higgs field) has mass mσ =
+

2gρ/c whereas the π-
mesons (pions) remain massless. In fact, in the quantum theory, πa describe Goldstone
bosons associated with the spontaneous breakdown from the O(N + 1) to the O(N ) sym-
metry for the choice of vacuum 〈0|φ j |0〉=ρδj ,N+1.

The original NLSM Lagrangian (5.2) can be obtained from (5.4) by taking the limit g →
∞ and imposing *φ2 =ρ2 in order to keep the Lagrangian finite except for an irrelevant c-
number term. This corresponds to mσ → ∞ so that the Higgs field degree of freedom
has been frozen (something physically reasonable since it has not been experimentally
observed yet). Note that, even for large g , we could always keep mσ finite by taking the
vacuum expectation valueρ small. Actually, we are interested in this regime in this article.

However, one should be very cautious in taking this limit, since we are dramatically
changing the topology of the field configuration space. One can not guarantee in prin-
ciple that the procedure of perturbing commutes with that of constraining. In this ar-
ticle we pursue the alternative strategy of “constraining and then perturbing”, instead
of the previous scheme of “perturbing and then constraining”. Nowadays it is widely
known that constraining does not actually commute (in general) with quantizing (see
e.g. [109, 110, 111, 18] for discussions on non-equivalent quantizations of systems with
non-trivial configuration spaces).

Let us restrict ourselves, for the sake of simplicity, to the N = 2 case. The equations
(5.3) can also be obtained as Hamiltonian equations of motion

*̇φ =
∂ *φ

∂ t
≡ { *φ, H}, *̈φ = ∂

2 *φ

∂ t 2
≡ { *̇φ, H}= {{ *φ, H}, H}, (5.7)

for the Hamiltonian

H =
1
2

∫
d D−1x

A
*L2(x )
ρ2

+ c 2(*∇ *φ(x ))2
B

, (5.8)

and the basic equal-time Euclidean (non-canonical) Poisson brackets
M

Li (x ), Lj (y )
N
= εi j

k Lk (x )δ(x − y ),
M

Li (x ),φ j (y )
N
= εi j

kφ
k (x )δ(x − y ), (5.9)
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where *L ≡ *φ∧ *̇φ, (*∇ *φ)2 ≡ ∂jφk∂ jφk , εi j
k is the antisymmetric symbol and we have intro-

duced the wave velocity c when setting x 0 = c t for later convenience. Actually, if (5.9) are
taken as abstract Poisson brackets, with *L not necessarily related to *φ, then the equations
(5.7) generalize (5.3) by introducing an extra term

$ *φ = $
*φ · *φ
*φ2

*φ+
*L · *φ
*φ4
*L (5.10)

which could not vanish when *L · *φ )= 0, a situation which arises when “magnetic
monopoles” are present and *L is not necessarily perpendicular to *φ. We shall restrict
ourselves to the case C1 = *L · *φ = 0, which is compatible with the Poisson brackets (5.9)
and the constraint C2 = *φ2 = ρ2, since both C1 and C2 are the natural Casimir operators
for the Euclidean group.

Perturbing around *φ(0) = (0, 0,ρ) as in (5.5), for fixed *φ2 = ρ2, can be interpreted as
a “group contraction”, which drastically changes the topology of the system. Indeed, this
perturbation theory has sense for ρ F 1. Making the change (5.5) in the last Poisson
bracket of (5.9) and taking the limit ρ →∞, keeping ϕ1,2 ≡ π1,2/ρ finite, we recover the
canonical Poisson brackets:
M

Li (x ),ϕ j (y )
N
= εi j

3δ(x − y ), i , j = 1, 2 (5.11)

which state that (ϕ1,ϕ2) and (L2,−L1) are couples of canonically-conjugated variables.
Therefore, standard (canonical) perturbation theory has sense for large values ofρ, which
loses information about the (compact) topology of the system. As already commented,
We are interested in the other regime ρG 1.

5.2 Classical non-canonical perturbation theory

A solution of$ *φ =−m 2 *φ, for any constant m , is also a solution of (5.3). However, only
for massless fields, m = 0, the constraint *φ2 =ρ2 is also satisfied. At least at the quantum
level, standard perturbation theory proceeds by considering scattering of massless fields
*φ [100]. However, at the classical level, we know that there are more solutions of (5.3) than
massless solutions. In fact, as showed long time ago in [106], the configuration space of a
NLSM breaks up into an (infinite) number of components. Indeed, finite energy requires
boundary conditions like (for instance) *φ(x ) = (0, 0,ρ) as ‖x‖ → ∞, which means a one-
point compactification of #D−1 by SD−1. Thus, if two fields *φ and *φ′ belong to different
homotopical classesΠD−1(SN ), then they can not be continuously deformed (evolved) one
into the other. In particular, one can find (solitonic) solutions that are not wave packets
of massless solutions.

Instead of perturbing around massless solutions, we shall adopt the following splitting
of the Hamiltonian (5.8)

H =H0+V, H0 =
1
2

∫
d D−1x

*L2(x )
ρ2

, V =
c 2

2

∫
d D−1x (*∇ *φ(x ))2, (5.12)

and consider V as a perturbation for either small c or ‖ *φ‖=ρG 1 (with c arbitrary).
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Given an initial condition on a Cauchy hypersurface, *φ(t0,x ) = *φ0(x ) and *̇φ(t0,x ) =
*̇φ0(x ), the general solution to (5.3) can be formally written as:

*φ(t ,x ) = e (t−t0){·,H} *φ0(x ) =U (t − t0) *φ0(x ), (5.13)

where {·, H} stands for the Liouvillian operator and U (t − t0) = e (t−t0){·,H} for the evolution
operator. Actually, we can exactly integrate the “free” evolution as:

*φ(0)(t ,x )≡ e (t−t0){·,H0} *φ0(x ) =U0(t − t0) *φ0(x )

= cos




V
*L2(x )
ρ4

(t − t0)


 *φ0(x )+

1Z
*L2(x )
ρ4

sin




V
*L2(x )
ρ4

(t − t0)


 *̇φ0(x ).

(5.14)

We shall let the wave velocity c to take arbitrary values, as we want our perturbation the-
ory to be valid for relativistic fields too. We have already justified the interesting regime
ρ G 1 (small vacuum expectation value) in which the Higgs mass mσ would remain fi-
nite while *φ2 I ρ2, so that the Higgs field degree of freedom is almost frozen. In order to
gain more physical intuition on this limit, let us use the following mechanical picture of
coupled small rotators (see Figure 5.1).

Figure 5.1: Rotators in a lattice coupled by springs

Without loss of generality, we can restrict ourselves to D = 2, consider the lattice xk =
k h, k ∈,, for some (small) step h, and write *φk (t ) = *φ(t ,xk ) for the vector position of the
rotator in the place xk . Rotators are connected by identical springs of constant κ and zero
natural length so that the elastic potential energy between two consecutive rotators is

Vk+1,k =
1
2
κ( *φk+1− *φk +h(1, 0))2. (5.15)

Taking the limit h → 0, keeping κh ≡ c 2 finite, we have that the total elastic potential
energy is

∞∑

k=−∞
Vk+1,k =

1
2

c 2
∞∑

k=−∞
h
( *φk+1− *φk +h(1, 0))2

h2
→ 1

2
c 2

∫ ∞

−∞
d x ((∂x *φ)2+2∂xφ

1). (5.16)
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which gives the desired result up to a boundary term.
Contrary to the (unconstrained) Klein-Gordon field (as a model of coupled oscilla-

tors), the elastic potential energy V can be made arbitrarily small for NLSM fields (as a
model of coupled rotators) by taking ρ G 1, even in rigid media (c arbitrary). In other
words, unlike a NLSM, a Klein-Gordon field could never be seen as an infinite set of
weakly coupled oscillators unless inside soft media (c G 1) where it takes a long time
for the wave to propagate. That is, here we have the vacuum expectation value ρ as an
extra perturbation parameter to play with.

Although Dyson series are conventionally designed for quantum perturbation theory,
we shall briefly remind the subject here in a classical setting. Dyson series takes advantage
of the exact solvability of H0, with exact solution (5.14), to provide a perturbation series in
V . The evolution operator (5.13) is decomposed as:

U (t , t0) =U0(t )U0(−t )U (t − t0)U0(t0)︸ ︷︷ ︸
UI (t ,t0)

U0(−t0),

where UI (t , t0) is the evolution operator in the interaction image. Let us set t0 = 0 for
simplicity. After a little bit of algebra, one can see that

∂

∂ t
UI (t ) = V̂ (t )UI (t ), V̂ (t )≡U0(t ){·, V ( *φ)}U0(−t ) = {·, V ( *φ(0)(−t ))}, (5.17)

with *φ(0)(t ) given by (5.14) (note the time inversion). This formula can be recursively in-
tegrated as:

UI (t ) = I +
∫ t

0

dτV̂ (τ)+
∫ t

0

dτ

∫ τ

0

dτ′V̂ (τ)V̂ (τ′)+ . . . (5.18)

In order to test the perturbation procedure, let us consider the exactly solvable case N =
1, D = 2. On the one hand, if we parametrize the field *φ = (φ1,φ2) in polar coordinates
φ = ρe iθ , then (5.3) reduces to a massless Klein-Gordon equation for $θ = 0. On the
other hand, we can compute order by order:

φ(t ,x ) =U (t )φ0(x ) =U0(t )UI (t )φ0(x ) =U0(t )φ(I )(t ,x ), (5.19)

with

φ(I )(t ,x ) =UI (t )φ0(x ) =φ0(x )+
∫ t

0

dτ{φ0(x ), V (φ(0)(−τ))}+ . . . , (5.20)

where V (φ) = c 2

2

∫∞
−∞d x∂xφ∂x φ̄ and Poisson brackets are computed at τ= 0. Taking into

account that

φ(0)(τ,x ) =U0(τ)φ0(x ) = e iτL(x )/ρ2
φ0(x ) (5.21)

with L =φ1φ̇2−φ2φ̇1 = Im(φ̄φ̇), and that

{L(x ),φ(y )}=−iφ(x )δ(x − y ), {Ψ(L(x )),φ(y )}=Ψ′(L(x )){L(x ),φ(y )}, (5.22)
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for any derivable function Ψ of L, we can compute at first order:

φ(1)0 (τ,x )≡ {φ0(x ), V (φ(0)(−τ))}

=
c 2

2

9
∂ 2

x xφ
(0)(−τ,x )τe iτL(x )/ρ2 − ∂ 2

x x φ̄
(0)(−τ,x )

τ

ρ2
e−iτL(x )/ρ2

φ2
0(x )
:

=
i c 2τ

ρ2
(ρ2∂ 2

x xθ0(x )−τ∂ 2
x x L(x ))φ0(x ), (5.23)

where we have putφ0(x ) =ρe iθ0(x ). Therefore,

φ(I )(t ,x ) =UI (t )φ0(x ) =φ0(x )+
∫ t

0

dτφ(1)0 (τ,x )+ . . . (5.24)

=φ0(x )
9

1+
i c 2t 2

2ρ2
(ρ2∂ 2

x xθ0(x )−
2
3

t ∂ 2
x x L(x ))+ . . .
:

. (5.25)

The last step in (5.19), i.e. φ(t ) =U0(t )φ(I )(t ), is easily performed by replacing φ0(x ) by
φ(0)(t ,x ) (and θ0(x ) by θ (0)(t ,x ) = θ0(x )+ t L(x )/ρ2) everywhere inφ(I )(t ,x ). That is:

φ(t ,x ) =U0(t )φ(I )(t ,x ) =φ(0)(t ,x )
9

1+
i c 2t 2

2
(∂ 2

x xθ0(x )+
1

3ρ2
t ∂ 2

x x L(x ))+ . . .
:

. (5.26)

One can check that, at this order, the perturbative solution coincides with the exact solu-
tionφ(t ,x ) =ρe iθ (t ,x ) where

θ (t ,x ) = cos(c t ∂x )θ0(x )+
sin(c t ∂x )

c∂x
θ̇0(x ). (5.27)

Inside the discrete, mechanical picture depicted in Figure 5.1, the appearance of second-
order spatial derivatives ∂ 2

x x at first order in perturbation theory means that the interac-
tion propagates from one point xk to its nearest neighbors xk+1 and xk−1 at this order. In
order to account for a longer range propagation we should go to higher orders in pertur-
bation theory.

5.3 Quantum non-canonical perturbation theory

In quantum field theory the fields φ(x ) and L(x ) are promoted to the quantum op-
erators φ̂ and L̂, respectively, and the Poisson brackets (5.9) and (5.22) are promoted to
the (non canonical) commutators (we shall keep restricting ourselves to N = 1, D = 2, for
simplicity):
!

L̂(x ),φ̂(y )
"
= ħhφ̂(x )δ(x − y ),

!
L̂(x ),φ̂†(y )
"
=−ħhφ̂†(x )δ(x − y ), (5.28)

where we have introduced ħh just to account for quantum corrections and ρ2 = φ̂(x )φ̂†(x )
gets the necessary dimensions to render the Hamiltonian with energy dimensions. Let us
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consider the lattice picture of our field model and write φ̂(xk ) = φ̂k and L̂(xk ) = L̂ k . The
Hilbert space#k = Span(|n k 〉, n k ∈ ,) of a single rotator at position xk is spanned by the
(normalized) eigenstates |n k 〉 of the angular momentum L̂ k , that is:

L̂ k |n k 〉= ħhn k |n k 〉. (5.29)

The operators φ̂k and φ̂†
k act on |n k 〉 as ladder operators, namely:

φ̂k |n k 〉=ρ|n k +1〉, φ̂†
k |n k 〉=ρ|n k −1〉. (5.30)

The total Hilbert space# of our lattice quantum field theory will be the direct product
# =⊗k∈,#k . The total Hamiltonian operator is

Ĥ = Ĥ0+ V̂ , Ĥ0 =
ω

2ħh
∞∑

k=−∞
L̂2

k , V̂ (φ̂) =−κ
∞∑

k=−∞
Re(φ̂k+1φ̂

†
k ), (5.31)

where we have discarded a c-number addend in V̂ and we have introduced a frequency
ω ≡ hħh/ρ2. In order to write the evolution operator in the interaction image UI (t ), we
need to evolveφk with the free evolution operator U0(t ) = e−

i t
ħh H0 :

φ̂(0)k (t ) =U0(−t )φ̂kU0(t ) =
∞∑

m=0

(−i t /ħh)m
m !

