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Abstract

Large-scale structure is one of the most important fields in cosmology. It allows us to study
the evolution of the Universe using the distribution of galaxies on the sky. Baryon acoustic
oscillation (BAO) and redshift-space distortions (RSD) analyses provide valuable information
about the physical processes that produce the Universe we see today. The Sloan Digital Sky
Survey (SDSS) has been observing the local universe to study these phenomena. In the
cosmological precision era, this experiment has measured more than a million galaxies which
allow us to have a more precise vision of the evolution of structures.

In this thesis I present a study of the clustering of Luminous Red Galaxies (LRG) and Quasars
(QSO) in the Baryon Oscillation Spectroscopic Survey (BOSS) of the SDSS-III and the
SDSS-IV extended Baryon Oscillation Spectroscopic Survey (eBOSS) respectively. Clustering
results from the CMASS LRG sample are compared with predictions of the Halo Abundance
Matching (HAM) scheme. This model is applied to the BigMultiDark N-body simulation
using a flat ΛCDM model. We construct high fidelity mocks including the evolution of the
dark matter field in light-cones and observational effects such as incompleteness, geometry,
veto masks and fibre collisions. These catalogues are a proof that the ΛCDM model, which
describes the CMB (Planck1 cosmological parameters), can also predict the LRG clustering
at z ∼ 0.5. The two-point correlation functions and power spectrum are in agreement with
observations within 1σ for all scales from 0.5 to 150 h−1Mpc. Moreover, the three-point
correlation function and the stellar-to-halo mass relation also present a good agreement with
observations. Combining the potential of our model and the patchy code, we show the
different steps of the construction of galaxy mocks of the BOSS Final Data Release (DR12).
These mocks are used to construct the covariance matrices for the analysis of BAO and RSD.
We provide a large set of catalogues which represent a step forward due to their excellent
agreement with observations. This large set of ∼12 thousands mocks is the largest ever
simulated volume corresponding to ∼ 192, 000 [h−Gpc]3.
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Quasars also are playing a key role in the study of the Universe at high redshift. Following the
LRG analysis, we model the eBOSS first year sample of spectroscopically confirmed quasars
in the redshift range 0.9 < z < 2.2. In this case, we use a modified halo abundance matching
model applied to the BigMultiDark simulation to generate QSO high fidelity mocks. Our
model reproduces the two-point statistics with good agreement. The typical quasar halo
mass found is ∼ 1012.7M�. There are still open questions about the distribution of quasars
inside the halo, which new data and this kind of models will help us understand.

The different methods to populate dark matter halos with galaxies and quasars explained
in this work successfully describe the observational data, and combined with best prediction
of the cosmological parameters provide a proof of the validity of the ΛCDM model. Our
methodology gives excellent results when applied to N-body simulations or simulations con-
structed with Lagragian perturbation theory. These models can be used to describe other
populations such as ELG and can allow us to make predictions for future surveys (e.g. DESI,
EUCLID).



Resumen

La estructura a gran escala es uno de los campos más importantes en Cosmología. Ésta nos
permite estudiar la evolución del Universo a partir de la distribución de galaxias. El análisis
de las oscilaciones acústicas bariónicas (BAO) o de las distorsiones en el espacio por el cor-
rimiento al rojo (RSD) proporcionan información muy valiosa sobre los procesos físicos que
produjeron el Universo que vemos hoy. El Sloan Digital Sky Survey (SDSS) ha estado obser-
vando el universo local para estudiar estos fenómenos. En la era de la precisión cosmológica,
este experimento ha medido la distancia a más de un millón de galaxias permitiendo construir
una visión más precisa de la evolución de las estructuras en la distribución de galaxias.

En esta tesis, se presenta un estudio del agrupamiento de las galaxias luminosas rojas (LRG)
y de los cuásares (QSO) en el Baryon Oscillation Spectroscopic Survey (BOSS) del SDSS-II
y extended Baryon Oscillation Spectroscopic Survey (eBOSS) del SDSS-IV respectivamente.
Los resultados de la muestra de LRG del CMASS de BOSS son comparados con las predic-
ciones del esquema Halo Abundance Matching (HAM). Este modelo es aplicado a la simu-
lación de N-cuerpos BigMultiDark, la cual es construida en base a un modelo cosmológico
ΛCDM plano con los parámetros medidos por la colaboración Planck. Se producen catál-
ogos simulados de alta precisión incluyendo la evolución del campo de materia oscura en
conos de luz que incluyen efectos observacionales como la incompletitud, la geometría del
cartografiado, las mascaras veto y las colisiones de fibras. Estos catálogos prueban que el
modelo ΛCDM, el cual describe el CMB (con los parámetros cosmológicos Planck1), también
puede predecir el agrupamiento de las LRG para z ∼ 0.5. La función de correlación de dos
puntos y del espectro de potencias reproducen las observaciones dentro de errores de 1σ para
escalas entre 0.5 y 150 h−1Mpc. Adicionalmente, la función de correlación de tres puntos y la
relación entre masa estelar y masa del halo presentan un buen acuerdo con las observaciones.
Combinando el potencial de nuestro modelo y el código patchy, presentamos los diferentes
pasos en la producción masiva de los catálogos de galaxias simuladas para la entrega final
de datos de BOSS, los cuales son utilizados para construir las matrices de covarianza en
los análisis de BAO y RSD. Nuestro productos representan un paso adelante debido a la
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excelente precisión con la que reproducen las observaciones. Este conjunto de unos 12 mil
catálogos cubren el volumen más grande simulado hasta hoy, unos ∼ 192, 000 [h−Gpc]3.

Los QSO están jugando un papel importante en el estudio del universo a alto z. Siguiendo
el análisis de las LRG, hemos modelado los datos correspondientes al primer año de los QSO
espectroscópicos de eBOSS en el rango 0.9 < z < 2.2. En este caso, hemos utilizado una
versión modificada del modelo HAM, la cual hemos aplicado a la simulación BigMultiDark
para generar los catálogos QSO de alta precisión. Nuestro modelo reproduce las estadísticas
de dos puntos. La masa típica de los halos que alojan QSO es ∼ 1012.7M�. Existen preguntas
abiertas sobre la distribución de los QSO en los halos, para las cuales son necesarios nuevos
datos y este tipo de modelos ayudarán a responderlas en el futuro.

Los diferentes métodos explicados en este trabajo, utilizados para conectar halos de materia
oscura con galaxias y cuásares, describen exitosamente los datos observacionales, y combina-
dos con las mejores estimaciones de los parámetros cosmológicos, proporcionan una prueba
de la validez del modelo ΛCDM. Nuestra metodología da excelentes resultados al ser apli-
cada a simulaciones de N-cuerpos y a simulaciones de teoría de perturbaciones lagrangianas.
Estos modelos pueden ser usados para describir otras poblaciones de galaxias como las ELG
y permitirnos hacer predicciones del agrupamiento de galaxias para futuros cartografiados
(e.g. DESI, EUCLID).



CHAPTER 1

Introduction

Modern cosmology has become one of the most exciting research fields in Physics. In the
last decades, new technology has allowed us to measure relics of the early universe such as
the Cosmic Microwave Background (CMB) anisotropies (Smoot et al., 1992; Hinshaw et al.,
2013; Planck Collaboration et al., 2014). Furthermore, we are also making up maps of the
galaxy distribution up to 7 billion years back in time using large-scale redshift surveys(e.g.
Cole et al., 2005; Drinkwater et al., 2010; Frieman and Dark Energy Survey Collaboration,
2013; Dawson et al., 2013). These experiments and the coming ones are introducing us in
the era of precision cosmology. Using all these observational data, we are constraining our
theoretical models in order to better understand the formation and evolution of structures
in the Universe.

Einstein’s general relativity is the most successful theory explaining the gravitational physics
behind a large set of observables which covers a large range of scales (solar system, galaxy,
cosmological distances). The assumption that our Universe is described by the Riemannian
geometry and the “cosmological principle” (the Universe is homogeneous and isotropic at large
scales) lead to the Friedmann-Lemaître-Robertson-Walker (FLRW) model, which provides
the most accepted explanation for the formation and evolution of the Universe (e.g. Peebles,
1980; Dodelson, 2003). However, one of the controversial parts of this model comes from the
mass-energy content of the Universe. An analysis of the current data within general relativity
implies the existence of an unknown form of matter, that we call Cold Dark Matter (CDM),
which represents ∼26 % of the total mass-energy content of the Universe. Additionally, recent
measurements show an accelerated expansion of our Universe that is taken into account
by introducing a cosmological constant Λ in the FLRW model. This new energy (called
dark energy), which exerts a “force” opposite to gravity, can be understood as a fluid with
negative pressure which represents the ∼69% of the total matter-energy of the Universe.
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These components lead to the ΛCDM framework which is currently known as the standard
cosmological model.

There is still a relevant set of unsolved questions which current and future surveys are trying
to answer. In the next decades, we will try to comprehend the nature of dark energy and
dark matter, as well as the large-scale structure of the Universe at it is seen today. A better
knowledge of the dark components will enable us to better understand their relationship
with normal matter (baryonic matter) and consolidate the standard model. This relation is
of utmost importance to understand the role of dark matter in the formation and evolution
of galaxies, which is another open question in modern cosmology. Furthermore, new data
will allow us to grasp the physical mechanisms of the primordial universe which produced
the distribution and properties of the galaxies we see today.

The Standard Cosmological Model

Observations support the idea of a universe expanding from a singularity called Big Bang.
Approximately 14 billion years ago, the space-time began its expansion and the Universe
moved from a hot and dense plasma to the cooled state we see today. In the first moments, the
Universe was a soup of matter and energy which created and annihilated particle-antiparticle
pairs in a fast process. With the expansion, the temperature became lower and the rate
of creation-annihilation decreased. At this point, the remaining antiparticles-particles were
annihilated in a process known as baryogenesis. At the end of this process, we found an
excess of particles which allowed the formation of galaxies millions of years after. Physicists
are still working on some unresolved questions about this imbalance between the amount of
matter and antimatter in the early universe.

The protons and neutrons created in the baryogenesis combined into light elements as hy-
drogen, helium and lithium. This process is known as nucleosynthesis and happened in the
first 10 minutes. In that era of the early universe, photons and baryons interacted very fast.
This prevented the formation of neutral atoms and light was coupled in the plasma making
the Universe opaque. After ∼400,000 years, in the recombination era, the Universe became
big enough to decouple light and baryons forming the first neutral atoms. At that moment,
the Universe was transparent and photons could travel freely producing the first information
of the primordial Universe that we can measure today, the Cosmic Microwave Background
(CMB; e.g. Smoot et al., 1992; Hinshaw et al., 2013; Planck Collaboration et al., 2014).
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The CMB shows an image of the primordial distribution of matter in the Universe. We
assume that these initial density fluctuations grew by gravitational instability forming the
structure we see today. However, the CMB raises new questions. It shows a homogeneous
and isotropic Universe with very tiny fluctuations, even if different regions were causally
disconnected. This could be explained by a period of inflation (e.g. Liddle, 1998), where the
space-time expanded extremely fast in the first 10−34 seconds.

The standard cosmological model has been successful in the prediction of the amount of
primordial elements and can give an explanation for the large-scale structure seen today.
In this framework, we can relate the primordial quantum fluctuation of the Universe with
the distribution of galaxies. However, there are still many unanswered questions about the
physical processes of galaxy formation and the connection between galaxies and their dark
matter halos. For these reasons, different large surveys have been designed in the last years
to go back in time and try to understand the processes that generate the abundance and
distribution of galaxies we see today.