[φ̂k , H0](m ), (5.32)

where we denote the multiple commutator:

[φ̂k , Ĥ0](m ) ≡ [[φ̂k , , Ĥ0], m. . ., Ĥ0]. (5.33)

The quantum commutator introduces new ordering problems with respect to the classi-
cal Poisson bracket. For standard creation â †

k and annihilation â k operators, Wick’s theo-
rem provides a useful tool for writing arbitrary products of â †

k and â l in terms of normal
ordered products. Here we have to deduce a new Wick-like theorem in order to write ar-
bitrary products of the non-canonical operators L̂ k and φ̂l . If we choose by convention
to write all L̂’s to the left of all φ̂’s, then the multiple commutator (5.33) acquires the fol-
lowing form:

[φ̂k , Ĥ0](m ) =
(−1)mωm

2m

7
m∑

l=0

cm ,l ħhl L̂m−l
k

8
φ̂k = (−1)mωm (L̂m

k +q .c .)φ̂k , (5.34)

where q .c . stands for “quantum corrections”. The Wick-like numerical coefficients cm ,l

are given by cm ,0 = 2m , cm ,m = (−1)m and the recurrence cm ,l = 2cm−1,l − cm−1,l−1. There-
fore

φ̂(0)k (t ) =U0(−t )φ̂kU0(t ) = (e i tωL̂ k /ħh +q .c .)φ̂k , (5.35)

coincides with the classical expression (5.21) except for quantum corrections. Actually,
we shall be able to sum up all quantum corrections in some particular cases (see later) by
noticing that

m∑

l=0

cm ,l = 1, ∀m = 0, 1, 2, . . . (5.36)
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The evolution operator in the interaction image (5.18) is given in terms of

V̂ (φ̂(0)(−τ)) =−κ
∞∑

q=−∞
Re
=
(e−iτωL̂q+1/ħh +q .c .)φ̂q+1φ̂

†
q (e

iτωL̂q /ħh +q .c .)
>

. (5.37)

In order to describe the new perturbation scheme, let us consider an initial state (at time
t = 0)

|{n}〉=⊗q∈,|nq 〉. (5.38)

The probability amplitude of observing |{n ′}〉 as a final state after time t is given by the S
matrix element:

Sn ,n ′(t ) = 〈{n ′}|U (t )|{n}〉= 〈{n ′}|U0(t )UI (t )|{n}〉= e i t ω2
∑∞

k=−∞(n
′
k )

2〈{n ′}|UI (t )|{n}〉. (5.39)

The total angular momentum L̂ =
∑

k L̂ k is conserved at all orders in perturbation theory
since [L̂, V̂ ] = 0. This means that

∞∑

k=−∞
n k )=

∞∑

k=−∞
n ′k ⇒Sn ,n ′(t ) = 0. (5.40)

The interaction potential (5.37) is of short range, that is, V̂ is not able to carry one quan-
tum of angular momentum from position k to l until |k − l |-th order in perturbation the-
ory. More precisely, considering an initial state of the form

|{δk }〉=⊗q∈,|δk ,q 〉, (5.41)

we can compute the probability amplitude of observing |{δl }〉 as a final state after time t
at all orders:

Sδk ,δl (t ) = e i tω/2
∞∑

n=0

9
i t κρ2

2ħh

:n n∑

s=0

9
n
s

:
δl ,k−n+2s , (5.42)

where we have made use of (5.36) at some stage. Note that perturbation theory is dictated
by both: κ and/or ρ. Instead of the angular momentum eigenstates |n k 〉 we could also
have used field eigenstates

|ζk 〉 ≡
∞∑

n=−∞
ζn

k |n〉, |ζk |= 1, (5.43)

for which φ̂k |ζk 〉 = ρζk |ζk 〉, φ̂†
k |ζk 〉 = ρζ−1

k |ζk 〉 and L̂ k |ζk 〉 = ħhζk∂ζk |ζk 〉. Moreover, going
from N = 1 to arbitrary N can be accomplished by replacing |n k 〉 with hyper-spherical
harmonics. For N = 2, the usual spherical harmonics are given in terms of homogeneous
polynomials of degree j in *φ:

Y j
m ( *φk ) =
∑

a q = 1, 2, 3
q = 1, . . . , j

ξ(m )a 1,...,a j
φa 1

k . . .φ
a j

k , (5.44)

where ξ(m )a 1,...,a j are the complex components of a symmetric and traceless tensor [112]. The
angular momentum operator at place xk is then given by L̂a

k = ħhεab
cφc

k∂φb
k
, as usual.





Chapter 6

The Quantum Arnold Transformation
and Dissipation

The interest in dissipative systems at the quantum level has remained constant since
the early days of Quantum Mechanics. The difficulties in describing damping, which intu-
itively could be understood as a mesoscopic property, within the fundamental quantum
framework, have motivated a huge amount of papers.

Applications of quantum dissipation abound. For example, in quantum optics, where
the quantum theory of lasers and masers makes use of models including damping [153],
or in the study of decoherence phenomena [154]. Some authors have modeled dissipa-
tion by means of the theory of open systems or the thermal bath approach, in which a
damped system is considered to be a subsystem of a bigger one with infinite degrees
of freedom [155, 154]. However, damped systems are interesting in themselves as fun-
damental ones. In particular, the quantum damped harmonic oscillator, frequently de-
scribed by the Caldirola-Kanai equation [113, 114], has attracted much attention, as it
could be considered one of the simplest and paradigmatic examples of dissipative sys-
tem.

The description of the quantum damped harmonic oscillator by the Caldirola-Kanai
model, which includes a time-dependent Hamiltonian, has been considered to have
some flaws. For instance, it is claimed that uncertainty relations are not preserved un-
der time evolution and could eventually be violated [119, 120]. Many considerations were
made in this direction. For example, Dekker in [156] introduced complex variables and
noise operators to tackle the problem, claiming that no dynamical description in terms of
a Schrödinger wave function can be expected to exist. In [157], a non-linear Schrödinger-
Langevin wave equation was proposed as the starting point in formulating the quantum
theory. However, this inconsistency seems to be associated with a confusion between
canonical momentum and “physical” momentum [121].

Despite these considerations about the Caldirola-Kanai model, many developments
went ahead. Coherent states were calculated in [118] by finding creation and annihilation
operators, built out of operators which commute with the Schrödinger equation. The cor-
responding number operator turns out to be an auxiliary, conserved operator, obviously
different from the time-dependent Hamiltonian. This paper also defined the so-called
loss energy states for the damped harmonic oscillator. The famous report by Dekker [158]
provides a historical overview of some relevant results.

The analysis of damping from the symmetry point of view has proved to be especially
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fruitful. In a purely classical context, the symmetries of the equation of the damped har-
monic oscillator with time-dependent parameters were found in [115]. Two comprehen-
sive articles, [116, 132], are of special interest. In those papers the authors found, for
the damped harmonic oscillator, finite-dimensional point symmetry groups for the cor-
responding Lagrangian (the un-extended Schrödinger group [159]) and the equations of
motion (SL(3,#)) respectively, and an infinite contact one for the set of trajectories of the
classical equation. They singled out a “non-conventional” Hamiltonian from those gener-
ators of the symmetry, recovering some results from [118]. Then, they concluded that the
damped harmonic oscillator should not be claimed to be dissipative at all at the quantum
level, as this true, “non-conventional” Hamiltonian is conserved, and should be related to
an oscillator with variable frequency.

Many papers related to the Caldirola-Kanai model keep appearing, showing that the
debate about fundamental quantum damping is far from being closed. We can mention
[161], where the driven damped harmonic oscillator is analyzed, or the review [162]. Even
the possible choices of classical Poisson structures and Hamiltonians, or generalizations
to the non-commutative plane, have deserved attention as recently as in [163] and [164],
respectively.

There exists another interesting approach to the study of the classical damped har-
monic oscillator, based on the observation that its classical equation of motion is a special
case of the set of linear second-order ordinary differential equations (LSODE for short).
In Classical Mechanics the family of solutions of a second-order differential equation cor-
responding to the motion of a given physical problem is sometimes related to that of a
simpler system, considered as a toy model, in order to import from it simple general prop-
erties which could be hidden in the real problem. Both physical systems should share
global properties of the solution manifold, such as topology and symplectic structure. The
paradigmatic example is the transformation described by Arnold in [122], which brings
any LSODE to the simplest form of the free Galilean particle equation. This transforma-
tion turns out to be extremely useful. In particular, it is possible to obtain the symmetry
group of a particular instance of LSODE [115], in which the symmetries of the action of
the corresponding system can be found as a subgroup [123].

Therefore, it seems natural to try to generalize the Arnold transformation to the quan-
tum level, to be denoted as Quantum Arnold Transformation (QAT), as much insight can
be gained in the study of any system classically described by a LSODE and, in particular,
the parametric oscillator or some of the systems which present dissipation.

Several partial generalizations can be found in the literature. For example, in [124],
Takagi is able to provide a transformation which relates the Schrödinger equation of the
harmonic oscillator to that of the free particle, and applies it to simplify the computation
of the propagator by making use of the free one. [125] contains a slightly more general ver-
sion (see formula (33) therein). [126]went a bit further considering the damped harmonic
oscillator with constant parameters. In [127] the particle with time-dependent mass in a
linear potential was studied by unitarily relating it to the free particle, and this was used
to define Airy-like wave packets for the free particle. None of them mentions the classical
Arnold transformation, but it is underlying their reasoning.

Implicitly, a generalization of the Arnold transformation was also contained in [118],
the classical version not being referred once more. It will be shown that some of their
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results formally converge with ours (see Section 6.1.3.2), although they put emphasis
on another aspects of the problem, such as the analysis of unitarity and energy loss.
Mostafazadeh [128] also pursued the idea of “connecting” different quantum physical
systems by means of time-dependent unitary transformations, even representing arbi-
trary time-dependent diffeomorphisms [129]. His approach is rather general, but does
not fully take advantage of the possibility of connecting with the free particle system and
importing its symmetries.

Besides the Caldirola-Kanai model, the Bateman’s dual system appears as an alterna-
tive description of dissipation in the damped harmonic oscillator. In his original paper
[165], Bateman looked for a variational principle for equations of motion with a friction
term linear in velocity, but he allowed the presence of extra equations. This trick effec-
tively doubles the number of degrees of freedom, introducing a time-reversed version of
the original damped harmonic oscillator, which acts as an energy reservoir and could be
considered as an effective description of a thermal bath. The Hamiltonian that describes
this system was rediscovered by Feschbach and Tikochinsky [166, 167, 158] and the cor-
responding quantum theory was immediately analyzed.

Some issues regarding the Bateman’s system arose. The Hamiltonian presents a set of
complex eigenvalues of the energy (see [169] and references therein), and the vacuum of
the theory decays with time. This last feature was treated in [168], where Celeghini et al.
suggested that the quantum theory of the dual system could find a more natural frame-
work in quantum field theory1. On the other hand, in [169] the generalized eigenvectors
corresponding to the complex eigenvalues are interpreted as resonant states.

Bateman’s dual system is still frequently discussed [170]. Many authors have consid-
ered this model as a good starting point for the formulation of the quantum theory of dis-
sipation. One of the aims of this chapter will be to show that the study of the symmetries
of the Caldirola-Kanai model leads to the Bateman’s dual system, thus to be considered
as a natural starting point for the study of quantum dissipation.

6.1 The Arnold transformation

6.1.1 Classical Arnold transformation

Mathematically speaking, the classical Arnold transformation [122] converts any lin-
ear second-order ordinary differential equation (LSODE) into the free Galilean particle
equation, that is, κ̈= 0 in 1+1 dimensions (we shall limit ourselves to this situation).

From the physical point of view, the Arnold transformation relates the trajectories
x (t ), with initial conditions x0 and p0 ∼ ẋ0, solutions of the LSODE, to those trajecto-
ries κ(τ) solutions of the free equation with initial conditions κ0 and π0 ∼ κ̇0. Either
(x0, p0) or (κ0,π0) parametrize the common solution manifoldA , and we shall adopt the
unified notation (K , P). On this manifold, each physical system is characterized by the
corresponding Hamiltonian as a function of K and P . The inverse of the corresponding

1We feel that the ultimate reason is nevertheless the lack of a vacuum representation of the relevant
group (see Section 6.3).
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Hamilton-Jacobi transformation then recovers the trajectories (x (t ), ẋ (t )) or (κ(τ), κ̇(τ))
out of the K , P variables.

Following a similar notation to that in [115], we give an overview of the Arnold trans-
formation [122]. Firstly, let us recall that, given an arbitrary, non-homogeneous LSODE

ẍ + ḟ ẋ +ω2x =Λ, (6.1)

where ẋ = d x
d t

and so on, and f , ω and Λ are arbitrary functions of time t , we can apply
the transformation
a

t −→ t

x −→ x +u p
, (6.2)

u p being a particular solution of (6.1). We find that the differential equation above is
transformed into

ẍ + ḟ ẋ +ω2x = 0, (6.3)

i. e., every non-homogeneous problem is equivalent to a homogeneous one.
The homogeneous Arnold transformation, is a local diffeomorphism which maps the

free particle equation of motion into (6.3):
a
τ= u 1(t )

u 2(t )

κ= x
u 2(t )

, κ̈= 0 ←→ ẍ + ḟ ẋ +ω2x = 0 , (6.4)

where u 1(t ) and u 2(t ) are independent solutions of (6.3). Applying the inverse diffeomor-
phism to the classical dynamical system (6.3), we can transform this equation into the
free one.

If we include external forces the transformation (6.4) turns into the general Arnold
transformation, that we shall call simply A:
a
τ= u 1(t )

u 2(t )

κ= x−u p (t )
u 2(t )

, κ̈= 0 ←→ ẍ + ḟ ẋ +ω2x =Λ . (6.5)

This transformation could be understood as passing to coordinates analogous to co-
moving spacial coordinate and proper time used in General Relativity, so that the system
becomes “free”, at least locally.

Indeed this transformation is of local nature in time, in the sense that it is only valid
for an open interval in time t . In fact, it can be shown that the equivalence in (6.4) and

(6.5) is true up to a factor u 2
2

e−2 f , so that it holds in the interval where u 2 does not vanish.
This means that the transformation does not take the Euler-Lagrange operator associated
with the LSODE itself to that of the free system. For this reason it can not be claimed that
both physical systems are actually equivalent.

However, Arnold transformation can help to understand the physical system under
study. In particular, as pointed in [115], it is possible to identify the set of contact sym-
metries for (6.3), and this way to arrive at the results found in [116], which show the sets
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of symmetries for either the equations or the action from which such equations can be
derived.

It should be noted that, due to the general character of the transformation, we could
miss the physical identity of position and time when performing such a transformation.
But it will be possible to choose appropriate specific solutions u 1, u 2 and u p with suitable
initial conditions so that the identity of the variables is maintained2. We shall make use of
this possibility in going to the quantum version of this transformation.

Finally, having in mind the particular case of dissipative systems, we would like to
remark that certain issues of the treatment of these systems are already apparent in the
classical domain. For instance, time evolution is not a symplectomorphism, nor preserve
the volume of the phase space. Obviously, the Hamiltonian function is not a Noether in-
variant. This becomes especially manifest and annoying when formulating the quantum
theory.

6.1.2 The Quantum Arnold transformation

As already mentioned in the Introduction, several partial versions of the QAT can be
found in the literature. Here we give a generalization that contains, as particular cases,
those found in [124, 125, 126, 127, 118].

In bringing Arnold’s technique to the quantum world we must be aware, obviously, of
the different philosophy of the quantum description and different nature of the equation
of motion. The objects and structures that define a quantum system, namely the Hilbert
space, the basic observables, the Hamiltonian operator, and the Schrödinger equation
must be specified in a way that we are able to identify the same objects at both sides of
the transformation.

To this end, it is important to focus, in the free system, only on those operators
corresponding to constants of motion, Noether invariants associated with its symme-
try, that is, the Schrödinger group (which contains the centrally-extended Galilei group
as a subgroup, containing in turn the Heisenberg-Weyl group of translations and non-
relativistic boosts). This implies to fix the basic operators (that is to say, quantum opera-
tors which realize a unitary and irreducible representation of the common classical Pois-
son (Heisenberg-Weyl) algebra {K , P}= 1) so that they respect the Schrödinger equation,
then having constant expectation values and being generators of the basic symmetry3 (the
Heisenberg-Weyl sub-group of the centrally-extended Schrödinger group).

Those basic operators, in this form, are in principle the candidates to be related by
a quantum version of the Arnold transformation, so that we shall have the situation as
follows: On the one hand, a common Hilbert space # of wave functions Ψ(K ) (L2(#)),
which plays the role of initial values for both the solutionsφ(x , t )∈#t of the Schrödinger
equation relative to the quantum version of our original LSODE and those wave functions,
ϕ(κ,τ) ∈ # G

τ , solutions of the free Schrödinger equation. And, on the other hand, the

2For his restricted version of the quantum Arnold transformation, Takagi, in [124], suggested that the
transformation could be specified by different solutions at different times, in principle avoiding the restric-
tion of locality. However, care must be taken when making use of this freedom to prevent conflict with
preserving the identity of the variables when it is desirable.

3By “basic symmetry” we understand, in general, those symmetries whose associated Noether invariants
are enough to parametrize the classical solution manifold.
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quantum Arnold transformation Â relating Schrödinger equations and basic operators. As
a crucial consequence, we shall obtain a realization of the free symmetry on the quantum,
non-free system. The following diagram can help to have a picture of the setup:

# G
τ

Â←−−− #t

ÛG (τ)

b
bÛ (t )

# G
0 ≡# −−−→

1̂
# ≡#0

(6.6)

# G
τ (resp. #t ) is the Hilbert space of solutions of the free or Galilean (resp. non-free or

corresponding to the LSODE) Schrödinger equation, ÛG (τ) (resp. Û (t )) is the free (resp.
non-free) evolution operator and 1̂ is the identity operator. Here, the Hilbert space #
may be considered as the quantum analogue of the classical solution manifold,A , usu-
ally thought of as space of (classical) initial conditions. On# one must be able to mea-
sure all possibles physical observables in much the same way classical observables are
characterized as real functions onA , that is, functions whose arguments are constants
along classical trajectories (functions of Noether invariants).

The Hamiltonian of the non-free system, not being conserved in general, will not be
related to any operator from the free particle. This is to be expected, since it is not a con-
served quantity under the evolution of the physical system, neither at classical nor at the
quantum level (in the sense that it does not have constant expectation values). It is im-
portant to remark that this implies that it is not possible to formulate a time-independent
Schrödinger equation.

More specifically, by extending properly the Arnold transformation (or the inverse)
to the quantum case, we shall relate the space # G

τ of solutions of the free Schrödinger
equation

iħh ∂ ϕ
∂ τ
=− ħh

2

2m
∂ 2ϕ

∂ κ2
, (6.7)

with corresponding classical equation

κ̈= 0, (6.8)

to that space#t where the quantum theory of the generic LSODE

ẍ + ḟ ẋ +ω2x =Λ, (6.9)

is realized, the quantities f ,ω and Λ being, in general, time-dependent.
The classical equation (6.9) can be derived from a variational principle. We shall con-

sider the Lagrangian

L = e f
=1

2
m ẋ 2− 1

2
mω2x 2+mΛx

>
(6.10)

as our starting point. The Schrödinger equation can be derived from the corresponding
classical Hamiltonian function

H =
p 2

2m
e− f +
G1

2
mω2x 2−mΛx

H
e f , (6.11)
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according to the standard canonical prescriptions, leading to

iħh ∂ φ
∂ t
=− ħh

2

2m
e− f ∂

2φ

∂ x 2
+
G1

2
mω2x 2−mΛx

H
e fφ. (6.12)

For f linear in time, constantω and Λ= 0 this equation is commonly known as Caldirola-
Kanai equation for the damped harmonic oscillator [113, 114].

Even though both spaces of solutions of (6.7) and (6.12), # G
τ and #t respectively,

will be related, and the basic quantum operators associated with the classical functions
K , P realized as well-defined operators both on# G

τ and #t , we cannot still assure that
both physical systems are actually equivalent. In fact, the evolution operator in time t ,
iħh ∂
∂ t

, does definitely not leave invariant the space of the solutions of (6.12) in general, nor
comes down to the space# , which means that it cannot be realized as an operator func-
tion of K̂ , P̂ (in sharp contrast to iħh ∂

∂ τ
, which is∼ P̂2). We shall achieve the construction of

well-defined Hermitian evolution-like generators imported from the free system via the
inverse quantum Arnold transformation, but their eigenvalues, conserved indeed, do not
correspond to the standard energy4. These operators close the Schrödinger algebra with
the basic operators.

Implicitly, this trick of considering operators different from the Hamiltonian to pro-
vide quantum numbers and obtain solutions of the Schrödinger equation as their eigen-
functions has been used extensively. For example, the operator found in [118] to label
the energy-loss states, which coincides with the quantum operator H ∗ corresponding to
G5 in [116, 132], turns out to be a generator of the SL(2,#) subgroup of the Schrödinger
group. We give here explicitly the frame in which this can be done: operators from the
Schrödinger group can be chosen to play this role upon convenience.

For the sake of simplicity, let us focus on the case with no external forces Λ = 0. The
formulas corresponding to Λ )= 0 are given in Subsection 6.1.4.

The generalization of the classical Arnold transformation is obtained by completing
(6.4) with a change of the wave function. Explicitly, the quantum Arnold transformation,
valid for every physical system with classical equation of the homogeneous LSODE type,
is given by the (local) diffeomorphism:





τ= u 1(t )
u 2(t )

κ= x
u 2(t )

ϕ =φ
+

u 2(t )e
− i

2
m
ħh

1
W (t )

u̇2(t )
u2(t )

x 2

,

(6.13)

where u 1 and u 2 satisfy again the classical equation of motion in (x , t ), u̇ 1 = d u 1

d t
, u̇ 2 = d u 2

d t
and W (t ) ≡ u̇ 1u 2−u 1u̇ 2 = e− f . It is straightforward to check that by this transformation
the Schrödinger equation of the free particle is transformed into (6.12) (with Λ= 0) up to
a multiplicative factor which depends on the particular choice of the classical solutions
u 1 and u 2 (partial derivatives must be changed by the classical part of the transformation
while wave functions are shifted by the quantum part).

4The construction of a properly defined, Hermitian generator in standard time will take much effort
requiring a sound analysis of the symmetry problem in damped systems. This has been done in [131].
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Now, we can impose on u 1 and u 2 the condition that they preserve the identity of τ
and κ, i.e., that (κ,τ) coincide with (x , t ) at an initial point t0, arbitrarily taken to be t0 = 0:

u 1(0) = 0, u 2(0) = 1, u̇ 1(0) = 1, u̇ 2(0) = 0 . (6.14)

This fixes a unique form of the diffeomorphism for a given “target” physical system. How-
ever, the quantum Arnold transformation would still be valid if solutions u 1 and u 2 do not
satisfy (6.14). The price to be paid would then be that the relation in the lower part of the
diagram (6.6) above would no longer be the identity and basic position and momentum
operators would then be mixed (see the end of this Section).

Formally, while the classical Arnold transformation in this case is:

A : #×T −→#×T ′

(x , t ) 0−→ (κ,τ) = A
G
(x , t )
H
= ( x

u 2
, u 1

u 2
) , (6.15)

where T and T ′ are open intervals of the real line containing t = 0 and τ= 0, respectively,
QAT can be written:

Â : #t −→ # G
τ

φ(x , t ) 0−→ ϕ(κ,τ) = Â
G
φ(x , t )
H
= A∗
G+

u 2(t )e
− i

2
m
ħh

1
W (t )

u̇2(t )
u2(t )

x 2

φ(x , t )
H

, (6.16)

where A∗ denotes the pullback operation corresponding to A.
As already remarked, the basic symmetries of the free system are inherited by the

LSODE-type system, as we are now able to transform the infinitesimal generators of trans-
lations (the Galilean momentum operator π̂, corresponding to the classical conserved
quantity ‘momentum’) and non-relativistic boosts (the position operator κ̂, correspond-
ing to the classical conserved quantity ‘initial position’). They are, explicitly,

π̂=−iħh ∂
∂ κ

(6.17)

κ̂= κ+
iħh
m
τ
∂

∂ κ
, (6.18)

that is, those basic, canonically commuting operators with constant expectation values,
that respect the solutions of the free Schrödinger equation, have constant matrix ele-
ments (and constant expectation values in particular) and fall down to well defined, time-
independent operators in the Hilbert space of the free particle L2(#).

In general, these properties are satisfied whenever an operator Ô(t ) can be written as

Ô(t ) = Û (t , t0) Ô Û †(t , t0) , (6.19)

where Ô is Ô(t0) and Û (t , t0) is the evolution operator satisfying the Schrödinger equa-
tion5. If the Hamiltonian is time-independent, as in the free particle case, time-evolution
is a one-parameter group and then Û (τ,τ0) = Û (τ−τ0).

5Note that Ô(t ) is not the usual Heisenberg picture version ÔH (t ) = Û (t , t0)† Ô Û (t , t0) of its associated
operator in Schrödinger picture Ô, although their relation is very simple when the Hamiltonian is time-
independent.



6.1 The Arnold transformation 87

Defining a generic Schrödinger equation operator, Ŝ ≡ iħh ∂
∂ t
− Ĥ , taking t0 = 0 (Û (t )≡

Û (t , 0)) and reminding that Û (t , t0)†Û (t , t0) = 1, it is clear that, for operators of the form
(6.19):

Ŝ Ô(t ) |ψ(t )〉= Ŝ Û (t )Ô |ψ〉 ≡ Ŝ Û (t ) |ψ′〉= Ŝ |ψ′(t )〉= 0 (6.20)

∂

∂ t
〈χ(t )|Ô(t )|ψ(t )〉= 0 (6.21)

∂

∂ t

5
Û (t )†Ô(t )Û (t )
6
= 0 (6.22)

d
dt

Ô(t )≡ ∂
∂ t

Ô(t )+
i
ħh [Ĥ (t ),Ô(t )] = 0 (6.23)

(where |ψ(t )〉 ≡ Û (t )|ψ〉), stating that those operators respect solutions, have constant
matrix elements, fall down to define time-independent operators on the Hilbert space
and are integers of the motion, respectively. (6.17) and (6.18) can be “de-evolved”, so that

Û (τ)† π̂Û (τ) = −iħh ∂
∂ κ

, Û (τ)† κ̂Û (τ) = κ , (6.24)

thus showing the properties above for the free particle.
What we are doing is to focus on these integrals of motion, π̂ and κ̂, so that the new op-

erators position X̂ and momentum P̂ acting on#t are also integrals of motion in the non-
free system. These will be the generators of the basic symmetry in the non-free system.
Dodonov and Man’ko [118] obtained these operators in particular cases by direct calcula-
tion, imposing them to commute with the Schrödinger equation Ŝ. The difference is that,
having related this system with that of the free particle, now it is clear how far one can
go: the Schrödinger group and its enveloping algebra. Even more, the approach followed
in [118] is only able to provide the basic operators (corresponding to linear functions in
the classical solution manifold), since the condition of commuting with Ŝ, [Ŝ,Ô(t )] = 0, is
more restrictive than that considered here of respecting solutions, which is equivalent to
[Ŝ,Ô(t )]∼ Ŝ.

Let us apply the QAT (6.13) to (6.17) and (6.18). For a given operator π̂ acting on# G
τ

there is a corresponding operator P̂ = Â−1π̂Â on#t . The action on functions φ(x , t ) can
then be obtained as follows:

P̂φ(x , t ) = Â−1π̂Âφ(x , t ) = Â−1π̂A∗
G<

u 2 e−
i
2

m
ħh

1
W

u̇2
u2

x 2

φ(x , t )
H
=

=
1<
u 2

e+
i
2

m
ħh

1
W

u̇2
u2

x 2

A∗−1
=
−iħh ∂

∂ κ
A∗
G<

u 2 e−
i
2

m
ħh

1
W

u̇2
u2

x 2

φ(x , t )
H>
=

=
1<
u 2

e+
i
2

m
ħh

1
W

u̇2
u2

x 2
=
−iħhu 2

∂

∂ x

G<
u 2 e−

i
2

m
ħh

1
W

u̇2
u2

x 2

φ(x , t )
H>
=

=
G−iħhu 2

∂

∂ x
−m

u̇ 2

W
x
H
φ(x , t ) . (6.25)
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We can perform the same computation for the position operator and then we have:

P̂ =−iħhu 2
∂

∂ x
−m x

u̇ 2

W
(6.26)

X̂ =
u̇ 1

W
x +

iħh
m

u 1
∂

∂ x
, (6.27)

thus providing the generators of the realization of the (centrally-extended) Heisenberg-
Weyl symmetry on the physical system corresponding to a general LSODE.

The properties of the operators (6.26) and (6.27), i.e. preserving solutions of (6.12),
having constant matrix elements, falling to the Hilbert space, are ensured by the proper-
ties of (6.17) and (6.18) before the transformation, and will be explicitly checked for some
particular cases in next Section. It will also become clear that the identity of both opera-
tors is preserved after the transformation.

Apart from P̂ and X̂ , we can compute P̂2, X̂ 2 and X̂ P ≡ 1
2
(X̂ P̂ + P̂X̂ ):

P̂2 =−ħh2u 2
2

∂ 2

∂ x 2
+ iħh 2m u 2u̇ 2

W
x
∂

∂ x
+m 2 u̇ 2

2

W 2
x 2+ iħh m u 2u̇ 2

W
(6.28)

X̂ 2 =
u̇ 2

1

W 2
x 2+ iħh 2u 1u̇ 1

m W
x
∂

∂ x
−ħh2 u 2

1

m 2

∂ 2

∂ x 2
+ iħh u 1u̇ 1

m W
(6.29)

X̂ P =
ħh2

m
u 1u 2

∂ 2

∂ x 2
− iħh u̇ 1u 2+u 1u̇ 2

W
x
∂

∂ x
−m

u̇ 1u̇ 2

W 2
x 2− iħh u̇ 1u 2+u 1u̇ 2

2W
. (6.30)

Their first-order versions, valid on solutions of (6.12), are:

P̂2 = iħh 2m u 2
2

W
∂

∂ t
+ iħh 2m u 2u̇ 2

W
x
∂

∂ x
+m 2 u̇ 2

2 −ω2u 2
2

W 2
x 2+ iħh m u 2u̇ 2

W
(6.31)

X̂ 2 =
u̇ 2

1 −ω2u 2
1

W 2
x 2+ iħh 2u 1u̇ 1

m W
x
∂

∂ x
+ iħh 2u 2

1

m W
∂

∂ t
+ iħh u 1u̇ 1

m W
(6.32)

X̂ P =−iħh 2u 1u 2

W
∂

∂ t
− iħh u̇ 1u 2+u 1u̇ 2

W
x
∂

∂ x
−m

u̇ 1u̇ 2−ω2u 1u 2

W 2
x 2− iħh u̇ 1u 2+u 1u̇ 2

2W
,

(6.33)

which, together with X̂ and P̂ , close the whole Schrödinger Lie algebra:
!

X̂ , P̂
"
= iħh (6.34)

!
X̂ , P̂2
"
= 2iħhP̂

!
X̂ , X̂ 2
"
= 0

!
X̂ , X̂ P
"
= iħhX̂ (6.35)

!
P̂ , P̂2
"
= 0

!
P̂ , X̂ 2
"
=−2iħhX̂

!
P̂ , X̂ P
"
=−iħhP̂ (6.36)

!
X̂ 2, P̂2
"
= 4iħhX̂ P

!
X̂ 2, X̂ P
"
= 2iħhX̂ 2

!
P̂2, X̂ P
"
=−2iħhP̂2 . (6.37)
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All these operators are well-defined on the solution space of the time-dependent
Schrödinger equation, so that the action of one of them on a solution is again a solution.
However, it is important to note once again that the Hamiltonian operator corresponding
to the LSODE, that is, the quantum version of (6.11) (Λ= 0), Ĥ , although being a second-
order differential operator, can not be expressed in terms of these operators in general
and then it does not close a Lie algebra with them. But that which is worse, it is not even
a well-defined operator on the space of solutions of the Schrödinger equation,#t . As a
consequence, Ĥ is not the generator of a one parameter group corresponding to conven-
tional time evolution.