The Large-Scale Structure of the Universe

Galaxies in the Universe are homogeneously distributed at very large-scales. However, looking
at smaller regions we can see that they are not uniformly distributed. Galaxies are residing
in groups and clusters at scales smaller than 3 Mpc. These structures are connected by
filaments longer than 10 Mpc. This excess of clustering in some parts also creates regions
with very few number of galaxies known as voids. All these observed structures depend on
the physics which made the initial perturbations grow (cosmological model) and the galaxy
formation processes.

The study of the large-scale structure of the Universe requires a statistical analysis of a set
of galaxies (Peebles, 1980). In order to understand the evolution of the fluctuations in the
primordial density field, it is useful to translate the galaxy density, ρ(x), in a dimensionless
density contrast

δ(x, t) =
ρ(x, t)− ρ̄(x, t)

ρ̄(x, t)
(1.1)

where ρ̄(x) is the expected galaxy mean density. δ(x) is close to a Gaussian distribution at
large scales and at early times.
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One of the most used quantities to describe the clustering of galaxies is the two-point cor-
relation function ξ(r). This quantity includes the effects of clusters, voids and filaments,
providing the measurements of the evolution of the Universe at different spacial scales. The
two-point correlation function (2PCF) is defined as the excess probability, above a random
Poissonian distribution, of finding a galaxy in a volume dV separated a distance r from
another galaxy,

dP = n[1 + ξ(r)]dV, (1.2)

where n is the mean number of galaxies per unit volume. Thus, ξ(r) is defined as the
average of the density contrast in two different points, ξ(r1, r2) = 〈δ(r1)δ(r2)〉. Clustering
measurements can be also analysed in Fourier-space using the power spectrum,

P (k) =

∫
ξ(r)ei[k]·rd3r. (1.3)

Galaxy surveys give us information about the evolution of structures at different times of the
Universe. Combining CMB and galaxy surveys we can have a direct proof of the formation
history of the structure we see today. One of the most powerful studies can be made via the
baryon acoustic oscillations (BAO). As we mentioned above, before recombination (∼400,000
years, z ∼1000) our Universe was ionised (hot and dense) and photons were providing pressure
and restoring force. The combination of gravity and restoring force generated perturbation
which oscillated as acoustic waves at that time. Once recombination was over, photons had
a long mean free path to decouple from this plasma and the Universe became neutral and
the acoustic oscillations also froze leaving a characteristic acoustic length scale (e.g. Hu and
Sugiyama, 1996; Eisenstein and Hu, 1998),

rbao =

∞∫

zrec

cs(z)dz

H(z)
(1.4)

where cs is the speed of the sound and H(z) the Hubble function at redshift z given by

H(z) = H0

√
Ω0
m(1 + z)3 + Ω0

k(1 + z)2 + Ω0
Λ. (1.5)

In this expression H0 represents the Hubble constant, Ω0
m, Ω0

k and Ω0
Λ are the mass, curva-

ture and dark energy density parameters all of them at the present epoch. The curvature
component Ωk is equal to zero in a flat universe. Since recombination, perturbations have
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been growing by gravitational instability imprinting the BAO scale also in the clustering of
galaxies seen today. For this reason, once rbao is found in the CMB, it can be used as a
standard ruler to measure cosmological parameters. In the two-point correlation function,
the BAO length in the line-of-sight direction is given by

r‖ =
cz

H(z)
. (1.6)

While in the transverse direction, related to an angular size ∆θ,

r⊥ = (1 + z)dA(z)∆θ, (1.7)

where dA(z) is the angular diameter distance,

dA(z) =
1

1 + z

z∫

0

cdz′

H(z′)
. (1.8)

The BAO scale used as a standard ruler has become one of the most important observations
in modern cosmology (Beutler et al., 2011; Blake et al., 2011; Alam et al., 2016; Ata et al.,
2017). This quantity is very useful to constrain dark energy models as their interpretation
requires a model to describe the formation and evolution of structures. Despite the high
level of non-linear processes related to galaxy formation and the structures they form, the
measurements of the BAO size provide geometrical information with a very low level of
systematics and they are complementary to other measurements such as weak lensing or
CMB.

On the other hand, the large-scale structure provides information about the distribution of
galaxies and the underlying dark matter field, just as gravitational lensing measurements do.
Due to gravitational effects, dark matter and baryons are following approximately the same
structures. Today we use galaxies as biased tracers of dark matter. Clustering differences
between both components can be parametrised by a scale dependent bias which is related to
the two point correlation function by

b(r) =
√
ξgal(r)/ξDM(r). (1.9)

Contrary to small scales, where the effects of non-linear physics become larger, especially in
the one halo term region (<1 Mpc), this relation is easily described in the linear regime.
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Spectroscopic Surveys

In cosmology, one of the most important observational challenges is to measure the galaxy
clustering with high precision, and then obtain information about the underlying matter
distribution behind this signal. Measuring angular positions is a relatively easy process and
it can be used for extracting the angular clustering from a galaxy sample. However, a big part
of the information resides in the third spacial component, so it is not included in an angular
only analysis. The radial distances from galaxies can be computed through the spectrum
of the light coming from these objects. Spectroscopic surveys (e.g. CfA, 2dFGRS, SDSS)
obtain information about the emission and absorption lines of galaxies and these spectra
can be compared with rest-frame models in order to compute their redshifts and thus, their
distances,

s(z) =

z∫

0

cdz′

H0

√
Ωm(1 + z′)3 + ΩΛ

. (1.10)

Photometric surveys (e.g. Frieman and Dark Energy Survey Collaboration, 2013) are another
widely used method to extract the redshift of galaxies, in this case fitting the broadband
colours to some template. The precision of this method depends on the quality of the pho-
tometry, as well as the number of bands. Extraction of redshifts from photometric surveys is
faster and easier than with spectroscopic ones, but their errors are of the order of 0.05(1+z),
whereas spectroscopic surveys allow us to estimate the redshift with a typical error between
∼0.001(1+z) and 0.0001(1+z). Spectroscopy allows for very precise measurements of the spa-
tial distribution of galaxies and therefore a better estimation of the clustering signal along
the line of sight.

A second complexity when extracting the real-space distribution of galaxies is that their move-
ments due to peculiar velocities introduce redshift-space distortions. These effects increase
significantly near clusters or groups of galaxies. However, the physical processes responsible
for these distortions are known and they can be modelled to add more constraints to the
cosmological parameters or to recover the real-space clustering. Redshift-space distortions
depend on two main processes. The peculiar random velocities of galaxies inside a cluster (.
1 h−1Mpc) introduce a Doppler shift which elongates the structures along the line-of-sight
(Fingers-of-God; Jackson, 1972). The second effect is due to galaxies falling onto structures
that are still in formation. This causes a contraction of the structures at scales & 1 h−1Mpc
(Kaiser effect; Kaiser, 1987).
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In the last twenty years, spectroscopic surveys have become key experiments in astrophysics
and cosmology. The multi-object spectrographs on ground-based telescopes have allowed
different Collaborations to obtain more precise maps of the distribution of galaxies in the
Universe. In the low redshift regime, the two-degree Field Galaxy Redshift Survey (2dFGRS;
Cole et al., 2005) and the Sloan Digital Sky Survey (SDSS; Eisenstein et al., 2005) were able
to measure the peak of baryon acoustic oscillations for the first time in the local universe.
Following the legacy of its predecessor, the Baryon Oscillation Spectroscopic Survey (BOSS;
Dawson et al., 2013), part of the SDSS-III project (Eisenstein et al., 2011), improved the
accuracy of BAO measurements extending the number density and the redshift range (z <
0.75) to more than a million new galaxies on 10,000 square degrees of the sky.

BOSS was designed to continue the study of the LRG sample in a larger redshift range
compared to SDSS-I/II. For this purpose, they defined two redshift ranges with different
colour cuts to improve the selection of LRG, LOWZ (“Low redshift”) increasing the number
of galaxies from SDSS-I/II in the redshift range 0.15 to 0.43 and a new sample, CMASS
(“constant mass”), covering the range 0.43 < z < 0.75. Just as in other experiments, there
are different factors in multi-object spectroscopy that can contaminate the spectra or make
it impossible to recover information from some of the galaxies. In order to account for these
problems, BOSS corrects the clustering signal using weights for each galaxy. The final weight
for each galaxy is given by (Ross et al., 2012)

wg = wsys(wzf + wcp − 1), (1.11)

where wzf denotes the redshift failure weight and wcp represents the close pair weight. wsys =

wseewstar accounts for the observed systematic relationships between the number density of
observed galaxies and stellar density and seeing (weights wstar and wsee, respectively). In the
CMASS sample, weights take into account the observed systematic relationships between the
number density of observed galaxies and stellar density and also the seeing using systematic
weights, wsys. Additionally, if a galaxy has a nearest neighbour (of the same target class)
with a redshift failure, wzf increases by one. A feature of the fibre-fed spectrograph is that
the finite size of the fibre housing makes it impossible to place fibres within 62 arcsec of each
other in the same plate. This causes a number of galaxies not to have an assigned fibre and
hence, there is no measurement of their redshift. Similar to redshift failures, if a galaxy has
a nearest neighbour without redshift because of fiber collision, wcp will increase by one.

As well as LRGs, quasars (QSO) and Emission Line Galaxies (ELG) are good tracers of
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the dark matter field. For this reason, SDSS I/II/III provided samples of spectroscopically
confirmed quasars (Pâris et al., 2014), as well as Lyman-α forest quasars. BOSS was able to
measure the BAO scale using Lyα forest quasars (Font-Ribera et al., 2014; Delubac et al.,
2015) at z ∼ 2.5. Combining the potential of SDSS-III/BOSS and new photometric informa-
tion to optimise target selection, the current extended Baryon Spectroscopic Survey (eBOSS)
extends the BAO studies to higher redshift giving the first measurement of the BAO scale
at 0.9 < z < 2.2 (Ata et al., 2017). eBOSS will increase the sample of LRG and QSO and
it will provide a new sample of ELG. In total, this survey will provide redshifts for 300,000
luminous red galaxies (LRG) in the redshift range 0.6 < z < 1.0, a new sample of ∼200,000
emission line galaxies (ELG) at redshift 0.6 < z < 1.0, more than 500,000 spectroscopically
confirmed quasars at 0.9 < z < 2.2 and ∼120 000 new Lyα forest quasars at redshiftz > 2.1.

One of the next generation spectroscopic surveys will be the Dark Energy Spectroscopic
Instrument (DESI; Schlegel et al., 2015). This ground-based telescope will be capable of
measuring spectra from different galaxies simultaneously, thanks to a new multi-object spec-
trograph. DESI is one of the most ambitious ground-based experiments, with a large number
of fibers that will give us much more information about the ELG sample. The ESA Euclid
mission will be a space telescope which will provide imaging and spectroscopic data for ∼ 50
millions of galaxies(Laureijs et al., 2011; Sartoris et al., 2016), making a more precise study
of the formation and evolution of the structures in the Universe.

N-Body simulations

The CMB is the best picture of the early universe we have access to. Although we do not
have a good understanding of the processes which happened before recombination, this pic-
ture allows us to confirm the homogeneity and isotropy with very small perturbation on the
density field (δ ∼ 10−5). These fluctuations are well described by the linear perturbation
theory. However, when these initial perturbations start growing due to gravitational insta-
bility, physics in the most dense regions becomes highly non-linear and perturbation theory
cannot describe these processes.

Cosmological simulations are the way to solve the equations that govern the gravitational
evolution of the Universe, including non-lineal effects. In these simulations the matter field
is described by a fixed number of particles in a given comoving volume. These particles
evolve with different time-steps until redshift zero. Cosmological simulations provide the
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phase-space outputs at different redshifts (snapshots).

Ideal simulations should reproduce observations for baryons and dark matter. However, the
physical processes involved in the evolution of baryons are more complex and increase the
computational cost of simulations. Additionally, there is still a lack of knowledge in the
galaxy formation physics, making it difficult to compare observations and simulations since
differences can come from either the gravity model or the galaxy physics processes. This hard
work is done by hydrodynamical simulations, which combine gravity and baryonic physics to
understand galaxy formation physics.