Instead, any linear combination of P̂2, X̂ 2 and X̂ P , say ˆ̃H , can be adopted as a well-
defined, Hermitian evolution-like generator. It has an associated eigenvalue equation
and real spectrum, and its eigenvalues can be used to label solutions of (6.12) (Λ = 0) as
its eigenfunctions. The particular choice of ˆ̃H to be taken depends purely on convenience
and, for example, the similarity with the form of Ĥ of the particular physical system.

We would like to point out that there is an essential difference between the approach
followed in [132] and ours. The reason is that the un-extended Schrödinger group is con-
sidered there as the fundamental symmetry of the damped harmonic oscillator, the origin
of which is the analysis of the classical equations of motion in [116]. The approach based
on QAT provides directly a representation of a central extension of the Schrödinger group
adapted to the specific LSODE-type system6. For the relevance of central extensions in
Quantum Mechanics, we refer to [130, 20, 133, 7, 134, 34].

Let us stress that QAT can be useful to quickly perform some calculations, avoiding
tedious, direct evaluations which can become extremely involved in the system under
study. For example, it can be used to compute the quantum propagator for any LSODE-
type quantum system, following the idea of Takagi in [124] for the simple case of the har-
monic oscillator, or even the evolution operator Û (t ), which becomes very difficult to
evaluate exactly when the Hamiltonian is time-dependent and does not commute with
itself at different times.

Actually, the evolution operator of a LSODE system can be related with the free evolu-
tion operator. Having in mind the diagram (6.6), we write:

Â
G
Û (t )φ(x )
H
= ÛG (τ)ϕ(κ) . (6.38)

Here φ and ϕ are the same function of only one argument (κ or x ) and we will denote
ϕ =φ =ψ. Then,

Û (t )ψ(x ) = Â−1GÛG (τ)ψ(κ)
H
=

1<
u 2

e
i
2

m
ħh

1
W

u̇2
u2

x 2

A∗−1GÛG (τ)ψ(κ)
H
=

=
1<
u 2

e
i
2

m
ħh

1
W

u̇2
u2

x 2

A∗−1GÛG (τ)
H

A∗−1Gψ(κ)H . (6.39)

To factorize the functionψ and single out the general action of Û (t ), we compute

A∗−1Gψ(κ)H=ψ( x
u 2
) = e log(1/u 2)x ∂

∂ xψ(x ) , (6.40)

6This fact is of the greatest relevance for the analysis of the inclusion of time-symmetry in [131] for the
damped harmonic oscillator.
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where e log(1/u 2)x ∂
∂ x is a dilation operator which is not unitary. To unitarize this operator, the

generator must be shifted from x ∂
∂ x

to x ∂
∂ x
+ 1

2
, so that the true unitary operator is then

ÛD ( 1
u 2
) = e log(1/u 2)(x ∂

∂ x +
1
2 ) =

1<
u 2

e log(1/u 2)x ∂
∂ x . (6.41)

But the factor 1<
u 2

is already present in the previous expression of Û (t ). Therefore, it now
reads

Û (t ) = e
i
2

m
ħh

1
W

u̇2
u2

x 2

A∗−1GÛG (τ)
H
ÛD ( 1

u 2
) =

=
1<
u 2

e
i
2

m
ħh

1
W

u̇2
u2

x 2

e
iħh
2m u 1u 2

∂ 2

∂ x 2 e log(1/u 2)x ∂
∂ x . (6.42)

Its inverse is given by

Û (t )−1 = Û (t )† =
<

u 2e log(u 2)x ∂
∂ x e

−iħh
2m u 1u 2

∂ 2

∂ x 2 e−
i
2

m
ħh

1
W

u̇2
u2

x 2

. (6.43)

Interestingly, we have been able to obtain an exact expression for the evolution op-
erator as a product of operators. No perturbative approximation method, which could
become cumbersome in some cases, is needed for any LSODE-related quantum system
to obtain the evolution operator. These results hold for Λ )= 0 (see Subsection 6.1.4).

As a general comment before proceeding with the computation of the wave functions,
let us go back to the relevance of conditions (6.14). Those have been chosen to preserve
the identity of the variables and basic operators. Any other choice of solutions satisfying
different initial conditions at any given initial time would have implications which must
be kept under control. This was not taken into account in [118], which might result in
some confusing derivations. A general shift

u 1→ a u 1+b u 2 , u 2→ c u 1+d u 2 , (6.44)

with the condition a d −b c = 1 to preserve the value of the Wronskian W , is equivalent to
the canonical transformation in the basic operators

X̂ → a X̂ − b
m

P̂ , P̂→−c m X̂ +d P̂ . (6.45)

That is, the freedom in the choice of the solutions u 1 and u 2, which is a SL(2,#) trans-
formation, stands for a Sp (1,#) transformation in basic operators and defines a family of
quantum Arnold transformations. Then, the relation between Hilbert spaces in the lower
part of the diagram (6.6) turns into a non-trivial transformation:

Â0ψ(x )≡ 1̂ψ(x )→
+

d e−
i c m x 2

2ħhd ψ( x
d
) . (6.46)

Following the general ideas already noted, any linear combination of quadratic opera-
tors belonging to the realization of the Schrödinger group (any operator in the subalgebra
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of (6.31)-(6.33)) can be chosen in such a way that its eigenfunctions solve (6.12). A specific
combination of the operators (6.31)-(6.33) with constant coefficients ω̃ and γ̃was already
chosen in [132]7:

Ĥ ∗ =
1

2m
P̂2+

1
2

mω̃2X̂ 2+
γ̃

2
X̂ P . (6.47)

The eigenfunctions of this operator, solutions of the Schrödinger equation, are

φν (x , t ) = 1*<
2πΓ(ν+1)

<
(u 2−γ̃u 1/2)2+Ω̃2u 2

1

e
i

2ħh m x 2
G Ω̃2u 1/(u 2−γ̃u 1/2)
(u 2−γ̃u 1/2)2+Ω̃2u 2

1
+

u̇ 2−γ̃u̇ 1/2
(u 2−γ̃u 1/2)W

H

=
u 2−γ̃u 1/2−i Ω̃u 1<
(u 2−γ̃u 1/2)2+Ω̃2u 2

1

>ν+ 1
2

9
C1Dν
=
g

2m Ω̃
ħh x<

(u 2−γ̃u 1/2)2+Ω̃2u 2
1

>
+C2D−1−ν
= i

g
2m Ω̃
ħh x<

(u 2−γ̃u 1/2)2+Ω̃2u 2
1

>:
,

(6.48)

where C1 and C2 are arbitrary constants, Dν are the parabolic cylinder functions [137], Γ

is the Gamma function, Ω̃=
*
ω̃2− γ̃2

4
and ν is in general a complex number.

In writing φν (x , t ) we have kept the generality of the quantum Arnold transformation
so that these solutions are valid for any LSODE-type system (the corresponding formula
for a LSODE with a external force Λ )= 0 is given in the Subsection 6.1.4). This family of
wave functions is more general than the one found by Dodonov and Man’ko in [118] in
that it contains a set of functions valid when γ̃

2
> ω̃ even for a general LSODE system. The

associated spectrum of Ĥ ∗ is

h∗ = ħh Ω̃ (ν + 1
2
) . (6.49)

To obtain these solutions, we have taken advantage of the QAT itself performing the
following steps. We solve the time-dependent Schrödinger equation corresponding to a
harmonic oscillator with frequency Ω̃, considering both the attractive and the repulsive
cases, so that we obtain solutions in terms of parabolic cylinder functions. Then, we take
the QAT from this “intermediate” system to the free one. We compose this QAT with the
inverse QAT corresponding to passing the free system to the present LSODE system, ob-
taining this way solutions to the LSODE system Schrödinger equation, which are eigen-
functions of ĤHOΩ = 1

2m
P̂2+ 1

2
m Ω̃2X̂ 2. Finally, making use of the freedom in the choice in

u 1 and u 2, we perform the shift

u 1→ u 1 , u 2→ u 2−
γ̃

2
u 1 ⇒ X̃ → X̂ , P̃→ P̂ +m γ̃

2
X̂ . (6.50)

Its effect on the quadratic operators causes the expression of the particular combination

ĤHOΩ = 1
2m

P̂2+ 1
2

m Ω̃2X̂ 2 → 1
2m

P̂2+ 1
2

mω̃2X̂ 2+ γ̃
2

X̂ P = Ĥ ∗ (6.51)

7For the damped harmonic oscillator with constantω and γ, coinciding with ω̃ and γ̃ resp., this operator
is the only one from the SL(2,#) Schrödinger subalgebra which commutes with the Hamiltonian.
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to change. As a consequence, the obtained solutions turn intoφν (x , t ).
The condition of normalizability must be imposed to retain the physically valid so-

lutions. And we observe that the normalizability of the wave functions depends on the
specific values of ω̃ and γ̃ in the expression (6.47)8. For ω̃> γ̃

2
, the normalizable solutions

correspond to C2 = 0 and ν = n an integer. These functions are written then in terms of
the Hermite polynomials9. In the case when Ω̃ is imaginary, the solutions are Dirac-delta
normalizable for ν =− 1

2
+ iλ, with λ a real number. The operator Ĥ ∗ shows a continuous,

real, doubly degenerate spectrum in this case [138] (see also [118] for constantω and γ in
the overdamping regime). The critical case Ω̃= 0 can be obtained as a limit of this case.

It must be emphasized then that the choice of these constants encodes the choice of
the particular (arbitrary) quadratic operator belonging to the Schrödinger algebra used to
label the solutions. In the framework of the quantum Arnold transformation, this freedom
leads to other families of solutions, different from the one presented here.

6.1.3 Dissipative systems: Hamiltonian vs. Hermitian operators

Let us now have a close look at a couple of simple particular cases, extensively studied
in the literature: the damped particle and the damped harmonic oscillator. Analogously,
it is possible to analyze the harmonic oscillator from the QAT point of view. Although [124]
and [118] contain some aspects of this analysis, it is possible to go a bit further and arrive
at interesting results like in Section 6.2, where use of the QAT is made to define harmonic
oscillator-like states in the free particle and where a higher-dimensional version of the
QAT is introduced (see also [135]).

6.1.3.1 Damped particle

For f = γ t , ω = 0 and Λ = 0 in (6.10), a Lagrangian for the damped particle can be
given:

L DP =
1
2

m e γt ẋ 2, (6.52)

where γ is the damping constant. The equation of motion is then

ẍ +γẋ = 0. (6.53)

Two independent solutions for this equation, satisfying initial conditions (6.14),

u 1(t ) =
1− e−γt

γ
, u 2(t ) = 1, W (t ) = e−γt , (6.54)

8In the specific case of the damped harmonic oscillator, with constantω and γ, it is possible to identify
ω̃≡ω and γ̃≡ γ (Ω̃≡Ω), so that the admissible wave functions vary depending on the regime.

9These are the eigenfunctions of the operator Ĥ ∗ (there denoted as K̂ (t )) found in [118] in the general
LSODE case. It should be noted that they avoid, in this general case, the explicit mention of dimensional
constants equivalent to ω̃ and γ̃ and implicitly entrust the selection of the specific K̂ (t ) to the choice of the
classical solutions, which might become rather confusing.
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provide the Arnold transformation for this system:




τ= 1−e−γt

γ

κ= x

ϕ =φ ,

(6.55)

which turns out to be simply a reparametrization in time.
The Schrödinger equation takes the form

iħh ∂ φ
∂ t
= ĤDPφ ≡−

ħh2

2m
e−γt ∂

2φ

∂ x 2
, (6.56)

and the corresponding basic symmetry generators

P̂ =−iħh ∂
∂ x

, X̂ = x +
iħh

mγ
(1− e−γt )

∂

∂ x
. (6.57)

The crucial point is to realize that, in fact, the Hamiltonian operator ĤDP does not
make sense as an operator acting on the space of solutions of (6.56), while P̂ and X̂ do.
This can be checked by direct computation. For a given solutionφ, the equation satisfied
by φ′ ≡ ĤDPφ is no longer (6.56), the reason being that ĤDP does not commute with the
Schrödinger equation, while X̂φ, for instance, does solve it:

=
iħh ∂
∂ t
+
ħh2

2m
e−γt ∂

2

∂ x 2

>5
X̂φ
6
=
=

x+
iħh

mγ
(1−e−γt )

∂

∂ x

>=
iħh ∂ φ
∂ t
+
ħh2

2m
e−γt ∂

2φ

∂ x 2

>
= 0 , (6.58)

showing that the Schrödinger equation and X̂ do commute.
There is yet another way to check explicitly that ĤDP is ill-defined in the quotient

space by the time-evolution generated by itself. Formally, the equation (6.56) can be
solved defining a time-evolution operator Û (t , t0). The fact that ĤDP commutes at dif-
ferent times,
h

ĤDP (t1), ĤDP (t2)
i
= 0 (6.59)

makes the calculation of Û (t , t0) and its action on other operators simple:

Û (t , t0) = e
−i
ħh
∫ t

t0
ĤDP (t ′)dt′ = e

iħh
2mγ (e

−γt0−e−γt ) ∂
2

∂ x 2 . (6.60)

If we choose t0 = 0, in agreement with conditions (6.14) imposed on solutions (6.54), we
recover the Arnold-transformed free evolution operator, as could be expected. However,
the computation of the evolution operator directly and the possibility of obtaining it using
QAT is not in any way trivial when (6.59) does not hold.

By means of the action of Û (t , 0) ≡ Û (t ) on the basic operators P̂ and X̂ , or loosely
speaking, using Û (t ) to “de-evolve” them until time t0 = 0, we can show that they match
the form (6.19) and determine their action on wave functions depending only on x . This
action, in this simple case, can be computed by expanding the exponential evolution op-
erator and performing the commutation operations at each order of the expansion, lead-
ing to

Û †(t ) x̂ Û (t ) = x , Û †(t ) p̂ Û (t ) =−iħh ∂
∂ x

, (6.61)
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which do not depend on time t and take the usual Galilei form10. This automatically
guarantees the three properties mentioned in the previous Section. In contrast, ĤDP does
not come down to the quotient by the time evolution generated by itself:

Û †(t )ĤDP Û (t ) =− ħh
2

2m
e−γt ∂

2

∂ x 2
. (6.62)

The reason for X̂ and P̂ to have good properties is that they are mapped from the free,
basic symmetry generators (6.18) and (6.17) by the Arnold transformation (so that they
are also symmetry generators of the damped particle system), while ĤDP is not. It is then
natural to map one of the quadratic operators belonging to the Schrödinger algebra of
the free particle to make it act on the space of quantum solutions of the damped particle.
This evolution-like operator defines a proper eigenvalue problem, that can be used to
find solutions for (6.56). We could choose the operator Ĥ ∗ already mentioned, but in
this simple case we prefer to illustrate another rather natural possibility: the free Galilean
Hamiltonian

ĤG ≡
P̂2

2m
=− ħh

2

2m
∂ 2

∂ x 2
. (6.63)

In fact, the practical approach would be to solve the free, time-independent Schrödinger
equation and Arnold-transform the solutions to obtain (non-stationary) solutions for
(6.56). For example, plane waves are mapped into:

φk (x , t ) = e i k x−i ħhk 2
2mγ (1−e−γt ) . (6.64)

The observations made above for the damped particle, being quite trivial, can help to
clarify the general case.