Hydrodynamical simulations have to solve the fluid equations including gravity and hydro-
dynamics. However, this is not enough to reproduce the observed galaxies population. Thus,
these simulations include additional processes such as star formation feedback, black holes or
AGN feedback. One of the disadvantages of these simulations is the large amount of compu-
tational resources they require. This forces us to use relatively small volumes in order to have
enough resolution to resolve galaxy physics. Hydrosimulations go from single halo scale to a
few hundreds Mpc. These volumes are very small compared to the current surveys that study
the large scale structure of the Universe. EAGLE1 (Schaye et al., 2015) and ILLUSTRIS2

(Genel et al., 2014) are two of the most recent simulations including these physical processes.
These simulations can resolve small galaxies (∼ 108M�) producing observables such as stel-
lar mass functions, size relations or the abundance of early- and late-type galaxies which are
in agreement with observations. However, they have very small volumes, [100 Mpc]3 and
[106.5 Mpc]3 respectively, compared to observational projects such as BOSS (∼ 1010 Mpc3).
This make it impossible to do a fair comparison between this kind of simulations and the
observational data.

Since recombination, large-scale structure growth has been dominated by gravity and the
effects of dark energy, while baryonic physics has affected small scales. Taking it into account,
we can assume that all the matter in the Universe is dark and can include baryonic processes
of the early Universe (such as BAO) in the initial conditions. This gives us a reasonable
explanation of the structures we see today. These N-body simulations are computationally
less expensive and can cover volumes of a few Gpc and they allow us to simulate volume
comparable to the current surveys.

Primordial fluctuations in the Universe are well studied using the CMB and can be described
1http://icc.dur.ac.uk/Eagle/
2http://www.illustris-project.org

http://icc.dur.ac.uk/Eagle/
http://www.illustris-project.org
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by a Gaussian random field, that is defined as a white noise convolved by a transfer function.
There exist two commonly used codes which are capable of computing the transfer function
of the initial density fluctuations, camb (Lewis et al., 2000) and class (Lesgourgues, 2011).
Once the initial conditions are set, the dark matter field can be described by collisionless
particles which can be evolved using non relativistic Newtonian dynamics. Even assuming
only gravity physics, those processes are computationally expensive because of the force
computation in these simulations scales on time like N2 which makes them very slow. Tree
algorithms (e.g. Springel, 2005) and Particle Mesh codes (e.g. Klypin and Holtzman, 1997)
deal with this problem by reducing the number of operations by time step significantly.

Galaxies supposedly live in dark matter halos. These objects can be found in N-body simula-
tions using halo finder codes (for a comparison between different halo finders see Knebe et al.,
2011), which can define halos/subhalos and their properties, such as halo masses, concentra-
tions or circular velocities. Additionally, merger tree schema can be applied to these halos
to trace their history along all the snapshots (for a comparison between a variety of merger
tree codes see Avila et al., 2014). In most of the present work we use the BigMultiDark
simulation, which is part of the MultiDark suite of simulations3(Klypin et al., 2016), and
has a 2.5 h−1Mpc box size with 38403 particles. BigMultiDark was run with a flat ΛCDM
model consistent with Planck1 cosmological parameters (Planck Collaboration et al., 2014).
The Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement halo
finder (RockStar Behroozi et al., 2013a) is used in this simulation. This code identifies
spherical dark matter halos and subhalos using an approach based on adaptive hierarchical
refinement of friends-of-friends groups in six phase-space dimensions and one-time dimension.
RockStar creates particle-based merger trees. The merger trees algorithm (Behroozi et al.,
2013b) is used to estimate different quantities along the history of each halo.

Connecting Dark Matter Halos and Galaxies

Information of the large-scale structure of the Universe comes to us from light sources such as
galaxies or quasars. Thus, we have to be able to extract information about our cosmological
model without seeing the dark matter component directly. In order to compare simulations
and observations, we have to include galaxies in our model. As mentioned above, hydro-
dynamical simulations present problems when describing large-scale structures due to their

3http://www.cosmosim.org/

http://www.cosmosim.org/
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small boxes. Other methods such as Semi-Analytical Models (for a review see Baugh, 2006;
White and Frenk, 1991; Somerville and Primack, 1999; Lacey et al., 2016; Henriques et al.,
2015) try to include galaxies in dark matter simulations using the evolution of halos and
modelling some galaxy formation physics. However, in terms of clustering they are not close
enough to observations. An alternative is statistical methods which assume that galaxies are
biased tracers of dark matter. These models include galaxies in the simulation without mod-
elling the stellar physics. They connect galaxies to halos using some observables to reproduce
observations. There are two widely used methods that we describe below.

i) Halo Occupation Distribution

The Halo Occupation distribution model (HOD; e.g. Jing et al., 1998; Peacock and Smith,
2000; Scoccimarro et al., 2001; Berlind and Weinberg, 2002; Cooray and Sheth, 2002; Zheng
et al., 2005) uses the probability of having N galaxies of a given type in a dark matter halo
with mass M , P (N |M) to assign galaxies. This probability is commonly described by a five
parameters formulation and is the sum of two components,

〈N(M)〉 = 〈Ncen(M)〉+ 〈Nsat(M)〉 . (1.12)

The central contribution is given by (Zheng et al., 2007)

〈Ncen(M)〉 =
1

2

[
1 + erf

(
logM − logMmin

σlogM

)]
. (1.13)

Mmin, is the minimum mass of halos that can host a central galaxy and σlogM the width of
the cutoff profile. In order to place satellite galaxies there are different formulations. One of
them is given by

〈Nsat(M)〉 = 〈Ncen(M)〉
(
M −M0

M1

)α
, (1.14)

where M0 is the mass scale of the drop, M1 characterises the amplitude and α is the asymp-
totic slope at high halo mass. Satellite galaxies can be located following the mass profile
of the halo or using subhalos. This process can require additional information about the
velocities of the galaxies in the catalogue.

ii) Halo Abundance Matching
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Another widely used method is the Halo Abundance Matching technique (Kravtsov et al.,
2004; Conroy et al., 2006; Behroozi et al., 2010; Guo et al., 2010; Trujillo-Gomez et al.,
2011; Nuza et al., 2013; Reddick et al., 2013). This is a simple but very successful method
for modelling the clustering of galaxies. The basic assumption of the model is that most
massive halos host the most massive galaxies. However, this relation is not one to one, this
rank ordering is mediated by a scatter between both populations, which is related to the
bias of the galaxy sample. The intrinsic scatter is a quantity that could be extracted from
observation using the circular velocity/velocity dispersion to stellar mass relation. However,
it is very difficult to extract a value from these relations due to different sources of errors
and large uncertainties in these measurements. For this reason the scatter is fixed by the
clustering signal. In this work, we are using the two-point correlation function.

There are different implementation of the HAM model depending on the proxies used for
galaxies and halos. Reddick et al. (2013) make a comparison between the different halo
proxies, finding better results for the maximum circular velocity in the whole history of the
halo, (Vpeak). In the following sections we use this quantity as a proxy for halos and stellar
mass for galaxies. In order to implement the model, one can define a new variable

V scat
peak = [1 +N (0, σham)]Vpeak, (1.15)

where N is a random number coming from a Gaussian distribution with mean 0 and standard
deviation σham. Using this variable, the stellar mass of galaxies (coming from the stellar mass
function) and V scat

peak from halos are rank ordered and linked in a one to one assignment.

As we already discussed, redshift-space distortions are present in galaxy surveys. In order to
make a comparison between observations and simulations, we have to translate the simulated
galaxies from real- to redshift-space using

s = rc +
v · r̂

aH(zreal)
, (1.16)

where v represents the peculiar velocities of the galaxies, r̂ is the unitary line-of-sight vector
and r the comoving distance of the galaxy. Velocities of the simulated galaxies can be added
in different ways for HOD or HAM. In the present work we assume that galaxies have the
same velocity as their (sub)halo.



Introduction 17

Thesis Overview

This thesis is presented as a compendium of three publications and is organised as follows:
In the last part of this Introduction, I present a briefly description of my contribution in each
paper and an additional list of publications in which I co-authored during my PhD. Chapter 2
provides a summary of the main results and discussions of the three papers. The first paper is
shown in Chapter 3 presenting a study of the BOSS LRG clustering. The MultiDark-Patchy
(md-patchy) mocks for BOSS are discussed in Paper II which is included in Chapter 4. In
Chapter 5, a study of the eBOSS QSO clustering is presented (Paper III). Finally, general
conclusions and outlines are provided in the last part of this thesis.

Authorship papers

This thesis is presented as a compendium of three major publications. Here is a summary
of my contribution in each of the papers. Additionally, a list of publications in which I was
also involved is included.

Paper I: MNRAS, 460, 1173-1187 (2016)

In this paper, I was the leading author doing all the analyses of the results. I compiled the
contributions from all authors writing the present paper. In addition, the model and the
catalogues were produced with the SUrvey GenerAtoR code (sugar), which I developed
myself for this research. Additionally, I computed all the two-point correlation functions and
produced a special set of mock catalogues in order to estimate the errors in the measurements.
sugar includes the reading algorithms for the simulations and the construction of the survey
geometry (including the survey masks). This code also is designed to implement the HAM
method explained in this paper. sugar will be publicly available soon.

Paper II: MNRAS, 456, 4156-4173 (2016)

In this paper, we present the different steps used to construct the MultiDark-Patchy mocks
for BOSS DR12. As is explained in the paper, all this work is based on three complementary
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codes: patchy (Kitaura et al., 2014), hadron (Zhao et al., 2015) and sugar. I was
involved in two important steps of this project. I generated the reference boxes producing
the phase-space parameters for the patchy bias model. These boxes were constructed from
the BigMultiDark simulation and had to reproduce the clustering and number density of the
BOSS sample for different redshift ranges. I used a variation of the model presented in Paper
I to generate ten boxes at different redshift which modelled the LOWZ and CMASS samples.
Once patchy and hadron produced the different outputs of the simulation, it was necessary
to put them together, constructing light-cones and to include observational effects such as
the radial and angular selection functions, fiber collisions, survey masks, stellar masses, etc.
I implemented all these processes using a variation of the sugar code. I also computed and
analysed the two-point statistics in configuration space for the different wedges, redshift bins
and stellar mass thresholds. I participated in the discussion of the general results and I was
involved in the writing of the paper where I included all my contributions.

Paper III: MNRAS, 468, 728–740 (2017)

Just as in Paper I, I carried out all the analysis of the results, compiling results from other
authors and writing the paper. I implemented the modified HAM in my code, as well as new
observational effects. All the catalogues used were made using my sugar code. A special
set of glam mocks (Klypin and Prada, 2017) was produced in order to reproduce the small
scales of the simulated quasar catalogue.

Publications

The work done for the three major papers presented in this thesis allowed me to partici-
pate in the analysis and discussion of different projects within the SDSS-III and SDSS-IV
collaborations. In addition, I was involved in the analysis of ELG samples and the proposal
of the LOw Redshift survey at Calar Alto (LORCA). The following list presents 40 papers
(including the three major papers) in which I was involved. To this date, these papers have
856 citations with an average citation of 32.4 each one4.

4https://ui.adsabs.harvard.edu

https://ui.adsabs.harvard.edu
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CHAPTER 2

Modelling Luminous Red Galaxies and
Quasar samples

2.1 Main Results

The main goal of this thesis is to study the methods to be used to connect galaxies or quasars
with dark matter halos from spectroscopic surveys and N-Body simulations respectively. We
perform this work considering the clustering of galaxies by using the two-point correlation
function as the more basic observable to be reproduced. Furthermore, we include some of
the most important observational effects, which are due mainly to colour selections used in
observations, as well as unavoidable uncertainties from the instrumentation.

The three papers presented in this work were produced within the SDSS-III and the SDSS-
IV programs. They were companion papers in the BOSS Data Release 12 (DR12) and the
eBOSS First Year of Quasars (Y1Q). Papers I and II are closely linked as both of them
were part of the same project within the BOSS collaboration. They present a study of the
clustering of luminous red galaxies. Paper III is a follow-up of the research started in BOSS
which seeks to build high-fidelity mocks reproducing most of the features of the clustering of
the observed samples. In it, we propose a modified halo abundance matching model which
can be applied to other galaxy samples such as emission line galaxies (Favole et al., 2016).

The following sections present the most relevant results obtained in the three papers. Al-
though all the results are part of the same line of research, they are divided in two blocks, the
simulated LRG catalogues and the quasars mocks. We split the results because each block
uses a different model to study the observed sample. In both cases, LRG and quasars, we
use the BigMultiDark Planck N-Body simulation which has a box size large enough to cover



26 Modelling Luminous Red Galaxies and Quasar samples

the volume of the surveys and a sufficiently accurate numerical resolution to resolve the dark
matter halos that host the different galaxy populations. This simulation allows us to make
predictions about different properties of the observed samples such as their bias or their halo
occupation distribution. Additionally, our LRG model was one of the essential pillars in the
construction of mocks for the covariance matrices of the BOSS Final Data Release (e.g. Zhao
et al., 2017; Beutler et al., 2017; Ross et al., 2017).

2.1.1 Luminous Red Galaxies – BOSS

Nuza et al. (2013) produced one of the first CMASS catalogues of simulated galaxies from the
1h−1Gpc MultiDark WMAP7 simulation (Ωm = 0.27, ΩΛ = 0.73). They proposed a simple
model to select the typical dark matter halos that host LRGs. Their model mainly depends on
two parameters which are fixed by the number density and the two-point correlation function
of the observed sample. Their final mock catalogue uses the whole volume of the simulation
reproducing with reasonable accuracy the correlation function and the power spectrum of
the data. Paper I continues the work started by Nuza et al. (2013). Our main contribution
is the inclusion of a large number of observational effects, which help to produce a galaxy
catalogue closer to the observed distribution.

The first step to model these observations is to include the survey geometry in the simu-
lated catalogue. This implies the construction of light-cones from different snapshots of the
simulation. For this purpose I developed the SUrvey GenerAtoR code (sugar) which was
designed to produce mock catalogues from simulations that reproduce some of the features
of the observed data. In the case of CMASS, the goal is to construct light-cones which
reproduce the dependence of the number density with redshift, as well as the geometrical
mask that includes the angular completeness of the survey. Unlike Nuza et al. (2013), in our
model halos hosting LRG are selected using a single parameter because the number density
is fixed by construction. Then, we select dark matter halos using the peak circular velocity,
Vpeak (see Equation (1.15)). For galaxies, the stellar mass is used as a proxy, we specifically
use the Portsmouth SED-fit DR12 stellar mass catalogue (Maraston et al., 2013). An impor-
tant ingredient in the assignment of galaxies to halos is the stellar mass function (Figure 3,
Chapter 3). It enable us to assign stellar masses from a complete sample to all halos in the
simulation.

Unlike previous halo abundance matching studies, we do no construct volume limited samples
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from the observed data. One of the improvements of this work is that we describe all the
observed galaxies in the CMASS sample, which implies to model the observed stellar mass
incompleteness at different redshifts. Moreover, we include the fiber collision effects, since
the resolution of the BigMultiDark simulation allows us to study the small scales clustering
of the sample. We use the methodology proposed by Guo et al. (2012) to mimic the impact of
fiber collision in our catalogue. Using the distribution of plates in the telescope, this method
assigns fibers to some galaxies and randomly removes the redshift of others. Then, we correct
the clustering of the simulated catalogue using close-pair weights, just as in the case of the
observational data. If a galaxy does not have spectroscopic redshift, the one from its nearest
neighbour is assigned. This process introduces an unphysical displacement of the galaxy in
the radial coordinate. This effect can be used to compare our fiber collisions model with
observations. We can compare the displacements of the galaxies in the simulation with those
from the data as is shown in Hahn et al. (2017). Figure 7 of Chapter 3 shows an excellent
agreement between our catalogues and observations.

Current observations do not provide a direct measurement of the scatter between dark matter
halos and galaxies, so its value has to be fixed by indirect measurements. In this work, we use
the impact of the scatter on the clustering of galaxies. We use the value that better reproduces
the monopole of the two-point correlation function between 2h−1Mpc and 30h−1Mpc. This
range is chosen in order to avoid possible disagreements due to fiber collisions at small scales
or remaining systematics at large scales. Additionally, the effect of cosmic variance is not
too large at these scales. Once the value of the scatter is fixed, the model can reproduce
almost all scales of the monopole within 1σ errors. The largest differences are mainly due to
remaining systematics in the data.

Our catalogue reproduces the projected correlation function at all scales within 1σ, just as
the monopole of the 2PCF. However, we do not find the same agreement for the quadrupole
of the correlation function. In this case, we find differences larger than 1σ at ∼ 20 h−1Mpc.
The disagreement in the quadrupole and also a small deviation in the three point correlation
function for angles ∼ 0 and ∼ π could be related to the same physical processes. However,
for all the other scales we find that our catalogue reproduces with good agreement the three
point correlation function for different configurations.

We also find an excellent agreement with the monopole of the power spectrum from obser-
vation. We are able to reproduce scales at k ∼ 1. Similarly, the prediction of the baryonic
peaks are in excellent agreement with the observed data. Using the dark matter particles
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from the simulation and our simulated galaxy catalogue, we compute the bias of the CMASS
sample which is in agreement with previous results (e.g. White et al., 2011; Nuza et al., 2013).
Additionally, we show our prediction of the halo mass to stellar mass relation that can give
us information about the formation of galaxies in dark matter halos. This prediction is in
good agreement with lensing measurements.

The model presented in Paper I constitutes the basis of Paper II, which describes the pipeline
used in the construction of 12,288 mock galaxy catalogues for the Final Data Release of BOSS.
For this analysis, we also include the LOWZ sample. These catalogues were designed on the
purpose of having a better estimation of the covariance matrices, providing strong constraints
on the measurements of the cosmological parameters. As in the case of Paper I, the basic
idea is to produce catalogues that reproduce observation with a good precision (high fidelity
mocks). For this reason, we include observational effects such as fiber collision, geometry of
the survey, the radial selection function for each sample and the evolution of the clustering
including 10 snapshots in the redshift range 0.15 < z < 0.75. These catalogues allowed a
robust analysis of BAOs and RSDs done in another studies (e.g. Grieb et al., 2017; Gil-Marín
et al., 2017; Ross et al., 2017; Beutler et al., 2017).

The mock production is divided in different stages which are performed by three principal
codes. Boxes at different redshifts are produced by the patchy code (Kitaura et al., 2014)
which uses an Augmented Lagrangian Perturbation Theory (ALPT) to evolve the density
field of dark matter. This method allows us to run simulations with a low computational
cost compared with the N-body simulation. For this project, the patchy code provided
the catalogue of galaxies directly by modelling the bias of the sample. In order to fix the
bias, the patchy code needs galaxy catalogues from an N-Body simulation to calibrate
the phase parameters of the bias model. Thus, we follow a similar procedure as exposed
in Paper I. In this case we do not generate light-cones from the simulation, but ten boxes
at different redshift reproducing the number density and the clustering of the observational
data. Unfortunately, the patchy code only provides positions and velocities of halos. In
order to include stellar masses for each mock a proxy for halo masses is needed. So the HAlo
Distribution ReconstructiON code (hadron Zhao et al., 2015) is used, assigning masses to
the various objects.

In the last step, we construct a pipeline based on the sugar code in order to manage
thousands of simulations with different snapshots and join them for the final version of the
mocks. In this part, we construct light-cones and include all the observational effects such as
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the geometry, the fiber collisions or the stellar mass of each galaxy. Finally, we provide 2048
mocks for each LOWZ, CMASS, and combined LOWZ+CMASS and northern and southern
galactic cap. So far, these catalogues constitute the largest ever simulated volume (∼ 192, 000

h−1Gpc) and they are publicly available5.

Our catalogues reproduce the two- and three-order clustering statistics with a good agree-
ment, as well as the dependence of the clustering with the stellar mass, making them the most
realistic option compared to the other available mock catalogues. In Paper II we show that
md-patchy BOSS DR12 mocks are in agreement within 1σ for the monopole, quadrupole
and hexapole of the two point correlation function and power spectrum. Just as in the case of
the BigMultiDark Planck simulation, the resulting mocks reproduce the three-point function
in redshift and k space within 1σ for most of scales.

2.1.2 Quasar – eBOSS

For the last few years, the clustering of the LRG sample has been carefully studied with
different methods (Zheng et al., 2007; White et al., 2011; Guo et al., 2014; Leauthaud et al.,
2016; Montero-Dorta et al., 2016; Tinker et al., 2017). LRGs are the most massive galaxies,
thus they fill the high-mass end of the stellar mass function. This feature simplifies their
connection with dark matter halos using luminosity or stellar mass. In the case of CMASS,
this connection is even cleaner than in other surveys, because the colour cuts were performed
to prefer the selection of LRGs. However, ELG and quasars sample are more complex to
model. Their halo masses are not well constrained and measuring the incompleteness of each
sample is not easy.

Just as in Paper I, the goal of Paper III is to design a simple model which reproduces the
observed sample and extracts information about the halos hosting quasars. The scatter used
in the standard HAM and the stellar mass incompleteness of the LRG affect the distribution
of halos hosting galaxies in a similar way. If we knew the final distribution of halos, we could
select them from the simulation following this distribution without using the scatter and
the incompleteness. This statement seems obvious but can be helpful for quasars. In that
case, we do not know neither the intrinsic scatter between dark matter halos and quasars nor
the incompleteness of the sample. Then, we assume that the final distribution of the halos
hosting quasars is given by a Gaussian function that will depend on three parameters, the

5http://skyserver.sdss.org/

http://skyserver.sdss.org/
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mean, the standard deviation and the fraction of quasars living in subhalos. Just as in the
case of LRG, these parameters are fixed by the observed clustering.

Using this model, we construct simulated quasar catalogues that reproduce the two-point
correlation function of ∼70,000 optical quasars from the eBOSS Y1Q CORE sample in the
redshift range 0.9 < z < 2.2. Because of the large redshift range, the model is implemented
in light-cones constructed from the BigMultiDark Planck simulation, covering a comparable
area to the eBOSS Y1Q sample. In the case of quasars, we use Vmax as halo proxy. Current
observations do not bear information on small-scale clustering. For this reason, we cannot
constrain the fraction of satellites and we do not distinguish between host and subhalos when
the selection is done. The final mock thus has the same fraction of satellites as the complete
simulation in the mass range used.

The current data do not allow us to impose constraints on the width of the distribution,
so we used a single parameter in order to model the clustering of the Y1Q. The width of
the Gaussian distribution is fixed to 30 kms−1 and we only impose a value to the satellite
fraction in the BigMDPL-QSO-NSAT light-cone while for the other light-cones we do not
fix this parameter. We produce three kinds of light-cones, one including the evolution of
the parameters with redshift (BigMDPL-QSOZ), another describing the whole redshift range
with a single parameter (BigMDPL-QSO) and a third one fixing the satellite fraction to zero
(BigMDPL-QSO-NSAT), where the mean halo masses are 1012.61, 1012.66 and 1012.70 M�,
respectively.