6.1.3.2 Damped harmonic oscillator

Let us consider a friction function linear in time f = γt , as in the case of the damped
particle, but also a non-zero constant frequencyω and no external force. The Lagrangian
for the Caldirola-Kanai system reads

L DHO = e γt G1
2

m ẋ 2− 1
2

mω2x 2H . (6.65)

The classical equation of motion is then

ẍ +γẋ +ω2x = 0 . (6.66)

Two independent solutions of (6.66), satisfying convenient initial conditions (6.14) are

u 1(t ) =
1
Ω

e−
γ
2 t sinΩt , u 2(t ) = e−

γ
2 t cosΩt +

γ

2Ω
e−

γ
2 t sinΩt , (6.67)

10Note that the “de-evolved” operators take the form of those in (6.57) when t = 0. But in general, the
correct way to take the quotient by time evolution is that shown in (6.61).
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where again W (t )≡ u̇ 1(t )u 2(t )−u 1(t )u̇ 2(t ) = e−γt , and

Ω=

.
ω2− γ

2

4
. (6.68)

Note that these solutions have good limit in the case of critical dampingω= γ
2

.
Particularizing the quantum Arnold transformation (6.13) for the free Schrödinger

equation (6.7), the Caldirola-Kanai equation is obtained:

iħh ∂ φ
∂ t
= ĤDHOφ ≡−

ħh2

2m
e−γt ∂

2φ

∂ x 2
+

1
2

mω2x 2e γtφ . (6.69)

Basic quantum operators are now given by

P̂ =−iħh e−
γt
2

2Ω
(2Ω cosΩt +γ sinΩt )

∂

∂ x
+m

e
γt
2

4Ω

5
γ2+4Ω2
6

sinΩt x , (6.70)

X̂ =
e
γt
2

2Ω
(2Ω cosΩt −γ sinΩt )x + iħh e−

γt
2

mΩ
sinΩt

∂

∂ x
. (6.71)

It is worth to note that these operators match those that were already found in [118] by
hand, in looking for integrals of motion.

Again, the key observation is that ĤDHO does not make sense as an operator act-
ing on the space of solutions of (6.69), while P̂ and X̂ do respect solutions. Although
this can be proved by direct calculation, it is more instructive to obtain the evolu-
tion operator Û (t , t0). But the fact that ĤDHO does not commute at different times
[ĤDHO(t1), ĤDHO(t2)] )= 0 makes its calculation trickier using conventional methods, as al-
ready mentioned.

Generically, one would approach the problem resorting to a perturbative method. An
appropriate method to solve the operator equation for Û (t ) ≡ Û (t , 0) corresponding to
(6.69) (we now make explicit the time dependence of the Hamiltonian),

iħh ∂
∂ t

Û (t ) = ĤDHO(t )Û (t ) , (6.72)

is that of the Magnus expansion [136] (see Subsection 6.1.5).
However, it is a good idea to take advantage of the QAT instead. The explicit expression

for the exact evolution operator encountered for the damped harmonic oscillator is rather
involved and is found substituting (6.67) in (6.42):

Û (t ) =

g
2Ωe

γ
2 t

2ΩcosΩt+γsinΩt
e

i
2

m
ħh
−2ω2eγt sinΩt

2ΩcosΩt+γsinΩt x 2

e
iħh
2m

1
2Ω2 e−γt sinΩt (2ΩcosΩt+γsinΩt ) ∂

2

∂ x 2 e log( 2Ωe
γ
2 t

2ΩcosΩt+γsinΩt )x
∂
∂ x . (6.73)
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Û †(t ) is obtained analogously. It is then possible to check the de-evolution of the opera-
tors simply expanding the exponentials to the desired order, just as one would do for the
free evolution operator. This allows to state that:

Û †(t ) X̂ Û (t ) = x , Û †(t ) P̂ Û (t ) =−iħh ∂
∂ x

, (6.74)

as expected.
The action of Û (t ) on ĤDHO(t ) shows that it does not fall down to the quotient by the

time evolution generated by itself. In fact, the de-evolution,

Û †(t )ĤDHO Û (t ) =

=
− ħh

2

2m
∂ 2

∂ x 2
+

1
2

mω2x 2
>
−γt
=
− ħh

2

2m
∂ 2

∂ x 2
− 1

2
mω2x 2
>

+
γ2t 2

2

=
− ħh

2

2m
∂ 2

∂ x 2
+

1
2

mω2x 2+
2ω2

γ

G−iħhx
∂

∂ x
− iħhH
>
+K (t 3) , (6.75)

does depend on time at any order in the time expansion.
We remark once again that there is no actual need for a perturbative method to obtain

Û (t ) in this case when QAT is used.
The computation of the wave functions, solutions of (6.69), can follow the steps shown

in Section 6.1.2. We select the operator Ĥ ∗ particularized for the damped harmonic oscil-
lator, that is, substituting u 1 and u 2 by (6.67) and identifying ω̃≡ω and γ̃≡ γ. Its general
eigenfunctions are given by the corresponding expression (6.48), and the spectrum (6.49)
of Ĥ ∗ will depend on the regime fixed by the specific value of Ω.

6.1.4 Inhomogeneous LSODE

We give here the general Arnold transformation with an extra external force termΛ and
the corresponding generalization of the main results above. This computation follows
analogous steps as those shown before.

The general QAT is given by




τ= u 1(t )
u 2(t )

κ= x−u p (t )
u 2(t )

ϕ =φ
+

u 2(t )e
− i

2
m
ħh

1
W (t )

u̇2(t )
u2(t )

G
x−u p (t )
H2
− i m
ħh

1
W (t ) u̇ p (t )x − i

2
m
ħh
∫

1
W (t )

G
u p (t )2ω(t )2−u̇ 2

p

H
dt .

(6.76)

The extra conditions to be imposed on the classical solution u p (t ) to preserve the identity
of x and t before and after the transformation are:

u p (0) = 0 , u̇ p (0) = 0 . (6.77)

In fact, the solution u p (t ) can be expressed:

u p (t ) = K1(t )u 1(t )+K2(t )u 2(t ) , (6.78)
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where:

K1(t ) =
∫ t

0

u 2(t ′)
W (t ′)

Λ(t ′)dt ′ , K2(t ) =−
∫ t

0

u 1(t ′)
W (t ′)

Λ(t ′)dt ′ , (6.79)

The transformation (6.76) leads to the expressions for basic operators:

P̂ =−iħhu 2
∂

∂ x
−m

u̇ 2

W
(x −u p )−m

u 2

W
u̇ p

X̂ =
u̇ 1

W
(x −u p )+

u 1

W
u̇ p +

iħh
m

u 1
∂

∂ x
. (6.80)

The evolution operator reads

Û (t ) =
1<
u 2

e
i
2

m
ħh

1
W

u̇2
u2

G
x−u p

H2
+ i m
ħh

1
W u̇ p x + i

2
m
ħh
∫

1
W

G
u 2

pω(t )
2−u̇ 2

p

H
dt

e
iħh
2m u 1u 2

∂ 2

∂ x 2 e−u p
∂
∂ x e log(1/u 2)x ∂

∂ x . (6.81)

Finally, the general solution of the corresponding Schrödinger equation, eigenfunction of
the operator Ĥ ∗, is:

φν (x , t ) = 1*<
2πΓ(ν+1)

<
(u 2−γ̃u 1/2)2+Ω̃2u 2

1

e

G
i

2ħh m (x−u p )2
Ω̃2u1/(u2−γ̃u1/2)
(u2−γ̃u1/2)2+Ω̃2u 2

1
+ i

2ħh m x 2 u̇2−γ̃u̇1/2
(u2−γ̃u1/2)W

H

e
G

i m
2ħh
∫

1
W (u

2
pω(t )

2−u̇ 2
p )dt− i m x up (u̇2−γ̃u̇1/2)

ħhW (u2−γ̃u1/2)
+

i m u 2
p (u̇2−γ̃u̇1/2)

2ħhW (u2−γ̃u1/2)
+

i m x u̇p
ħhW

H

=
u 2−γ̃u 1/2−i Ω̃u 1<
(u 2−γ̃u 1/2)2+Ω̃2u 2

1

>ν+ 1
2

9
C1Dν
=
g

2m Ω̃
ħh (x−u p )<

(u 2−γ̃u 1/2)2+Ω̃2u 2
1

>
+C2D−1−ν
= i

g
2m Ω̃
ħh (x−u p )<

(u 2−γ̃u 1/2)2+Ω̃2u 2
1

>:
.

(6.82)

6.1.5 Appendix: The Magnus expansion

The Magnus expansion was introduced as a tool to solve non-autonomous linear dif-
ferential equations for linear operators and has the very attractive property of leading to
approximate solutions which exhibit unitarity at any order of approximation. This is in
contrast to the representation in terms of the time-ordering operator L introduced by
Dyson.

A solution to (6.72) is given by

Û (t ) = e Ω̂(t ) , Ω̂(0) = 0 , (6.83)
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and a series expansion for the matrix in the exponent

Ω̂(t ) =
∞∑

k=1

Ω̂k (t ) (6.84)

which is called the Magnus expansion. We can write down the first three terms of that
series:

Ω̂1(t ) =
∫ t

0

dt1

=
− i
ħh ĤDHO(t1)
>

(6.85)

Ω̂2(t ) =
1
2

∫ t

0

dt1

∫ t1

0

dt2

$
− i
ħh ĤDHO(t1), −

i
ħh ĤDHO(t2)
%

(6.86)

Ω̂3(t ) =
1
6

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3

A&
− i
ħh ĤDHO(t1) ,
$
− i
ħh ĤDHO(t2) ,−

i
ħh ĤDHO(t3)
%'

+
&
− i
ħh ĤDHO(t3) ,
$
− i
ħh ĤDHO(t2) ,−

i
ħh ĤDHO(t1)
%'B

. (6.87)

However, a good iterative method to obtain the operator Ω̂(t ) is given by the formula:

Ω̂[n ](t ) =
∞∑

k=0

Bk

k !

∫ t

0

dt1adk
Ω̂[n−1](t1)

G− i
ħhĤDHO(t1)
H

(6.88)

Ω̂(t ) = lim
n→∞
Ω̂[n ](t ) , (6.89)

where Bk are the Bernoulli numbers and

ad0
Â(B̂)≡ B̂ , ad1

Â(B̂)≡ [Â, B̂] , adk
Â(B̂)≡ [adk−1

Â (B̂), B̂] . (6.90)

We have computed the operator Ω̂(t ) for the case of the damped harmonic oscillator
to sixth order of approximation, to give:

Ω̂[6](t ) =

− i
ħh t
9=

1+ γ
2t 2

6
+ γ

4t 4

120
(1+ 2ω2

γ2 )+
γ6t 6

5040
(1+ 16ω2

γ2 + 32ω4

3γ4 )
>=
− ħh

2

2m
∂ 2

∂ x 2
+

1
2

mω2x 2
>

− γt
2

=
1+ γ

2t 2

12
+ γ

4t 4

360
(1+ 6ω2

γ2 )
>=
− ħh

2

2m
∂ 2

∂ x 2
− 1

2
mω2x 2
>

+
γω2t

6

=
1+ γ

2t 2

20
(1+ 4ω2

3γ2 )+
γ4t 4

840
(1+ 44ω2

3γ2 + 16ω4

3γ4 )
>=
−iħhx

∂

∂ x
− 1

2
iħh
>:

(6.91)
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With this approximation to Ω̂(t ), obtained by means of (6.88), one can obtain the quotient
by time evolution of a certain operator Ô(t ), given by:

Ô = e−Ω̂(t )Ô(t )e Ω̂(t ) =
∞∑

k=0

1
k !

adk
−Ω̂(t)
G

Ô(t)
H

. (6.92)

These formulas lead to the same results found in Subsection 6.1.3.2.

6.2 Humps

In the context of the quantum free particle, the eigenstates of the Hamiltonian, which
are also eigenstates of the momentum operator, are not normalizable. These states, the
plane waves, are fully delocalized. However, it is customary to expand any normalizable
solution of the free Schrödinger equation in terms of plane waves, using the Fourier trans-
form, building in this way wave packets which represent localized solutions. The simplest
example is the Gaussian wave packet, which has the property of minimizing the uncer-
tainty relations between the position and the momentum operator.

In this section we construct discrete basis of the space of solutions of the quantum
free particle which are the map through the QAT of the eigenstates of the quantum har-
monic oscillator. The first states of these basis are Gaussian wave packets. They are not
eigenstates of the free particle Hamiltonian, i.e. they are not stationary states, but, rather,
eigenfunctions of a certain quadratic operator N̂ with discrete eigenvalues. The lowest
ones, the Gaussian wave packets, are localized with arbitrary initial size, which is related
to the oscillator frequencies and can be conveniently chosen, and have initial minimal
uncertainties. The following ones are “multi-localized” in the sense that, for instance, in
one dimension the n th-order state presents n zeros and n + 1 humps which spread out
with time. This mimics the situation for the harmonic oscillator to such an extent that, in
one dimension, it is possible to build creation and annihilation operators â † and â . The
number operator is going to be N̂ ∼ â †â , although in the case of the free particle it is not
the Hamiltonian. Going even further, we give a set of “coherent states” which are inter-
preted as traveling wave packets. This construction can be easily generalized to higher
dimensions in different coordinate systems.

This construction can be of physical relevance in Quantum Information Theory, using
these states to transmit information, as well as in Atom Optics and Quantum Computa-
tion. It might also be useful in describing scattering process in a discrete basis, instead of
using plane waves.

6.2.1 A discrete basis of wave packets

Let# be the Hilbert space of solutions of the free particle Schrödinger equation, and
#HO the one corresponding to the Harmonic oscillator. Since QAT involves a change of
variables, we shall denote byψ(x , t )∈# the free particle solutions and byϕ(x ′, t ′)∈#HO

the harmonic oscillator ones.
For the case of the harmonic oscillator ḟ = 0 andω(t ′) =ω, and the two independent

solutions that define the QAT can be chosen as u 1(t ′) = 1
ω

sin(ωt ′) and u 2(t ′) = cos(ωt ′),
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with W (t ′) = 1. It can be checked that the change of variables results in:

t ′ =
1
ω

arctan(ωt )

x ′ = cos(arctan(ωt ))x =
x+

1+ω2t 2
. (6.93)

Diagramatically, the QAT can be represented as:

where Û and ÛHO stand for the evolution operators for the and harmonic oscillators, re-
spectively, while#0 is the Hilbert space, either for the free particle and harmonic oscilla-
tor, of solutions of their respective Schrödinger equations at t = 0 (see Section 6.1 for the
conditions under which#0 is common to both systems; see also [140]).

Thanks to the commutativity of this diagram, and the unitarity of the operators ap-
pearing in it, we can map objects (wavefunctions, operators, expectation values, uncer-
tainties) from one system to the other.

Applying now the QAT to the time-dependent harmonic oscillator eigenstates,

ϕn (x ′, t ′) =
(mω
πħh )

1
4

<
2n n !

e−iω(n+ 1
2 )t
′e−mω

2ħh x ′2 Hn (
g

mω
ħh x ′) , (6.94)

we obtain the following sets of states, solutions of the Schrödinger equation for the free
particle:

ψn (x , t ) =
(2π)−

1
4

+
2n n !L|δ|

e−
x 2

4L2δ
9
δ∗

|δ|

:n+ 1
2

Hn (
x<

2L|δ| ) , (6.95)

where, in order to obtain a more compact notation, we have introduced the quantities

L =
*
ħh

2mω
, with dimensions of length, and τ = 2m L2

ħh =ω−1, with dimensions of time. We
also denote by δ the complex, time dependent, adimensional expression δ = 1+ iωt =
1+ i ħht

2m L2 = 1+ i t /τ.
The fact that these states are written in terms of the Hermite polynomials can be

used to show that the set of states is a basis for the Hilbert space of solutions of the free
Schrödinger equation, L2(#). In fact, at t = 0, ψn (x , 0) are the Hermite functions, which
constitute a basis of L2(#). Since the time evolution is unitary, the set of statesψn (x , t ) is
still a basis for any time t .