The prediction of our model is in a good agreement with the 2PCF and the monopole of
the power spectrum of the Y1Q data. In our catalogue we include redshift errors given by
Dawson et al. (2016). These errors improve the agreement between our model and the data.
They provide a good description of the observed clustering on small scales, which is very
sensitive to variations caused by these errors.

In order to compare all the light-cones, we use the Bayes factor, finding a strong evidence that
the BigMDPL-QSOZ (four parameters) reproduces the data better than the BigMDPL-QSO
(one parameter). However, we cannot make the same conclusion with the model without
satellites, which reproduces the data with a similar agreement than the BigMDPL-QSOZ
model. Finally, we describe the relation between dark matter halos and quasar computing
the linear and second order bias. The mean linear bias of the Y1Q sample gives us 2.37±0.12

and a second-order bias b2 = 0.314± 0.030.
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2.2 Discussion

Luminous red galaxies have been studied in a wide redshift range. SDSS has provided a
large number of galaxies which have been studied with many different methods in order to
understand the more massive galaxies in the Universe. HOD and HAM methods are widely
used to analyse the clustering of the LRGs. Other studies include more elaborated models
taking into account effects such as the halo assembly bias (Saito et al., 2016). Our study shows
that a simple HAM model can have a good agreement with the current data. However, future
experiments will increase the accuracy of measurements and it will be possible to distinguish
between more complex models.

The galaxy catalogue produced in this work combines a large number of observational features
with a very accurate simulation built with the most precise measurements of the cosmological
parameters. Our work improves the results found by Nuza et al. (2013) due mainly to the
cosmological parameters used to run the simulation and the larger volume of the survey.
The observational effects included in our catalogues ensure that the mean scatter between
dark matter and galaxies has to be closer to true scatter in the Universe, since we remove
the contribution of the incompleteness. Using a light-cone we also include the evolution of
the dark matter field and the dependence of the number density with redshift. However, we
model the incompleteness of the sample using a simple downsampling which can introduce
small systematics effects in our catalogue, because not all the galaxies in that range of stellar
masses are LRGs. Furthermore, the scatter value and the incompleteness of the sample have
a strong dependence with the model used to compute the stellar mass of each galaxy, so each
stellar mass model will provide differences in the clustering of the observed data, that is to
say different values of the scatter.

Our HAM model for LRG reproduces most of the observational measurements within 1σ
(Figure 9 and Figure 11, Chapter 3). However, some discrepancies are found at large scales
in the monopole of the correlation function. It is possible to see that all the data points
larger than a 100 h−1Mpc are systematically boosted compared to the theory. This could
be explained by remaining systematics that should be included in the observational data. A
more important disagreement is found in the quadrupole of the correlation function at scales
∼20 h−1Mpc, as well as in the three point correlation function for angles between ∼ 0 and
∼ π. We enumerate some of the possible causes of this disagreement. First, it is important
to notice that we do some approximations in the mock building process such as the non-
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evolution of the stellar mass function or the random selection of galaxies in order to account
for incompleteness of the observational sample. It is also relevant to comment that our model
works fine in the most complete range of the CMASS sample (0.51 < z < 0.57), showing that
incompleteness effects could play a role in this discrepancy. From a theoretical point of view,
this disagreement could be related to the velocity dispersion of the simulated galaxies inside
the halo. We are assuming that galaxies are at the centre of the host halos and have their
same velocities. Guo et al. (2016) solve this problem including a velocity bias for satellite
galaxies. Another possible explanation is the effects due to the assembly bias of the halos as
shown in Saito et al. (2016). Despite the differences in the quadrupole, our model reproduces
observations with high precision. These excellent predictions are the result of combining the
observational effects of the survey and a simulation with the best cosmological parameters
measured from the CMB. This proves that the ΛCDM that best fit the CMB anisotropies at
z = 1100 by Planck Collaboration et al. (2014) predicts with high accuracy the clustering of
the LRG at z ∼ 0.5.

The patchy code has been a successful method reproducing N-Body simulation at scales
larger than few Mpc (Kitaura et al., 2014; Chuang et al., 2015b). Then, our model for
LRG and the potential of the patchy code enable us to construct thousand of LRG mocks
using few computational resources. Just as in the case of the BigMultiDark, quadrupole
disagreements are also present in the patchy simulations. However, mock catalogues have
to describe the observational results in the most accurate way. So, the discrepancy on the
quadrupole was corrected increasing the Gaussian noise in the velocity distribution of the
simulated galaxies. We obtained results with an excellent agreement for scales ∼ 10 Mpc in
real space and ∼ 0.3 Mpc−1h in Fourier Space. The excellent description of the observational
data made by the md-patchy DR12 mocks was very important to construct realistic covari-
ance matrices in different studies of BOSS DR11/DR12. Our mocks have shown a better
match to the data than the second set of mocks available for BOSS, Quick Particle Mesh
mocks (QPM; White et al., 2014), in terms of two and three point statistics.

In the new era of precision cosmology, it is fundamental to improve the results of our numerical
methods in order to have a more detailed description of observations. The quality of the
simulations can have a direct impact on the constraints of the measurements and thus, in
the future it will play a decisive role when testing different cosmological models. Over the
next decades, surveys will provide a huge quantity of information and their analyses will be
a challenge for numerical simulation, particularly for the different methods used to construct
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the covariance matrices. New experiments will observe very large volumes in the sky, focusing
on the study of ELG and quasars that live in halos with a wide mass range. BAO studies
can still use the current methods to generate mock catalogues, because the linear regime can
be well described by them. However, RSD analyses study the non-linear scales which current
mock simulated catalogues cannot properly resolve. Of course, this happens if the simulated
volume is very large and the computational resources are limited. In the future, we will have
to solve these problems, which are already presented in large surveys as eBOSS, and they
will be more critical for the next generation surveys like DESI or EUCLID.

Both emission line galaxies and quasars have been the principal targets of current and future
observational projects. Different studies have shown that quasars are good biased tracers of
the dark matter density field and due to their observational features they allow us to explore
deeper regions in the Universe. Recent studies of the Lyman-α forecast of the quasars have
provided measurements of the BAO scale at z > 2. In the coming years, eBOSS collaboration
expects to measure the BAO peak using spectroscopically confirmed quasars in the range
0.9 < z < 2.2, for the first time. These new results will provide important information about
the formation and evolution of the structures and therefore of the formation of galaxies. All
these studies require a better understanding of the distribution of the ELG and quasars in
relation to the underlying dark matter field.

One of the biggest challenges of cosmological simulations is to increase the current volumes,
making them comparable to the new surveys, and, at the same time, increase the resolution
in order to resolve the halos hosting quasars or ELG. Different studies find that the typical
mass of halos hosting quasars is ∼ 1012.5 M�. For the eBOSS first year of quasars, the
BigMultiDark simulation provides a volume comparable to observations and it resolves the
dark matter halos needed for this study. However, we are close to the resolution limit of the
simulation and this does not allow us to increase the parameter space of our model.

It is not very common to find pairs of quasars living in the same halo host and this is also
due to the small number density of those objects. Additionally, fiber collisions can also have
some impact on small scales. So it is very difficult to understand the distribution of quasars
inside dark matter halos and the fraction of quasars living in subhalos is an open question.
Similar problems are found in the analysis of emission line galaxies. In the future, the cross-
correlation between different populations could help understand what the distribution of
these objects at small scales is. In the last year of eBOSS, we will have regions in the sky
where LRG and ELG are overlapped, making it possible to measure the cross-correlation of
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both galaxy samples. The simple methods for modelling the clustering of quasars or ELG
can be a very useful tool in the construction of mock catalogues, as in the case of LRG. Mock
catalogues as GLAMmocks (Klypin et al., 2016) o EZmocks (Chuang et al., 2015a) are using
our models for fixing the bias of the eBOSS sample.



CHAPTER 3

Clustering of LRG in the BOSS-DR12

Publication: Monthly Notices of the Royal Astronomical Society, Volume 460, Issue 2,
p.1173-1187

Motivation

The SDSS I/II programs provided a large amount of data which allowed us to measure the
BAO scale in the local universe for the first time. These projects observed a large number
of the most massive galaxies in the Universe. Many studies of this sample have increased
our knowledge of these galaxies. The next generation of the SDSS project, BOSS increased
the number and the volume of the sample at z ∼ 0.5. It allowed us to have more precise
measurements. This way, we need more accurate models to study the distribution of LRG at
different redshift. So we propose to combine one of the most successful models, an N-body
simulation (with the best prediction of the cosmological parameters) and observational effects
from the survey in order to have the most realistic description of the galaxy clustering of the
survey.
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ABSTRACT
We present a study of the clustering and halo occupation distribution of Baryon Oscillation
Spectroscopic Survey (BOSS) CMASS galaxies in the redshift range 0.43 < z < 0.7 drawn
from the Final SDSS-III Data Release. We compare the BOSS results with the predictions
of a halo abundance matching (HAM) clustering model that assigns galaxies to dark matter
haloes selected from the large BigMultiDark N-body simulation of a flat � cold dark matter
Planck cosmology. We compare the observational data with the simulated ones on a light
cone constructed from 20 subsequent outputs of the simulation. Observational effects such as
incompleteness, geometry, veto masks and fibre collisions are included in the model, which
reproduces within 1σ errors the observed monopole of the two-point correlation function at all
relevant scales: from the smallest scales, 0.5 h−1 Mpc, up to scales beyond the baryon acoustic
oscillation feature. This model also agrees remarkably well with the BOSS galaxy power
spectrum (up to k ∼ 1 h Mpc−1), and the three-point correlation function. The quadrupole
of the correlation function presents some tensions with observations. We discuss possible
causes that can explain this disagreement, including target selection effects. Overall, the
standard HAM model describes remarkably well the clustering statistics of the CMASS
sample. We compare the stellar-to-halo mass relation for the CMASS sample measured using
weak lensing in the Canada–France–Hawaii Telescope Stripe 82 Survey with the prediction
of our clustering model, and find a good agreement within 1σ . The BigMD-BOSS light cone
including properties of BOSS galaxies and halo properties is made publicly available.

Key words: methods: numerical – galaxies: abundances – galaxies: haloes – large-scale
structure of Universe.

1 IN T RO D U C T I O N

One of the major goals in cosmology is to explain the formation of
the large-scale structure (LSS) of the Universe. However, the main
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ingredient that drives this evolution – the dark matter – can only be
probed using the distribution of galaxies, and galaxies are biased
tracers of the matter field. This makes this study challenging. In the
last 20 years, vast amounts of observational data have been obtained,
improving each time the precision of the LSS measurements and
demanding ever more accurate theoretical models. In fact, one of
the strongest arguments that we understand how the LSS forms and
evolves is our ability to reproduce the galaxy clustering through
cosmic time, starting from the primordial Gaussian perturbations.
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During the last decade, surveys such as the Sloan Digital Sky Survey
(SDSS-I/II/III; York et al. 2000; Eisenstein et al. 2011) have made it
possible to determine the clustering of galaxy populations at scales
out to tens of Mpc and beyond with reasonable accuracy.

The Baryon Oscillation Spectroscopic Survey (BOSS; Dawson
et al. 2013) Data Release 12 (DR12; Alam et al. 2015) provides
redshift of 1.5 million massive galaxies in 10 000 deg2 area of
the sky and for redshifts in the range 0.15–0.75. BOSS DR12 has
an effective volume seven times larger than that of the SDSS-I/II
project. These data provide us with a sufficiently statistical sample
to examine our theoretical predictions over a range of scales.