The family of wavefunctions (6.95) has been known in the literature as Hermite-Gauss
wave packets [141], and they have been widely used, in their two dimensional version (see
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Figure 6.1: Spreading under time evolution of wave functions ψ0, ψ1 and ψ2, with tk = kτ.

Section 6.2.3), in paraxial wave optics [142]11. However, this kind of stated and the ones
constructed in Section 6.2.3 are better understood in the framework of the QAT.

The first state of this basis, the one mapped from the harmonic oscillator vacuum
state, is given by:

ψ0(x , t ) =
(2π)−

1
4

+
L|δ|

9
δ∗

|δ|

: 1
2

e−
x 2

4L2δ =
(2π)−

1
4

<
Lδ

e−
x 2

4L2δ , (6.96)

which is nothing other than a Gaussian wave packet with center at the origin and width
L. The parameter τ is the dispersion time of the Gaussian wave packet, (see, for instance,
[1])

Figure 6.1 shows some of these wave functions and how they evolve in time.
We see that the number of “parts”, or humps, of the wave functions, determined by the

number of zeros, is quantized, in the sense that there is one hump between two consec-
utive zeros. This property will be important for the physical applications discussed at the
end of this subsection.

The QAT also allows to map operators from one Hilbert space to the other (see Sec-
tion 6.1 and [140]), in such a way that ladder operators for the Harmonic oscillator can
be mapped to ladder operators for the free particle that act as creation and annihilation
operators for theses states:

â = Lδ
∂

∂ x
+

x
2L

â † =−Lδ∗
∂

∂ x
+

x
2L

. (6.97)

The action of â and â † on these wave functions is the usual one:

âψn =
<

nψn−1, â †ψn =
+

n +1ψn+1. (6.98)

It is possible to introduce this discrete basis without resorting to the QAT, in a very in-
tuitive manner. The key point is that the operator â annihilates the Gaussian wave packet,

11In [118] a basis of discrete states and their corresponding coherent states were constructed for the
damped harmonic oscillator, which, in a certain limiting process would reproduce ours.
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and this characterizes it. The whole family of states (6.95) can be generated acting with
the adjoint operator â † of â . The rest of the construction, i.e. coherent states, uncertain-
ties, etc. proceeds without the need of the QAT. However, as we shall see below, the QAT
is very usefull when computing difficult things in a very easy way.

A very useful property of the QAT is its unitarity, implying that it preserves scalar prod-
ucts and therefore expectation values. Denoting by 〈·, ·〉f the scalar product in the Hilbert
space of solutions of the free particle Schrödinger equation, and by 〈·, ·〉o the correspond-
ing one in the harmonic oscillator Hilbert space, we have that:

〈ψf,φf〉f = 〈ψo,φo〉o 〈Ô f〉f
ψf = 〈Ôo〉oψo (6.99)

where ψf,φf and Ô f are related to ψo,φo and Ôo through the QAT, respectively. It is im-
portant to note (see Section 6.1) that Ô f and Ôo are invariant operators (also known as
constants or integral of motion operators) with respect to their respective temporal evolu-
tion, and preserve their respective Hilbert spaces. These operators are, essentially, those
closing a Heisenberg-Weyl algebra and their powers. Among them, the most important
ones are those generating the Schrödinger group (see below).

Another aspect of this quantum realization is shown when computing the uncertain-
ties associated with each wave function. As a function of time, for each state ψn , they
read:

∆x̂n∆p̂n = (n +
1
2
)ħh |δ| (6.100)

where∆x̂n =
*
〈(x̂ f)2〉f

ψf
n
− (〈x̂ f〉f

ψf
n
)2 and∆p̂n =
*
〈(p̂ f)2〉f

ψf
n
− (〈p̂ f〉f

ψf
n
)2 have been computed

using that12:

〈(x̂ f)2〉f
ψf

n
=

1
u 2(t ′)2

〈(x̂ o)2〉oψo
n
= |δ|2 ħh

mω
(n +

1
2
)

〈(p̂ f)2〉f
ψf

n
= 〈Gp̂ oH2〉oψo

n
=mωħh(n + 1

2
) . (6.101)

To compute these expectations values using the QAT, we have used that x̂ f ≡ x̂ = X̂ +
t

m
P̂ , where X̂ and P̂ are constants of motion operators for the free particle.

For n = 0 the time evolution of the uncertainty is the one which results from the usual
Gaussian wave packet [1], and, among all, the minimal one.

The number operator associated with the creation and annihilation operators above
will provide the position of the state in this grid of uncertainties. We can compute it (or
map it from the number operator for the Harmonic oscillator) in the usual way:

N̂ =
1
2

5
â †â + â â †
6
=
&
−|δ|2L2 ∂

2

∂ x 2
+ i

t
τ
(x
∂

∂ x
+

1
2
)+

x 2

4L2

'
. (6.102)

By making use of the Schrödinger equation, we can turn this operator into a first-order
one:

N̂ =
&

i |δ|2τ ∂
∂ t
+ i

t
τ
(x
∂

∂ x
+

1
2
)+

x 2

4L2

'
, (6.103)

12In the last equality of the equations the quantum Virial Theorem for the harmonic oscillator potential
[1], which is homogeneous of degree two, has been used.
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this expression being valid only on solutions of the Schrödinger equation. The action of
this operator is such that:

N̂ψn (x , t ) = (n +
1
2
)ψn (x , t ), (6.104)

thus reproducing the uncertainties (up to ħh) given in Eq. (6.100) at time t = 0.
It is quite interesting to note that this operator belongs to the Lie algebra of the

Schrödinger group, builded up with constants of motion operators up to quadratic or-
der (see Sec. 6.1). It is easily checked that N̂ is in this Lie algebra, its relation with the
basis above being:

N̂ =
1
ħhω (

1
2m

P̂2+
mω

2
X̂ 2) =

1
ħhωĤHO , (6.105)

where ĤHO is the operator corresponding to an harmonic oscillator of frequency ω =
ħh

m L2 = 1
τ

, but written in terms of constants of motion of the free particle. See Section
6.1 for the relevance of quadratic operators like N̂ , but distinc from the Hamiltonian, for
building basis of the Hilbert space (see also [117, 118, 132]).

6.2.2 Coherent states or traveling wave packets

As a natural consequence of the introduction of creation and annihilation operators,
we construct a set of coherent states for the free particle as the eigenstates of the annihi-
lation operator (they could also be obtained from the usual harmonic oscillator coherent
states through the QAT). These states are of the form

φa (x , t ) =
(2π)−

1
4

+
L|δ|

9
δ∗

|δ|

: 1
2

e−
(x −x0)2+x0v0t + iτv0(v0t −2x +x0)

4L2δ , (6.106)

where a is the complex number

a =
x0

2L
+ i

m v0L
ħh =

1
2L
(x0+ i v0τ) , (6.107)

and they verify:

â φa (x , t ) = a φa (x , t ) . (6.108)

These states can also be obtained by the action of a Galilean boost with parameter v0 and
a translation by x0 on the vacuum Gaussian packet, and they constitute an over-complete
set of the Hilbert space of the free particle. Coherent states represent traveling Gaussian
wave packets, with mean momentum and initial position m v0 and x0, respectively. They
are not eigenstates of the number operator, but its expectation values on these states are:

〈φa |N̂ |φa 〉= ħh(|a |2+
1
2
) , (6.109)
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where use of (6.99) and (6.105) has been done. Acting by Galilean boosts and translations
on a fixed state of the basis, ψn (x , t ), a new over-complete set of states is obtained, with
elements:

φn
a (x , t ) =

(2π)−
1
4

+
2n n !L|δ|

9
δ∗

|δ|

:n+ 1
2

Hn (
x −x0− v0t<

2L|δ| )

e−
(x −x0)2+x0v0t + iτv0(v0t −2x +x0)

4L2δ , (6.110)

representing traveling multi-localized wave packets bearing n+1 humps, with mean mo-
mentum and initial position m v0 and x0, respectively, where a is given by (6.107). The
fact that these sets are over-complete is a general property, for t = 0, of coherent states of
the Heisenberg-Weyl group (see [144]). Since the time evolution is unitary, this property is
kept at any t . As in the case n = 0, these states are not eigenstates of the number operator,
but the expectation values, computed as before, are:

〈φn
a |N̂ |φn

a 〉= ħh(|a |2+n +
1
2
) . (6.111)

Being a set of coherent states, the uncertainty relations of φn
a , ∀a ∈ %, are the same as

those ofφn given in Eq. (6.100) (see [144]).

6.2.3 Discrete basis of wave packets in higher dimensions

The generalization of the previous construction to higher dimensions is immediate. In
more dimensions, due to the symmetries of the harmonic oscillator, we can choose differ-
ent separation of variables to solve the Schrödinger equation for the harmonic oscillator,
which amounts to find simultaneous eigenstates for the harmonic oscillator hamiltonian
and other operators commuting with it and among themselves. For instance, separa-
tion of variables in cartessian coordinates in N-dimensions is equivalent to diagonaliz-
ing simultaneously the harmonic oscillator hamiltonian, and the 1D harmonic oscillator
in each coordinate. This can always be done even if the frequencies for each direction
are different. The common basis of eigenstates is the product of 1D harmonic oscillator
eigenstates in each variable. If we impose spherical symmetry, then all frequencies must
coincide and we can search for common eigenstates of the Hamiltonian and the angular
momentum operators commuting with it and among themselves (for instance, in three
dimensions they would be L̂2 and L̂ z , and in two dimensions it would be only L̂).

For the case of Cartesian coordinates, the generalization of the previous sections is
immediate, the discrete basis of states for the N-dimensions free particle being products
of N copies of (6.95) in each of the N variables (x1,x2, . . . ,xN ). Ifψn i (xi , t ) represent a wave
packet of the form given in (6.95) but in the variable xi and with width L i (and with the
corresponding frequencyωi ), then the N-dimensional wave packets are:

ψ*n (*x , t ) =ΠN
i=1ψn i (xi , t ) , (6.112)
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Figure 6.2: Density plot of the probability distribution for the Hermite-Gauss states ψ(1,0) and ψ(1,1). The position of the
maxima is shown.

where *n = (n 1, n 2, . . . , n N ). If all the widths L i = L are identical, it can be written as:

ψ*n (*x , t ) =
(2π)−

N
4

(L|δ|)N /2 e−
∑N

i=1 x 2
i

4L2δ
9
δ∗

|δ|

:∑N
i=1 n i+N

2

ΠN
i=1

1+
2n i n i !

Hn i (
xi<

2L|δ| ) , (6.113)

Coherent states, or traveling wave packets, are defined similarly, as products of N
copies of (6.110), with a vector *a ∈%N :

φ*n*a (*x , t ) =ΠN
i=1φ

n i
a i
(xi , t ) . (6.114)

For N = 2 these states have been widely used in the paraxial approximation to the
Helmholtz equation of wave optics, known as the Hermite-Gauss states [142]. Due to
the analogy of the paraxial approximation to the Helmholtz equation (with the z coordi-
nate acting as time) and Schrödinger equation in two dimensions, they have been also
exploited in atom optics and matter waves [143].

In the case of cylindrical symmetry in paraxial wave optics, the polar version of these
estates have been used, known as Laguerre-Gauss states [142]. In Figure 6.2 a density plot
of the probability distribution for the Hermite-Gauss statesψ(1,0) andψ(1,1) are shown. The
corresponding states for the free Schrödinger equation in two dimensions are:

ψ±n ,l (r,φ, t ) =

.
n !

2πΓ(n + l +1)L2|δ|

9
δ∗

|δ|

:2n+l+1

e±i lφe− r 2

4L2δ

9
r<

2L|δ|

:l
Ll

n (
r 2

2L2|δ|2 ) , (6.115)

where n , l = 0, 1, 2 . . ., and Ll
n (x ) are Laguerre polynomials. The state with n = 0, l = 0 is

the Gaussian wave packet in two dimensions.
These states are eigenstates of the angular momentum operator L̂ in 2 dimensions,

with values L̂ψ±n ,l (r,φ, t ) = ±lψ±n ,l (r,φ, t ). In Figure 6.3 a density plot of the probability
distribution for the Laguerre-Gauss statesψ±0,1 andψ±1,1 are shown.



106 The Quantum Arnold Transformation and Dissipation

Figure 6.3: Density plot of the probability distribution for the Laguerre-Gauss states ψ±0,1 and ψ±1,1. The position of the
maxima is shown.

The generalization to three dimensions in spherical coordinates is straightforward,
the states having the form of (6.115) but in terms of spherical harmonics and confluent
hypergeometric functions M (·, · ; ·) (which are also polynomials in this case):

ψn ,l ,m (r,θ ,φ, t ) =

.
Γ(l +3/2+n −1)<

2(n −1)!Γ(l +3/2)2L3|δ|

9
δ∗

|δ|

:2(n−1)+l+3/2

e− r 2

4L2δ

Y m
l (θ ,φ)
9

r<
2L|δ|

:l
M (−n +1, l +3/2;

r 2

2L2|δ|2 ) , (6.116)

None of these states are eigenstates of the free particle Hamiltonian, but can be seen
to have expectation values of the energy equal to half the energy of the corresponding,
through the QAT, harmonic oscillator eigenstates13:

〈Ĥ 〉ψ*n = 1
2

E *n E *n = ħhω(
∑N

i=1 n i + N
2
)

〈Ĥ 〉ψ±n ,l
= 1

2
Enl Enl = ħhω(2n + l +1)

〈Ĥ 〉ψn ,l ,m = 1
2

Enl m Enl m = ħhω(2(n −1)+ l + 3
2
)

(6.117)

These states, as in the one dimensional case, have many humps. For Cartesian coor-
dinates they have ΠN

i=1(n i +1) humps, while in polar coordinates they have (n +1) humps
(seen in the radial coordinate) with annular form.

Uncertainty relations can also be computed for these states. However, only the cartes-
sian version of the operators *x and *p can be used since the canonical momentum asso-
ciated to the radial coordinate, pr , it is not self-adjoint. The expressions, computed as in

13This a consequence, again, of (6.99) and the quantum Virial theorem for the quadratic, homogeneous
harmonic oscillator potential.
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the one dimensional case, are:

(∆xi )ψ*n (∆pi )ψ*n =
1
ω
|δ|En i , i = 1, . . . N

(∆x )ψnl (∆px )ψnl = (∆y )ψnl (∆py )ψnl =
1

2ω
|δ|Enl (6.118)

(∆x )ψnl m (∆px )ψnl m = (∆y )ψnl m (∆py )ψnl m = (∆z )ψnl m (∆pz )ψnl m =
1

3ω
|δ|Enl m

6.2.4 Physical applications

The theoretical relevance of these multi-localized traveling wave packets, as discrete
basis of normalized free particle states, is of no doubt. Similar constructions, like the
Harmonic Oscillator (HO) method [145] or the Transformed Harmonic Oscillator (THO)
method [146] have been proposed, mainly in nuclear physics, to describe the bound
states and the continuum spectrum in a discrete basis. But there the construction is a
mathematical tool for approximating the solutions, with no physical meaning. Our states,
however, are physically meaningful (as traveling wave packets) and experimentally feasi-
ble (see next subsection).

Among the possible theoretical applications, we could think of expanding plane waves
in terms of the discrete basis {φ*n*a }*n∈-N

o
, with fixed *a ∈ %N , and describing scattering

process in a discrete basis, or expanding arbitrary wave packets in a continuum over-
complete set {φ*n*a }*a∈%N , with fixed *n ∈-N

o , which could be discretized in a lattice ,N ×,N

of points while keeping the over-complete character (they are over-complete for t = 0 if
the volume of the unit cell is smaller than ħhN , and again by the unitary time evolution they
continue to be over-complete for any t , see [144]), to perform numerical computations.

The ideas developed here could also be applied to relativistic systems, particularly
to the free particle in de-Sitter space-time, where the ordinary formulation of quantum
theory does not find a natural physical vacuum [148]. In this sense, the generalization of
our approach to the relativistic case would provide a hierarchy of states where the first
state, the relativistic counterpart of the Gaussian wave packet, plays the role of a vacuum
[149].

These states could also be of practical interest in the transmission of quantum infor-
mation. As a possible application we can consider the transmission of digital information,
encoded by the number of humps.

This encoding would be rather robust in the sense that the number of humps is con-
served even in the presence of small perturbations. Numerical calculations in one di-
mension have been performed, simulating perturbations by square potentials (well or
barriers), leading to the conclusion that this holds as long as the mean energy of the state
is large compared with the scale of the perturbing potential and the wave packet is sharp
enough in momentum space in such a way that the transmission coefficient can be con-
sidered a constant. Under these circumstances (see for instance [150]), the wave packet
behaves as a plane wave and the effect of the barrier in the transmitted packet is an over-
all attenuation, preserving its shape, and a time delay which takes its maximum values
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Figure 6.4: Transmission coefficient for the square barrier.

for energies near the resonant ones (and where the transmission coefficient is one). As
shown in [150], this result is valid for any bounded potential of compact support, pro-
vided that the width of the potential is small in the sense that the time to pass through the
barrier is smaller than the dispersion time of the wave packet τ. Therefore, the conclu-
sions obtained with the square potential can be generalized to any finite-range bounded
potential.

In Figure 6.4, the transmission coefficient T (E ) for a square barrier as a function of the
energy E of the incident plane wave is shown. The values of T (E ) for values of E = 2V0

and E = 3V0 have been singularized, where V0 is the height of the barrier. For E > 2V0,
8
9
< T (E ) ≤ 1, and for E > 3V0, 24

25
< T (E ) ≤ 1. Therefore, if the wave packet has mean

energy high enough, it penetrates the barrier without distortion and practically without
attenuation, with only a time delay which can be appreciable for the resonant energies
E = V0+ ħh

2π2

2mb 2 n 2, where n = 1, 2, . . ., and b is the width of the barrier.
It should be stressed that, for E < V0 the reflection is practically total (no transmission),

and that for E ≈ V0, T (E ) varies very rapidly. Thus, the wave packet should be extremely
narrow in momentum to avoid distortion. However, for E > 2V0 it is enough to have∆p ≤
ħhπ
2b

(half the period of the oscillations of T (E )).
These wave packets are also robust under the influence of time dependent, homoge-

neous external fields, or even linear damping. In these cases, the centroid of the wave
packets follow the classical trajectories, but their shapes are unaltered, apart from the un-
avoidable dispersion [141]. The case of linear damping is interesting due to the fact that
the presence of damping prevents the dispersion of the waves packets, which asymptoti-
cally have finite width [118, 141].

6.2.5 Experimental realization

The preparation of this kind of discretized free states might be achieved by the use
of a harmonic oscillator the potential of which is switched off at a given time. The vac-
uum state of this harmonic oscillator, when switched off, will provide the “vacuum” Gaus-

sian wave packet with width L =
*
ħh

2mω
, where m is the mass of the particle and ω the

frequency of the oscillator. Note that the dispersion time τ coincides with the inverse
of the frequency of the oscillator. If the harmonic oscillator is in the n-th excited state,
the (n + 1)-hump state is obtained. To obtain traveling states, the initial state should be
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a coherent state φa (x , t ) of eq. (6.106) for a one-hump traveling state or φn
a (x , t ) for a

(n + 1)-hump traveling state. These coherent states can be obtained by acting with time-
dependent classical forces on the harmonic oscillator according to Glauber [147, 144]. In
fact, if the classical force is given by the potential V (x ) =− f (t )x , and the initial state is the
vacuum |0〉, then a standard coherent state |a 〉 is obtained with a = i<

2ω
f̂ (ω), where f̂ (ω)

is the Fourier component of f (t ) in the frequencyω of the oscillator. This can be deduced
from the study of a non-homogeneous LSODE.

To avoid the dispersion effect, the traveling time of these wave packets should be less
than the dispersion time τ. This would seem a severe limit for the distances that the
packets can travel being localized, but this is not the case. For instance, a proton with
velocity 104 m/s with∆x = 0.1m m can travel a distance of 103 m while keeping localized
(it is even longer for a heavier ion under the same circumstances), and this is more than
enough for practical applications in Quantum Information theory.

Under the conditions commented in the previous section, these wave packets evolve
without distortion even in the presence of perturbations. However, one could be inter-
ested, acting with appropriate potentials, in obtaining transitions between wave packets
with different number of humps, in such a way that, for instance, a one-hump packet
splits into a two-hump packet or a two-hump packet coalesces into a one-hump packet.
This would open the door to performing quantum gates acting on q-bits realized with the
one-hump and the two-hump states. A way of implementing this is to benefit from the
fact that wave packets dynamics is similar to wave optics in the sense that an analogous
to the ABCD law for optics is satisfied for wave packets [151]. Even the transmutation
of Hermite-Gauss wave packets into Laguerre-Gauss wave packets can be achieved using
ABCD matrices, implementing a mode converter [152].

Finally, to detect this states and measure the number of humps, the number operator
N̂ could be used since its expectation value is directly related to the number of humps,
see (6.111), once the initial position x0 and the mean velocity v0 are known.

It should be stressed that these states are physically observable and measurable. Let
us consider, for instance, a two-hump wave packet φ(1,0,...,0)

*a (*x , t ) in two or three dimen-
sions with the humps in the transversal direction to that of the mean velocity *v0. The
separation of the two maxima of |φ(1,0,...,0)

*a |2 (see Fig. 6.1) is greater, in a factor 1.6, than the
uncertainty in position∆x1. Therefore the two humps should be measurable, and in fact,
if this wave packet propagates in a bubble or wire chamber, two parallel, divergent tracks
would be observed (if times t << τ are considered). For a three-hump wave packet, the
separation among consecutive maxima (see Fig. 6.1) is smaller than the uncertainty in
position, although the distance between the more separated maxima is greater than the
uncertainty in position. This, together with the fact that the central maximum is smaller
than the external ones, suggests that only two, overlapping thick tracks would be observed
in a bubble or wire chamber. A similar behavior for a larger number of humps is expected.
These behaviors are in fact observable for Hermite-Gauss states in lasers [142].

6.3 Deriving dissipative forces from a symmetry

Even though it is possible to set up a clear framework to deal with any LSODE-type
quantum system by employing the quantum Arnold transformation, it does not provide
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by itself a well-defined operator associated with proper time evolution. This is rooted in
the fact that this conventional time evolution is not included in the symmetry group that
can be imported from the free system: the Hamiltonian does not belong to the specific
representation of the Schrödinger algebra. One may wonder what happens if time evolu-
tion symmetry is forced. We shall pursue this issue for the damped harmonic oscillator in
this Section.

6.3.1 Time symmetry

Historically, Caldirola and Kanai derived their Hamiltonian from the Bateman one by
means of time-dependent canonical transformations. Now we are going to proceed in the
opposite direction, deriving Bateman Hamiltonian from Caldirola-Kanai one by purely
symmetry considerations.

In the damped harmonic oscillator, the operator iħh ∂
∂ t

, nor ĤDHO(t ) close under com-
mutation with x̂ (t ) and p̂ (t ). We wonder if it is possible to incorporate them into the basic
Lie algebra of operators, trying to close an enlarged Lie algebra acting on the (possibly en-
larged) Hilbert space#t . The answer to this question is in the affirmative, but it requires
a delicate analysis. The resulting enlarged algebra includes X̂ ≡ x̂ (t ), P̂ ≡ p̂ (t ), Ĥ ≡ iħh ∂

∂ t

and four more generators (plus Î ), denoted by Q̂ , Π̂,Ĝ1 and Ĝ2.

The operators Q̂ and Π̂ (plus Î ) expand a Heisenberg algebra, and Ĥ ,Ĝ1 and Ĝ2 expand
a 2-D affine algebra (with Ĥ acting as dilations). However, in this realization Q̂ and Π̂ are
not basic (this can be seen as an anomaly), and Ĥ and Ĝ1 are basic, resulting in time being
a canonical variable. Clearly, this is not satisfactory, and an alternative description should
be looked for.

A detailed study of the (projective) representations of the enlarged (7+1) dimensional
Lie algebra shows that there are three relevant kinds of representations, describing sys-
tems with different degrees of freedom:

• A generic family with 3 degrees of freedom: (X̂ , P̂), (Q̂ , Π̂) and (Ĥ ,Ĝ1), time being a
canonical variable.

• An anomalous family with 2 degrees of freedom: (X̂ , P̂) and (Ĥ ,Ĝ1), time being a
canonical variable (the one already described).

• A family with 2 degrees of freedom: (X̂ , P̂) and (Q̂ , Π̂).

Clearly, the interesting case is the third one, since it contains two degrees of freedom
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and time is not a canonical variable. Its algebra is given by:
!

X̂ , P̂
"
= iħhÎ

!
Q̂ , Π̂
"
= iħhÎ

!
X̂ ,Q̂
"
=− iħh

m
Ĝ2

!
X̂ , Π̂
"
= iħhĜ1

!
Q̂ , P̂
"
= iħhĜ1− iħhγĜ2

!
P̂ , Π̂
"
=−iħhmω2Ĝ2

!
Ĥ , X̂
"
=

iħh
m
Π̂

!
Ĥ , P̂
"
= iħhmω2Q̂

!
Ĥ ,Q̂
"
=

iħh
m
(P̂ +2Π̂)

!
Ĥ , Π̂
"
= iħhmω2(X̂ −2Q̂)

+ iħhγQ̂ − iħhγΠ̂

!
Ĥ ,Ĝ1

"
=−iħhγĜ1+2iħhω2Ĝ2

!
Ĥ ,Ĝ2

"
=−2iħhĜ1+ iħhγĜ2 . (6.119)

In this case the operators Ĝ1 and Ĝ2 are gauge, and therefore are represented trivially.
The effective dimension of the algebra is 5+1: (X̂ , P̂), (Q̂ , Π̂), Ĥ and Î .
!

X̂ , P̂
"
= iħhÎ

!
Q̂ , Π̂
"
= iħhÎ

!
X̂ ,Q̂
"
= 0

!
X̂ , Π̂
"
= 0

!
Q̂ , P̂
"
= 0

!
P̂ , Π̂
"
= 0

!
Ĥ , X̂
"
=

iħh
m
Π̂

!
Ĥ , P̂
"
= iħhmω2Q̂

!
Ĥ ,Q̂
"
=

iħh
m
(P̂ +2Π̂)

!
Ĥ , Π̂
"
= iħhmω2(X̂ −2Q̂)

+ iħhγQ̂ − iħhγΠ̂ . (6.120)

Here Ĥ is not a basic operator, and can be written in terms of the basic ones in an
irreducible representation:

Ĥ =− 1
m
Π̂P̂ − γ

2
(Q̂Π̂+ Π̂Q̂)− Π̂

2

m
+mω2X̂Q̂ −mω2Q̂2 . (6.121)

The classical version of the Hamiltonian is:

H =− 1
m
ΠP −γQΠ− Π

2

m
+mω2XQ −mω2Q2 . (6.122)
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6.3.2 Bateman’s system

This classical Hamiltonian can be transformed, using the linear, constant, canonical
transformation:

X =
mω2y − (py +m γ

2
x )iΩ

mω
+
−γiΩ

P =
ω(px −m γ

2
y +m x iΩ)
+
−γiΩ

Q =
mω2y − (py −m γ

2
x )iΩ

mω
+
−γiΩ

Π=−
ω(px +m γ

2
y +m x iΩ)
+
−γiΩ

, (6.123)

into the Bateman dual Hamiltonian

HB =
px py

m
+
γ

2
(y py −x px )+mΩ2x y , (6.124)

that describes a damped particle (x , px ) and its time reversal (y , py ):

ẍ +γẋ +ω2x = 0 , ÿ −γẏ +ω2y = 0 . (6.125)

The quantum Bateman Hamiltonian is:

ĤB =
p̂x p̂y

m
+
γ

2
(ŷ p̂y − x̂ p̂x )+mΩ2x̂ ŷ , (6.126)

and the Schrödinger equation for the Bateman’s system is given by14:

iħh ∂ φ(x , y , t )
∂ t

=
(
−ħh

2

m
∂ 2

∂ x∂ y
− iħh γ

2
(y
∂

∂ y
−x
∂

∂ x
)+mΩ2x y

)
φ(x , y , t ) . (6.127)

The system is conservative, so our objective of including time evolution among the
symmetries has been accomplished. ĤB closes a 5+1 dimensional algebra with (x̂ , p̂x )

14The Bateman system admits an equivalent description in terms of a real, first-order, Schrödinger equa-
tion (see [131])
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and (ŷ , p̂y ):

h
x̂ , p̂x
i
= iħhÎ

!
ŷ , p̂y

"
= iħhÎ

h
x̂ , ŷ
i
= 0

!
x̂ , p̂y

"
= 0

h
ŷ , p̂x
i
= 0

!
p̂x , p̂y

"
= 0

!
ĤB , x̂
"
=

iħh
m
(−p̂y +m

γ

2
x )

!
ĤB , p̂x

"
= iħh(−γ

2
p̂x +mΩ2ŷ )

!
ĤB , ŷ
"
=

iħh
m
(−p̂x −m

γ

2
y )

!
ĤB , p̂y

"
= iħh(γ

2
p̂y +mΩ2x̂ ) . (6.128)

However, it has been argued that the quantum Bateman’s system possesses incon-
sistencies, like complex eigenvalues and non-normalizable eigenstates. But Chruściński
& Jurkowski [169] showed that ĤB has real, continuous spectrum, and that the complex
eigenvalues are associated with resonances, which in last instance are the responsible of
dissipation.

6.3.3 Bateman’s group law

The Lie algebra (6.128) can be exponentiated to give a Lie group, whose group law we
have found to be:

t ′′ = t ′+ t (6.129)

x ′′ = x +x ′ e−
γt
2 cosΩt +

p ′y
mΩ

e−
γt
2 sinΩt (6.130)

y ′′ = y + y ′ e
γt
2 cosΩt +

p ′x
mΩ

e
γt
2 sinΩt (6.131)

p ′′x = px +p ′x e
γt
2 cosΩt −mΩy ′ e

γt
2 sinΩt (6.132)

p ′′y = py +p ′y e−
γt
2 cosΩt −mΩx ′ e−

γt
2 sinΩt (6.133)

ζ′′ = ζ′ζe
i
ħh {y ′py e

γt
2 cosΩt−x p ′x e

γt
2 cosΩt+mΩx y ′ e

γt
2 sinΩt+ 1

mΩ p ′x py e
γt
2 sinΩt } . (6.134)

This group law had not been considered previously in the literature, up to the author’s
knowledge.
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The corresponding left-invariant vector fields can be computed:

X̃ L
t =

∂

∂ t
+(−γ

2
x +

py

m
)
∂

∂ x
+(
γ

2
y +

px

m
)
∂

∂ y

+(
γ

2
px −mΩ2y )

∂

∂ px
+(−γ

2
py −mΩ2x )

∂

∂ py
(6.135)

X̃ L
x =

∂

∂ x
− px

ħh Ξ (6.136)

X̃ L
y =

∂

∂ y
(6.137)

X̃ L
px
=
∂

∂ px
(6.138)

X̃ L
py
=
∂

∂ x
+

y
ħh Ξ , (6.139)

and also the right-invariant ones:

X̃ R
t =

∂

∂ t
(6.140)

X̃ R
x = e−

γt
2 cosΩt

∂

∂ x
−mΩe−

γt
2 sinΩt

∂

∂ py
(6.141)

X̃ R
y = e

γt
2 cosΩt

∂

∂ y
−mΩe

γt
2 sinΩt

∂

∂ px
+

1
ħh (py e

γt
2 cosΩt +mΩx e

γt
2 sinΩt )Ξ

(6.142)

X̃ R
px
= e

γt
2 cosΩt

∂

∂ px
+

1
mΩ

e
γt
2 sinΩt

∂

∂ y
− 1
ħh (x e

γt
2 cosΩt − 1

mΩ
py e

γt
2 sinΩt )Ξ

(6.143)

X̃ R
py
= e−

γt
2 cosΩt

∂

∂ py
+

1
mΩ

e−
γt
2 sinΩt

∂

∂ x
. (6.144)

These vector fields close the Lie algebra (6.128), provided that obvious identifications
are made.
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6.4 A note on the quantization of the Bateman’s dual sys-
tem

6.4.1 First-order Schrödinger equation

Usual Canonical Quantization leads to either position space or momentum space rep-
resentation and a corresponding second-order Schödinger equation. However, inspect-
ing the Bateman’s Lie algebra, it is possible to check that a full first-order polarization
exists:

9 = 〈X̃ L
y , X̃ L

px
, X̃ L

t 〉 .