In order to compare the � cold dark matter (�CDM) model
and the observational data, it is necessary to link the galaxy and
the dark matter distributions. There are a number of methods to
assign galaxies to the dark matter. State-of-the-art hydrodynamical
simulations, which include detailed galaxy formation descriptions,
are computationally unaffordable for the volumes considered here
(e.g. Vogelsberger et al. 2014; Schaye et al. 2015), and indeed, there
are no large samples of simulated galaxies that can be used to match
BOSS. Semi-analytic models are less computationally consuming
methods to populate dark matter haloes with galaxies (e.g. Knebe
et al. 2015). These models incorporate some physics of galaxy
formation.

The most popular models are based on the statistical relations
between galaxies and dark matter haloes. One of the most used
models is the halo occupation distribution (HOD; e.g. Jing, Mo &
Börner 1998; Peacock & Smith 2000; Berlind & Weinberg 2002;
Zheng et al. 2005; Leauthaud et al. 2012; Guo et al. 2014). The main
component of the HOD is the probability, P(N|Mhalo), that a halo of
virial mass Mhalo hosts N galaxies with some specified properties.
These models have several parameters which allow one to match
the observed clustering.

The model known as the halo abundance matching (HAM;
Kravtsov et al. 2004; Conroy, Wechsler & Kravtsov 2006; Behroozi,
Conroy & Wechsler 2010; Guo et al. 2010; Trujillo-Gomez et al.
2011; Nuza et al. 2013; Reddick et al. 2013) connects observed
galaxies to simulated dark matter haloes and subhaloes by requir-
ing a correspondence between the luminosity or stellar mass and a
halo property. The assumption of this model is that more luminous
(massive) galaxies are hosted by more massive haloes. However, this
relation is not a one-to-one relation because there is a physically
motivated scatter between galaxies and dark matter haloes (e.g. Shu
et al. 2012). By construction, the method reproduces the observed
luminosity function, LF (or stellar mass function, SMF). HAM re-
lates the LF (SMF) of an observed sample with the distribution of
haloes in an N-body simulation. The implemented assignment re-
quires that one works with complete samples in luminosity (stellar
mass) or have precise knowledge of the incompleteness as a function
of the luminosity (stellar mass) of the galaxy sample. Luminous red
galaxies (LRGs) are the most massive galaxies in the Universe, and
they represent the high-mass end of the SMF. This feature makes
this population of galaxies an excellent group to be reproduced with
the abundance matching.

In this paper, we compare the clustering of the BOSS CMASS
DR12 sample with predictions from N-body simulations. We use
an abundance matching to populate the dark matter haloes of the
BigMultiDark Planck simulation (BigMDPL; Klypin et al. 2016).
In order to include systematic effects from the survey, as well as
the proper evolution of the clustering, we construct light cones
which reproduce the angular selection function, the radial selection
function and the clustering of the monopole in configuration space.
To generate these catalogues, we developed the SUrvey GenerAtoR

(SUGAR) code. Once the HAM and the light cone are applied, we
compute the predictions of our model for two-point statistics and
the three-point correlation function (3PCF). We also present the
prediction of the stellar-to-halo mass relation and its intrinsic scatter
compared to lensing measurements. The HAM, the BigMDPL and
the methodology to produce light cone played a key role in the
construction of the MultiDark PATCHY BOSS DR12 mocks (MD-
PATCHY mocks; Kitaura et al. 2016, companion paper).

In order to have a good estimation of the uncertainties in this
work, we use 100 MD-PATCHY mocks. These mocks are produced
using five boxes at different redshifts that are created with the PATCHY

code (Kitaura, Yepes & Prada 2014). The PATCHY code can be de-
composed into two parts: (1) computing approximate dark matter
density field and (2) populating galaxies from dark matter density
field with the biasing model. The dark matter density field is es-
timated using augmented Lagrangian perturbation theory (Kitaura
& Heß 2013) which combines the second-order perturbation the-
ory (see e.g. Buchert 1994; Bouchet et al. 1995; Catelan 1995) and
spherical collapse approximation (see Bernardeau 1994; Mohayaee
et al. 2006; Neyrinck 2013). The biasing model includes determin-
istic bias and stochastic bias (for details see Kitaura et al. 2014).
The velocity field is constructed based on the displacement field
of dark matter particles. The modelling of finger-of-god has also
been taken into account statistically. The MD-PATCHY mocks are
constructed based on the BigMD simulation with the same cosmol-
ogy used in this work. The mocks match the clustering of the galaxy
catalogues for each redshift bin (see Kitaura et al. 2016, compan-
ion paper, for details). The BigMultiDark light-cone catalogues of
BOSS CMASS galaxies in the Final DR12 (hereafter BigMD-BOSS
light cone) presented in this work are publicly available.

This paper is structured as follows: Sections 2 and 3 describe
the SDSS-III/BOSS CMASS galaxy sample and the BigMDPL N-
body cosmological simulations used in this work. In Section 4, we
provide details on different observational effects and briefly describe
the SUGAR code. Section 4.1 presents the main ingredients of the
HAM modelling of the CMASS galaxy clustering. A comparison
of our results to observation is shown in Section 5. Subsequently,
we discuss the principal results in Section 6. Finally, in Section 7,
we present a summary of our work. For all results in this work, we
use the cosmological parameters �m = 0.307, �B = 0.048, �� =
0.693.

2 SDSS-I I I /BOSS CMASS SAMPLE

The Baryon Oscillation Spectroscopic Survey1 (BOSS; Bolton et al.
2012; Dawson et al. 2013) is part of the SDSS-III programme
(Eisenstein et al. 2011). The project used the 2.5 m aperture Sloan
Foundation Telescope at Apache Point Observatory (Gunn et al.
2006). The telescope used a drift-scanning mosaic CCD camera
(Gunn et al. 1998) with five colour bands, u, g, r, i, z (Fukugita
et al. 1996). Spectra are obtained using the double-armed BOSS
spectrographs, which are significantly upgraded from those used
by SDSS I/II, covering the wavelength range 3600–10 000 Å with a
resolving power of 1500–2600 (Smee et al. 2013). BOSS provides
redshift for 1.5 million galaxies in 10 000 deg2 divided into two
samples: LOWZ and CMASS. The LOWZ galaxies are selected to
be the brightest and reddest of the low-redshift galaxy population
(z � 0.4), extending the SDSS I/II LRGs. The CMASS target

1 http://skyserver.sdss.org/dr12/en/home.aspx
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selection is designed to isolate galaxies at higher redshift (z �
0.4), most of them being also LRGs.

In the present paper, we focus on the CMASS DR12 North
Galactic Cap (NGC) sample. Galaxies are selected from SDSS
DR8 imaging (Aihara et al. 2011) according to a series of colour
cuts designed to obtain a sample with approximately ‘constant stel-
lar mass’ (Reid et al. 2016). The following photometric cuts are
applied:

17.5 < icmod < 19.9 (1)

rmod − imod < 2 (2)

d⊥ > 0.55 (3)

ifib2 < 21.5 (4)

icmod < 19.86 + 1.6(d⊥ − 0.8), (5)

where i and r indicate magnitudes, and ifib2 is the i-band mag-
nitude within a 2 arcsec aperture. All magnitudes are corrected
for Galactic extinction [via the Schlegel et al. (1998) dust maps].
The subscript ‘mod’ denotes the ‘model’ magnitudes and the sub-
script ‘cmod’ refers to the ‘cmodel’ magnitudes. The model mag-
nitudes represent the best fit of the DeVaucouleurs and exponen-
tial profile in the r band (Stoughton et al. 2002) and the cmodel
magnitudes denote the best-fitting linear combination of the expo-
nential and DeVaucouleurs models (Abazajian et al. 2004). d⊥ is
defined as

d⊥ = rmod − imod − (gmod − rmod)/8.0. (6)

Star–galaxy separation is performed on the CMASS targets via

ipsf − imod > 0.2 + 0.2(20.0 − imod) (7)

zpsf − zmod > 9.125 − 0.46zmod. (8)

The subscript ‘psf’ refers to point spread function magnitudes.
CMASS sample contains galaxies with redshift z > 0.4, having
the peak of the number density at z ≈ 0.5. We will concen-
trate our analysis in the redshift range 0.43 < z < 0.7 for this
sample.

BOSS sample is corrected for redshift failures and fibre collisions.
In the following sections, we will use the same weights given in
Anderson et al. (2014) in order to correct the clustering signal
affected by these systematics (Ross et al. 2012). The total weight
for a galaxy is given by

wg = wstarwsee(wzf + wcp − 1). (9)

In this equation, wzf denotes the redshift failure weight and wcp

represents the close pair weight. Both quantities start with unit
weight. If a galaxy has a nearest neighbour (of the same target
class) with a redshift failure (wzf) or its redshift was not obtained
because it was in a close pair (wcp), we increase wzf or wcp by one.
As found in Ross et al. (2012), the impact of this effect is very small
for the CMASS sample; for this reason, we do not model the redshift
failures in this study. For CMASS, additional weights are applied
to account for the observed systematic relationships between the
number density of observed galaxies and stellar density and seeing
(weights wstar and wsee, respectively).

3 B I G M U LT I DA R K S I M U L AT I O N

The BigMDPL is one of the MultiDark2 N-body simulation de-
scribed in Klypin et al. (2016). The BigMDPL was performed with
GADGET-2 code (Springel 2005). This simulation was created in a box
of 2.5 h−1 Gpc on a side, with 38403 dark matter particles. The mass
resolution is 2.4 × 1010 h−1 M�. The initial conditions, based on
initial Gaussian fluctuations, are generated with Zeldovich approx-
imation at zinit = 100. The suite of BigMultiDark is constituted of
four simulations with different sets of cosmological parameters. In
this study, we adopt a flat �CDM model with the Planck cosmologi-
cal parameters: �m = 0.307, �B = 0.048, �� = 0.693, σ 8 = 0.829,
ns = 0.96 and a dimensionless Hubble parameter h = 0.678 (Klypin
et al. 2016). The simulation provides 20 redshift outputs (snapshots)
within the redshift range 0.43 < z < 0.7.

For the present analysis, we use the ROCKSTAR (Robust Over-
density Calculation using K-Space Topologically Adaptive Refine-
ment) halo finder (Behroozi, Wechsler & Wu 2013a). Spherical dark
matter haloes and subhaloes are identified using an approach based
on adaptive hierarchical refinement of friends-of-friends groups in
six phase-space dimensions and one time dimension. ROCKSTAR com-
putes halo mass using spherical overdensities of a virial structure.
Before calculating halo masses and circular velocities, the halo
finder performs a procedure which removes unbound particles from
the final mass of the halo. ROCKSTAR creates particle-based merger
trees. The merger trees algorithm (Behroozi et al. 2013b) was used
to estimate the peak circular velocity over the history of the halo,
Vpeak, which we use to perform the abundance matching.

4 M E T H O D O L O G Y: TH E SUGAR C O D E

We construct light-cone catalogues from the BigMDPL simulation
which reproduce the clustering measured in the monopole of the
redshift-space correlation function from the BOSS CMASS DR12
sample. For this purpose, we developed the SUGAR code which im-
plements the HAM technique to generate galaxy catalogues from a
dark matter simulation. The code can apply the geometric features of
the survey and selection effects, including stellar mass incomplete-
ness and fibre collision effects. All the available outputs (snapshots)
of the BigMDPL simulation are used, so that the light cone has the
proper evolution of the clustering.

In the following subsections, we present the ingredients used to
produce the BigMD-BOSS light cone, which is shown in Figs 1 and
2. We present the HAM method and the SMF adopted in this work.
The light-cone production, the fibre collision assignment and the
modelling of the stellar mass incompleteness are also shown.