The first two polarization conditions determine that wave functions are (U (1)-
functions) depending only on (x , py , t ). The last polarization equation X̃ L

t ψ = 0 deter-
mines the condition on functions on the reduced space,φ(x , py , t ):

∂ φ

∂ t
=−(−γ

2
x +

py

m
)
∂ φ

∂ x
− (−γ

2
py −mΩ2x )

∂ φ

∂ py
.

We have arrived at a first-order partial differential equation that must be interpreted
as a first-order Schrödinger equation in a mixed representation position-momentum. In
fact, the same result can be obtained performing Canonical Quantization for the Bate-
man Hamiltonian ĤB in this mixed representation. Let us emphasize that this has been
strongly suggested by the group structure and the GAQ algorithm.

The corresponding time-independent Schrödinger equation is written:

(
γ

2
x − py

m
)
∂ φ

∂ x
+(
γ

2
py +mΩ2x )

∂ φ

∂ py
= Eφ .

The general solution of this equation can be found in terms of the complex variable z ≡
py + i mΩx :

φ(z ) =
= z

z ∗

> E
2ħhΩ

f
G

z z ∗
= z

z ∗

> iγ
2Ω H

,

where f is an arbitrary function of its argument.
Let us focus in the case of underdamping, whereΩ is real. We must determine whether

φ is well defined. To this end, we extract from f a power of its argument, (z z ∗)λ̃
=

z
z ∗

> iγλ̃
2Ω

, so
that we are left with another arbitrary function g of the argument. We write:

φ(z ) =
= z

z ∗

> E
2ħhΩ (z z ∗)λ̃
= z

z ∗

> iγλ̃
2Ω

g
G

z z ∗
= z

z ∗

> iγ
2Ω H=
= z

z ∗

> E+iħhλ̃γ
2ħhΩ (z z ∗)λ̃g
G

z z ∗
= z

z ∗

> iγ
2Ω H

.

Now, the function g and the rest of the wave function have to be well-defined indepen-
dently. This restricts the possible g ’s. But it also imposes a “quantization” condition on
the spectrum.
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On the one hand, recall that z z ∗ is real. For φ to be at least Dirac-delta normalizable,
λ̃must be chosen to be pure imaginary:

λ̃= iλ , λ∈# .

On the other hand, z
z ∗ is a pure phase, with twice the argument of z . The exponent of z

z ∗

must be half-integer so that we can get a well-defined function of z :

E −ħhγλ= nħhΩ ⇒ E = nħhΩ+λħhγ .

That is, we obtain a spectrum which has an integer part and a continuous part.
These results coincide with those in [169], although they are obtained in a quicker

and neater way. The reason is that they quantize angular variables and hence the basic
operator “multiply by the angle” is not defined. We have avoided this problem. However,
it is somewhat surprising that both spectrums coincide.

6.4.2 Back to Caldirola-Kanai system

Historically, Bateman firstly derived HB , and later Caldirola and Kanai obtained HDHO

using time-dependent canonical transformations. Here we have gone the opposite way,
started from HDHO and derived HB closing a finite Lie algebra. Now we wonder if we can
do the way back to the Caldirola-Kanai system. The answer, again, is positive, and can be
achieved by using constraints. To know how to proceed, let us analyse first the classical
case.

Classically, Bateman’s system and a pair of dual Caldirola-Kanai systems share the
same second-order equations of motion. If we impose them to share the first-order,
Hamilton equations, the following constraint must be satisfied:

y =
ω2

Ω2
e γt x +

γ

2mΩ2
px

py = e γt px +m
γ

2
x . (6.145)

These constraints, although time dependent, preserve the equations of motion since
they are equivalent to a relation among initials constants:

y0 =
ω2

Ω2
x0+

γ

2mΩ2
px 0

py 0 = px 0+m
γ

2
x0 . (6.146)

These constraints can be seen to be of second-order type, besides being time-
dependent, therefore care should be taken when imposing them: Dirac theory for con-
straints can be used or we can embed the constraints in a time-dependent canonical
transformation before applying them.
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But we are interested in the quantum derivation. Therefore we try to impose the op-
erator constraints:

ŷ − ω
2

Ω2
x̂ − γ

2mΩ2
p̂x = 0

p̂y − p̂x −m
γ

2
x̂ = 0 , (6.147)

but only one of them can be imposed, since the operators at the lhs of the equations
canonically commute: they are of second order type. At the quantum level, only one of
them can be imposed, therefore we must select one of them. If we impose the constraint,

ŷ =
ω2

Ω2
x̂ +

γ

2mΩ2
p̂x , (6.148)

the Hilbert space reduces to those functions verifying:

φ(x , y , t ) = e
i e−γt mΩy Csc2(Ωt )(γΩy Cos(2Ωt )+2(ω2eγt x ′−Ω2y)Sin(2Ωt ))

4ħhω2 ψ(x ′, t ) , (6.149)

where x ′ = x + Ω2

2ω2 y e−γtµ(t ), and µ(t ) = (2− γΩCot(Ωt )). The Schrödinger equation for the
Bateman’s system reduces to:

iħh ∂ ψ(x
′, t )

∂ t
=
(
− Ω

2ħh2

2mω2
e−γtµ(t )

∂ 2

∂ x ′2
− 1

2
iħhx ′Ωµ(t )

∂

∂ x ′
+ iħhΩ

2

γ
(µ(t )−2)
)
ψ(x ′, t ) .

(6.150)

When constraints are imposed, not all the operators acting on the original Hilbert
space preserve the constrained Hilbert space. The notion of “good” (usually denoted
gauge-independent in constrained gauge theories) operators as those preserving the con-
strained Hilbert space naturally emerges.

In most of the cases “good” operators are characterized as those commuting with the
constraints (see [18] for a detailed account of quantum constraints in a group-theoretical
setting and a more general characterization of “good” operators). In this case they are:

p̂x +
2mω2

γ
x̂ p̂y −

2mΩ2

γ
x̂ . (6.151)

Note that ĤB (nor iħh ∂
∂ t

) is not among the “good” operators since it does not preserve
the constrained Hilbert space. Therefore, time invariance is lost in the process of going
from the Bateman’s system to the Caldirola-Kanai system due to the very nature of the
constraints imposed.

Now let us perform the transformation

ψ(x ′, t ) = e−i mω2
ħhΩ x ′2 f (t )g (t )χ(κ,τ) , (6.152)
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where

f (t ) =− e γt

4Ωµ(t )2τ′(t )

5
(−γ(2+Cos(2Ωt ))+2ΩSin(2Ωt ))τ′(t )−γµ(t )τ′(t )2+µ(t )τ′′(t )

6

(6.153)

g (t ) = e−
1
4γτ

A
− τ′(t )
ΩSin2(Ωt )µ(t )

B1/4
(6.154)

κ= x ′e
γ
2 (t−τ)

ω

Ω

.
τ′(t )
µ(t )

(6.155)

τ(t ) =
1
Ω

ArcTan


 A

γ2

Ω2

µ(t )2


 , A ∈#− {0} . (6.156)

The Schrödinger equation finally transforms into:

iħh ∂
∂ τ
χ(κ,τ) =
(
− ħh

2

2m
e−γτ

∂ 2

∂ κ2
+

1
2

mω2κ2e γτ
)
χ(κ,τ) , (6.157)

which is the Caldirola-Kanai equation in the variables (κ,τ). Even more, the two inde-
pendent operators (6.151) preserving the constrained Hilbert space turn, under the pre-
vious transformation, to the basic operators for the Caldirola-Kanai system x̂ (t ) and p̂ (t ).
Therefore, we have recovered completely the Caldirola-Kanai system from the Bateman’s
system by imposing one constraint.

It should be stressed that τ′(0) = 0, therefore the time transformation is singular at the
origin and there are two disconnected regions, one with t > 0 and other with t < 0. It also
turns out that s i g n (τ) = s i g n (A), therefore choosing appropriately the sign of A in each
case we can map t > 0 to τ> 0 and t < 0 to τ< 0, respectively.

This kind of behavior coincides with the results of other authors (see [169]) where,
starting with the Bateman’s system, they obtain two subspaces N ± for which the restric-
tion of the one parameter group of unitary time-evolution operators Û (t ) = e−

i
ħh t ĤB pro-

duces two semigroups of operators, for t < 0 and t > 0.
Therefore, starting from the quantum, conservative, Bateman’s system we have ar-

rived to the quantum, time-dependent, Caldirola-Kanai system. All the process we have
performed can be schematically showed as:

Constraint⇒
Bateman Caldirola-Kanai

t ∈# t ∈#+ or t ∈#−
Conservative Dissipative

Closing algebra
⇐

(6.158)



Chapter 7

Conclusions

The main results of this thesis could be summarized as follows:

1. We have provided an algorithm to identify functions of the basic coordinates of the
solution manifold which close a Lie algebra for a number of mechanical systems,
such as a particle moving in the SU (2)manifold (non-linear sigma model for SU (2)),
the Poschl-Teller potential or the Morse potential. The quantum theory of these
systems can be studied then by the Group Approach to Quantization method and it
has been illustrated in the case of the sigma model.

2. The quantum theory of free particle in the sphere !2, as a non-linear sigma model
on SU (2)/U (1) has been studied. The quantum symmetry of the system has been
identified. As a remarkable advantage over other quantization methods, GAQ is
coordinate-free, in such a way that the quantum operators are automatically se-
lected. In particular, this implies that there is no need to impose any constraint.

We would like to point out that a similar strategy can be explicitly adopted in dealing
with particles moving on coadjoint orbits of semi-simple groups, non-necessarily
spheres, as shown in our general scheme.

In dealing with less symmetrical system, yet keeping topologically equivalent solu-
tion manifold, the present approach could be in principle generalized by making
use of geometrically different realizations of the same algebraic group structure.
These physically inequivalent realizations of the same group would be associated
with diffeomorphisms of the symplectic solution manifold which are not contact
transformations [76]. A similar idea can be found in [77] (Chap. 10), where non-
holonomic mappings are used to relate non-equivalent physical systems.

3. We have provided a consistent quantization of the Poisson algebra among the basic
functions on the solution manifold of massive Yang-Mills fields coupled to non-
linear partial-trace sigma scalar fields. We have looked for unitary and irreducible
representations of the group named GM Y M in the text. As already commented, the
parameters of this group have been written as functions on the Cauchy surface Σ.
The Poincaré subgroup has been omitted but we have kept manifest covariance
thoroughly. In order to recover the time evolution at the quantum level we have
constructed a Hamiltonian operator Ĥ , uniquely defined in terms of the basic op-
erators, which preserves the quantum representation space, the Hilbert space. This
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allows, in principle, any proper computation concerning the time evolution. For in-
stance, one can derive a perturbation theory à la Heisenberg [171], that is, using the
complete Hamiltonian, and evolving the wave functions from the solution mani-
fold. A precise way of so doing is by making use of the Magnus expansion [136],
which preserves unitarity at each order in the exponential of the Hamiltonian, as a
generator of time translation. The actual computation of this series and the con-
nection with the more traditional expansion of the S matrix would be in order. But
an alternative though equivalent way of approaching a perturbative expansion of
the S matrix can also be realized in a completely algebraic manner. In fact, start-
ing from our algebra of basic operators (4.45), we may proceed by closing a new Lie
algebra by commutation with Ĥ , order by order in a formal “expansion” constant
α, exponentiating the resulting algebra up to the same order in α, and requantizing
again with the present group-theoretical method. Much work is being made in this
direction.

In either perturbative scheme we hope to achieve, in particular, an approach to the
quantum description of the Physics around the Particle Standard Model which is
the final target of our present algorithm.

4. We have considered a non-canonical approach to the perturbation theory of the
O(N )-invariant NLSM which accounts for the non-trivial (non-flat) geometry and
topology of the target manifoldΣ and takes advantage of the underlying symmetries
of the system. This scheme can also be adapted to other G -invariant NLSM. The
usual perturbation theory for relativistic fields is designed for small deviations from
the free (Klein-Gordon or Dirac) fields. Detectors in large particle colliders are also
designed for this purpose. However, fields of NLSM-type can be found in a strongly-
interacting regime (ρG 1) which does not fit into this picture. This should lead to
reconsider the perturbation theory and renormalizability of the NLSM.

5. The analysis carried out with the Quantum Arnold Transformation permits to deal
with the quantum theory of any LSODE-type dynamical system, using known prop-
erties of the quantum free particle. The QAT provides basic operators and estab-
lishes that the symmetry group of the free particle, the Schrödinger group, can be
transferred to a realization on the LSODE system. This result turns out to be of prac-
tical use when performing some computations, for instance finding solutions of the
Schrödinger equation or the evolution operator, especially when the Hamiltonian
does not commute with itself at different times. Even in these cases it is possible
to give exact expressions, obtained in a non-perturbative manner. It is noteworthy
that these calculations lead to the knowledge of objects in the quantum theory with
the only requirement that the classical solutions of the LSODE are known.

In a way, Arnold transformation allows to interpret LSODE-type forces, including
dissipation linear in velocity, as effects observed in a “non-inertial reference frame”.
The use of the present scheme goes beyond the study of the simple damped har-
monic oscillator, finding applicability in quite different branches of physics, such
as Cosmology, where a scalar field appears (inflaton) satisfying equations in time
which can be read as a LSODE. In this respect the QAT can be applied to the study
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of the specific example of the harmonic oscillator with time-dependent frequency
(see [160] and references therein). This will be considered in the next future [139].

It is worth mentioning that the Arnold transformation used here is just a particular
case of a broader class of transformations which link free particle equations to even
classical non-linear equations. Research in this direction would potentially lead to
extremely useful and interesting results. We believe that a good starting point for
this purpose was presented in [129], although some effort to establish the explicit
connection with the free particle would be in order.

6. For the Caldirola-Kanai system, describing a quantum damped harmonic oscillator,
a couple of constant-of-motion operators generating the Heisenberg algebra can be
found using the QAT. The inclusion of the standard time evolution symmetry in this
algebra for damped systems, in a unitary manner, requires a non-trivial extension of
this basic algebra and hence the physical system itself. Surprisingly, this extension
leads directly to the so-called Bateman’s dual system, which now includes a new
particle acting as an energy reservoir. The group of symmetries of the dual system
has been presented, as well as a quantization that implies, in particular, a first-order
Schrödinger equation. The usual second-order equation and the inclusion of the
original Caldirola-Kanai model in Bateman’s system has also been discussed.
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