4.1 HAM procedure

We use a HAM technique to populate dark matter haloes with galax-
ies (see e.g. Nuza et al. 2013). This physically motivated method
produces mock galaxy catalogues that in the past gave good rep-
resentations of large galaxy samples (see for SDSS, e.g. Trujillo-
Gomez et al. 2011; Reddick et al. 2013). The basic assumption of
this method is that massive haloes host massive galaxies. This al-
lows one to generate a rank-ordered relation between dark matter
haloes and galaxies. However, observations show that this assign-
ment cannot be a one-to-one relation (Shu et al. 2012). In order to
create a more realistic approach, it is necessary to include scatter in

2 http://www.multidark.org/
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Figure 1. Left-hand panel: sky area covered by the BigMD-BOSS light cone. This region includes the BOSS CMASS DR12 geometry and veto masks.
Right-hand panel: sky area covered by the BOSS CMASS DR12 sample. Colours indicate the angular number density, which is normalized by the most dense
pixel. Each pixel has an angular area of 1 deg2. BigMD-BOSS light cone uses the same mask as the BOSS CMASS DR12, including angular completeness
and veto masks.

Figure 2. Pie plot of the BigMD-BOSS light cone (left-hand panel) and the BOSS CMASS DR12 data (right-hand panel). Both figures were made with 2 deg
of thickness (Dec. coordinate).

this matching. The HAM can relate galaxy luminosities or stellar
mass from galaxies to a halo property. In this paper, we use the peak
value of the circular velocity over the history of the halo (Vpeak),
which has advantages compared to the halo mass (Mhalo). Mhalo is
well defined for host haloes, but its definition becomes ambiguous
for subhaloes. The subhalo mass also depends on the halo finder
used (Trujillo-Gomez et al. 2011; Reddick et al. 2013). In addition
to Mhalo and Vpeak, HAM can be performed using other quantities
such as the maximum circular velocity of the halo (Vmax), the max-
imum circular velocity of the halo at time of accretion (Vacc) or
the halo mass at time of accretion (Macc). Other studies present the
effect of the halo property in the HAM (e.g. Reddick et al. 2013;
Guo et al. 2015a).

We adopt a modified version of the scatter proposed in Nuza
et al. (2013). Our implementation of the abundance matching can
be briefly summarized in the following steps.

(i) For the dark matter haloes, we define a scattered Vpeak, which
is used only to assign stellar mass to the haloes. This scattered
quantity is defined by

V scat
peak = (1 + N (0, σHAM))Vpeak, (10)

where N is a random number, produced from a Gaussian distribu-
tion with mean 0 and standard deviation σHAM(Vpeak|M∗).

(ii) Sort the catalogue by V scat
peak, starting from the object with the

largest velocity and continuing down until reaching all the avail-

able objects. Use this catalogue to construct the cumulative number
density of the haloes as a function of V scat

peak.
(iii) Compute the cumulative number density of galaxies as

a function of the stellar mass using the adopted SMF (see
Section 4.2).

(iv) Finally, construct a monotonic relation between the cumula-
tive number density functions from steps (ii) and (iii) such as

ngal(> Mi
∗) = nhalo(> V scat

peak,i). (11)

This relation implies that a halo with V scat
peak,i will contain a galaxy

with stellar mass Mi
∗.

This assignment is monotonic between V scat
peak and M∗, but not be-

tween Vpeak and M∗. The relation of these two quantities is mediated
by the scatter parameter, σHAM(Vpeak|M∗).

4.2 Stellar mass function

We employ the Portsmouth SED-fit DR12 stellar mass catalogue
(Maraston et al. 2013) with the Kroupa initial mass function (Kroupa
2001) to estimate the SMF. The CMASS LSS catalogue does not
include the stellar mass information. For that reason, we matched
the BOSS and the LEGACY stellar mass catalogues with the LSS
BOSS CMASS catalogue. In order to identify an SDSS spectrum in
the different catalogues, there are three numbers that determine each
galaxy: PLATE, MJD and FIBERID. We use these three quantities
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Figure 3. SMF from BOSS CMASS DR12 sample. Circles and squares
show the stellar mass distribution for two redshift bins from the Portsmouth
DR12 catalogue. Poissonian errors are included. The solid line shows the
estimate of the SMF for this work, which is constructed combining the
high-mass end of the BOSS sample and Guo et al. (2010) for the low-mass
range (log10 M∗ < 11.0). In order to compare with a complete sample in
the redshift range 0.5–0.65, we include the PRIMUS SMF (triangles) in the
low-mass regime.

to match the stellar mass catalogues (LEGACY and BOSS) and
the LSS BOSS CMASS catalogue. Once the stellar masses of the
observed sample are assigned, we need to construct an SMF which
describes the mass distribution.

The Portsmouth DR12 catalogue has the SMF that is different
from SMF of previous surveys (Maraston et al. 2013). Fig. 3 shows
the mass distribution of the CMASS DR12 for two different redshift
regions. A detailed study of the Portsmouth catalogues and other
stellar mass catalogues was reported by Maraston et al. (2013).

Due to the selection function in the BOSS data, we do not have
the information on the shape of the SMF at low masses. There are
different ways of handling this problem. For example, Leauthaud
et al. (2016) use the stripe 82 massive galaxy catalogue to compute
the SMF of the BOSS data. We use a different approach: for the high-
mass end, we use the Portsmouth stellar masses and we combine
them with Guo et al. (2010) results to describe the low-mass regime.
Specifically, to compute the SMF for masses larger than 3.2 ×
1010 M� (which is the mass range used in the CMASS sample).

In order to construct the SMF, we select galaxies in the redshift
range 0.55 < z < 0.65, because this is the most complete range for
the CMASS sample (see Montero-Dorta et al. 2014). We combine
the CMASS sample for masses larger than 2.5 × 1011 M� and the
SMF from Guo et al. (2010) for low masses. We fit both results
using a double Press–Schechter mass function (Press & Schechter
1974) with the parameters given in Table 1.

Fig. 3 presents the SMF used in this work. We also add in Fig. 3
the PRIMUS SMF (Moustakas et al. 2013) in the redshift range
0.5 < z < 0.65 with the purpose of comparing the low-mass range
of our SMF with a complete sample in the same redshift and mass

Table 1. Parameters of the double Press–Schechter SMF for this work.

Mass range φ∗ α log10 M∗
( M�) (Mpc3 log10 M−1� ) ( M�)

log10 M∗ ≤ 11.00 4.002 × 10−3 −0.938 10.76
log10 M∗ > 11.00 2.663 × 10−4 −2.447 11.42

ranges. A detailed comparison of the Portsmouth catalogues and
other stellar mass catalogues is presented in Maraston et al. (2013).

In our analysis, we do not include redshift evolution of the SMF.
This approximation agrees with results of the PRIMUS survey
(Moustakas et al. 2013), which is a complete survey in the red-
shift range we study. Moustakas et al. (2013) show that there is only
a small evolution of the SMF in the CMASS redshift range.

4.3 Production of light-cones

We implement a method to generate light cones from snapshots of
cosmological simulations. This method has been implemented pre-
viously (see e.g. Blaizot et al. 2005; Kitzbichler & White 2007). The
SUGAR code works with cubic boxes using positions and velocities
of dark matter haloes as inputs. We will now describe the procedure
which we use to construct mocks for the CMASS sample.

BigMD-BOSS light cones are constructed from the BigMDPL
simulation which is large enough (2.5 h−1 Gpc) to map the CMASS
NGC. We use the periodic boundary conditions to maximize the use
of the volume (Manera et al. 2013), but we do not reuse any region
of the box. So there are no duplicated structures in our light cone.

The first step in the construction of the light cone is to locate the
observer (z = 0) and transform from comoving Cartesian coordi-
nates to equatorial coordinates (RA,Dec.) and redshift. To include
the effects of galaxy peculiar velocities in the redshift measure-
ments, we transform the coordinates of the haloes to redshift space
using

s = rc + v · r̂
aH (zreal)

, (12)

where rc is the comoving distance in real space, v is the velocity
of the object with respect to Hubble flow, r̂ is the line-of-sight
direction, a is the scale factor and H is the Hubble constant at zreal,
which is the redshift corresponding to rc, and is computed from

rc(zreal) =
∫ zreal

0

c dz

H0

√
�m(1 + z)3 + ��

, (13)

where c is light speed and H0 is the Hubble constant in s−1 Mpc−1

km. Using equations (12) and (13), it is possible to compute s(zobs),
where zobs is the observed redshift. The next step is to select objects
from each snapshot to construct shells for the light cone. Thus, an
object with redshift zobs, which comes from a snapshot at z = zi, will
be selected if (zi + zi − 1)/2 < zobs ≤ (zi + zi + 1)/2. We repeat this
process for all objects in snapshots between z = 0.43 and 0.7. We
fix the number density in each shell following the radial selection
function of the BOSS CMASS sample. Fig. 4 shows the comparison
between the radial selection function of the observed data and the
one obtained on the BigMD-BOSS light cone.

Finally, we apply the angular CMASS NGC mask to match the
area of the observed sample. The angular completeness is taken
into account by downsampling the regions where it is smaller than
one. As was done in the BOSS CMASS catalogue, we select re-
gions in the sky with completeness weight larger than 0.7. Due to
the presence of random numbers in the selection process, the ob-
served radial selection function can have variations of ∼4 per cent.
Fig. 4 presents the standard deviation from 100 MD-PATCHY mocks
to examine the effect of different seeds on the random generator.

Fig. 1 shows the angular distribution of the BigMD-BOSS light
cone. In order to reproduce the angular distribution, we applied
the BOSS CMASS DR12 NGC geometry, and, in addition, we
applied veto mask to exclude exactly the same regions removed in
the observed data. Fig. 2 presents a 2D comparison of the spatial
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Figure 4. The comoving number density of BOSS CMASS DR12
NGC (black line) compared to the comoving number density of the BigMD-
BOSS light cone (dashed line). Shaded area comes from 100 MD-PATCHY

mocks.

galaxy distribution between the BigMD-BOSS light cone and the
BOSS CMASS data.

4.4 Stellar mass incompleteness

This paper focuses in the production of mocks which can describe
the full CMASS DR12 sample. Instead of extracting a subsample
which has better completeness in terms of stellar mass, we ‘model’
the observed stellar mass incompleteness. This model not only ac-
counts for the incompleteness at small masses (presented across the
complete redshift range), but also incompleteness in the high-mass
end, which is important for z � 0.45. Fig. 5 compares the results of
our modelling in the BigMD-BOSS light cone to the observed data
for three different redshifts.

In order to reproduce the observed stellar mass distribution, we
construct a continuous function by interpolation. Once the abun-
dance matching is applied and galaxies are assigned to dark matter
haloes, we select galaxies by downsampling based on the observed
stellar mass distribution. This process is repeated for 20 different
redshifts (corresponding to the snapshots of the simulation). Then,
in order to construct the observed stellar mass distribution corre-
sponding to snapshot at z = zi, a galaxy with redshift zg in the
stellar mass catalogue will be selected if (zi + zi − 1)/2 < zg ≤

(zi + zi + 1)/2. This model has an important impact on the scat-
ter applied to the abundance matching. Since bias is as a function
of stellar mass, incompleteness that varies as a function of stellar
mass will affect the overall bias as well. This effect reduces the
amplitude of the clustering, which implies that a smaller scatter is
required to reproduce the signal of the observed clustering. If we
ignore the incompleteness effect, we can still reproduce the clus-
tering in the two-point correlation function (2PCF). However, this
scatter is not the intrinsic one, and the final stellar mass distribution
will not match the observed sample. Favole et al. (2015a) show a
similar model to reproduce the incompleteness of the Emission Line
Galaxies population from the BOSS sample.

Most galaxies in the CMASS sample are red galaxies. However,
there is also a fraction of blue galaxies in the data. In addition, the
blue sample is less complete than the red one (Montero-Dorta et al.
2014).The random downsampling of galaxies in the BigMD-BOSS
light cone does not distinguish between both populations, which
can produce potential systematics due to the different completeness
of both samples. In this study, we reproduce the observed stellar
mass distribution by downsampling galaxies from a no-evolving
SMF. However, SMF evolves with redshift, which can produce
underestimation of the incompleteness for some ranges of stellar
mass and overestimation for other ranges.

4.5 Fibre collisions

A feature of the BOSS fibre-fed spectrograph is that the finite size of
the fibre housing makes impossible to place fibres within 62 arcsec
of each other in the same plate. This causes a number of galaxies
to not have a fibre assigned and hence, there is no measurement of
their redshift. We model the effect of fibre collisions as follows. A
total of 5 per cent of the CMASS targets could not been observed
due to the fibre collisions. These objects have an important effect
at scales �10 h−1 Mpc. In this paper, we model the fibre collision
effect by adopting the method described in Guo, Zehavi & Zheng
(2012).

The first step is to find the maximum number of galaxies that
could be assigned fibres. This decollided sample (D1) is a set of
galaxies which are not angularly collided with other galaxies in this
subsample. The second population (D2) are the potentially collided
galaxies. Each galaxy in this subsample is within the fibre collision
scale of a galaxy in population 1. We must determine from the
observed sample the fraction of collided galaxies (D′′

2 ) in the D2

Figure 5. Incompleteness modelling for three different redshift bins. Shaded area shows the BigMD-BOSS light cone; dots are the measurements from the
CMASS Portsmouth catalogue. In both cases, Poissonian errors are used. Dashed line represents the SMF adopted in this work. We select three bins as an
example to show the results of the incompleteness modelling implemented in this work. Stellar mass distribution in the BigMD-BOSS light cone is produced
by downsampling galaxies from the SMF adopted. Left-hand panel shows the incompleteness at low redshift in the high mass of the SMF.
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Figure 6. Monopole (top panel) and quadrupole (bottom panel) of the
redshift-space correlation function for the BigMD-BOSS light cone be-
fore and after applying fibre collisions. Fibre collisions are corrected us-
ing nearest-neighbour (NN) weights. The effects of the fibre collisions
are stronger in the quadrupole, with important differences for scales s �
7 h−1 Mpc. The impact on the monopole is smaller. The fibre collision
assignment is an approximative method which can introduce systematic ef-
fects. In order to avoid these effects, we select the range 2–30 h−1 Mpc to
fit the monopole with the scatter parameter, σHAM(Vpeak|M∗).

group (i.e. D′′
2/D2) for sectors covered by different numbers of

tiles. Finally, we randomly select the fraction D′′
2/D2 to the D2

galaxies in the mocks to be collided galaxies.
Fig. 6 displays the impact of the fibre collisions on the correlation

function in redshift space. The effect in the monopole becomes
very important for scales smaller than 1 h−1 Mpc. However, the
quadrupole is more sensitive to this effect, with big impact for scales
smaller than 10 h−1 Mpc. The assignment of fibre collisions has an
important impact on the fraction of satellites. Before fibre collisions
the satellite fraction of the light cone is 11.8 per cent, and after the
assignment is equal to 10.5 per cent. This effect reduces the central–
satellite pairs, which have a strong impact on the quadrupole.

Unlike Guo et al. (2012), we only use nearest-neighbour weights
for both samples. Our goal is to compare the results of the abundance
matching with data, so that we implement the same fibre collision
correction to our light cone as observed data.

When nearest-neighbour weights are applied, a collided galaxy
will be ‘moved’ from its original coordinates to the position of its
nearest neighbour. Fig. 7 presents the line-of-sight displacement of
those collided galaxies from their original positions.

The displacement for the simulation shown in Fig. 7 is com-
puted using the old and new positions of the collided galaxies. In
CMASS data, the displacement is calculated using the overlapping
tiled regions of the survey where the spectroscopic redshifts of both
galaxies within the fibre collision angular scale are resolved. Fig. 7
demonstrates an excellent agreement between our model and the
observed data, suggesting that the combination between the clus-
tering at small scales of the simulation and the fibre collision model
used in the mock has a reasonable agreement with observations.

Figure 7. Line-of-sight displacement of a collided galaxy due to the fibre
collision. The figure shows the number of counts per bin divided by the total
number of collided galaxies. Uncertainties were computed using Poissonian
errors.

5 MODELLING BOSS CMASS C LUSTERIN G

The clustering signal in the abundance matching is determined by
two quantities: the number density and the scatter in the M∗−Vpeak

relation. The number density is fixed by the radial selection function
of the observed sample. In order to find a scatter value that repro-
duces the clustering of the CMASS sample, we fit the monopole
of the correlation function in redshift space. The following sections
present the results of this monopole fitting, and the prediction of
our model of the quadrupole in redshift space, projected correlation
function, monopole in Fourier space and the 3PCF.

BigMD-BOSS light cone covers the same volume as CMASS
sample between redshift z = 0.43 and 0.7. In order to have a good
estimation of the uncertainties in our measurements, we use 100
MD-PATCHY mocks (Kitaura et al. 2016, companion paper). These
mocks are produced using five boxes at different redshifts that are
created with the PATCHY code (Kitaura et al. 2014). This code matches
the clustering of the galaxy catalogues for each redshift bin. The
MD-PATCHY mocks are based on the BigMDPL simulation, and
they are produced with the same cosmology used in this work. To
compute errors, we use the square root of the diagonal terms of the
covariance matrix defined as

Cii = 1

N − 1

N∑

i=1

(Xi − X̄)2, (14)

where N is the number of mock catalogues and X is the statistical
quantity measured.

5.1 Two-point clustering: result from model and observations

In order to compute the correlation function for our light cone and
the observed data, we use a Landy & Szalay estimator (Landy &
Szalay 1993). The correlation function is defined by

ξ (r) = DD − 2DR + RR

RR
(15)

where DD, DR and RR represent the normalized data–data, data–
random and random–random pair counts, respectively, for the dis-
tance range [r − 	r/2, r + 	r/2].

In this paper, we use random catalogues 20 times larger than
the data catalogues. In order to estimate the projected correlation
function and the multipoles of the correlation function, we use the

MNRAS 460, 1173–1187 (2016)



1180 S. A. Rodrı́guez-Torres et al.

2D correlation function, ξ (rp, π ), where s =
√

r2
p + π2, rp is the

perpendicular component to the line of sight and π represents the
parallel component. The correlation function of the BigMD-BOSS
light cone is computed using close pair weights and FKP weights
(Feldman, Kaiser & Peacock 1994),

wFKP = 1

1 + n(z)PFKP
, (16)

where n(z) is the number density at redshift z and PFKP =
20 000 h−3 Mpc3. We use the FKP weights to optimally weight
regions with different number densities. In the case of the BOSS
CMASS sample, we use the galaxy weights given in equation (9)
and in addition the FKP weights. The total weights for the data used
in our analysis are wtot = wFKPwg.

Note that PFKP is chosen to minimize the variance of power spec-
trum measurements. For the correlation function measurements, one
should use the optimal weight from Hamilton (1993),

wH = 1/(1 + n(z)Jw), (17)

where

Jw =
∫ r

0
ξ (r) dV . (18)

However, since we are fixing wFKP or wH to be a constant to simplify
the computation, we expect that wH should be similar to wFKP. In any
case, the choice of optimal weight will not bias the measurements.

5.1.1 Redshift-space correlation function

Previous works demonstrated the impact of the scatter in the clus-
tering signal of a mock generated with the abundance matching (e.g.
Reddick et al. 2013). In this study, we search for a scatter parameter
(σHAM(Vpeak|M∗)) which reproduces the monopole of the correla-
tion function and provides the prediction for other quantities. The
multipoles of the 2PCF, in redshift space, are defined by

ξl(s) = 2l + 1

2

∫ 1

−1
ξ (rp, π )Pl(μ) dμ, (19)

where

μ = π√
r2

p + π2
(20)

and Pl(μ) is the Legendre polynomial. We will present results for
the monopole (l = 0) and the quadrupole (l = 2).

To find the best value, we fit the clustering using the monopole
in the redshift space for the range 2–30 h−1 Mpc. The top panel
in Fig. 8 shows the results of the fitting compared to the CMASS
DR12 data. Errors in Figs 8 and in 9 are computed using 100
MD-PATCHY mocks (Kitaura et al. 2016, companion paper). The
parameter that best reproduces the clustering in the monopole is
σHAM(Vpeak|M∗) = 0.31. This result is in agreement with previous
works on abundance matching (Trujillo-Gomez et al. 2011; Nuza
et al. 2013; Reddick et al. 2013).

The simulation provides a good agreement with data in the
monopole for scales smaller than 50 h−1 Mpc. However, the bot-
tom panel in Fig. 8 shows a disagreement in the quadrupole for
scales smaller than 0.7 h−1 Mpc, which can be due to the method
used to assign the fibre collisions in the BigMD-BOSS light cone;
for this reason, we do not analyse these scales. An additional dis-
agreement is found at scales larger than 6 h−1 Mpc, which will be
commented in the last section of this work. Nuza et al. (2013) use

Figure 8. Top panel: monopole in redshift space from CMASS DR12 sam-
ple (black points). The shaded area represents the modelling of the monopole
using the BigMD-BOSS light cone. Bottom panel: quadrupole in redshift
space from CMASS DR12 sample compared with the theoretical predic-
tion from the BigMD-BOSS light cone. Error bars were computed using
MD-PATCHY mocks. Small panels show the ratio between the model and
the observed data. Fitting of the monopole is performed between 2 and
30 h−1 Mpc. The observed monopole is in good agreement with our model
for scales larger than 2 h−1 Mpc. However, the quadrupole shows tensions
with observations for scales <1 h−1 Mpc and 5 > h−1 Mpc.

the MultiDark simulation with �m = 0.27. Comparing their results
for the monopole, we obtain a better agreement for scales larger than
10 h−1 Mpc, mainly due to the difference in cosmologies used in
this work.

Fig. 9 shows the prediction of the monopole and quadrupole
for large scales compared to the observed data. Discrepancies for
some values between the model and the data at scales larger than
60 h−1 Mpc could not be due only to the cosmic variance. Dif-
ferences at the baryon acoustic oscillation (BAO) scales are of the
order of 1σ errors while for large scales differences can be of the
order of 2σ or 3σ . In Fig. 9, we can see that the BOSS CMASS
correlation function at large scales is systematically shifted. This ex-
cess of power in the correlation function monopole could be due to
the potential photometric calibration systematics which only affect
very large scales. Huterer, Cunha & Fang (2013) make a detailed
study about the photometric calibration errors and their implication
in the measurements of clustering and demonstrate that calibration
uncertainties generically lead to large-scale power.

5.1.2 Projected correlation function

The projected correlation function is a quantity which is insensi-
tive to the impact of the redshift-space distortion and provides an
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Figure 9. Monopole (top panel) and quadrupole (bottom panel) of the
redshift-space correlation function. The shaded areas are the model predic-
tions for large scales using a single light cone. Error bars were computed
using MD-PATCHY mocks. Differences in the quadrupole are the same shown
in Fig. 8. The monopole has a good agreement up to 100 h−1 Mpc. However,
large scales present significant difference, but this can be due to the cosmic
variance and remaining systematics in the data. These differences are within
2σ errors.

approximation to the real-space correlation function (Davis & Pee-
bles 1983). The projected correlation function is defined as the
integral of the 2D correlation function, ξ (rp, π ), over the line of
sight:

wp(rp) = 2
∫ ∞

0
ξ (rp, π ) dπ. (21)

In order to compute wp(rp) from the discrete correlation function
(equation 15), we use the estimator

wp(rp) = 2
πmax∑

i

ξ (rp, πi)	πi. (22)

We adopt a linear binning in the light-of-sight direction,
	π i = 	π = 5 h−1 Mpc. We selected πmax = 100 h−1 Mpc.
Nuza et al. (2013) find convergence of the projected correlation for
this scale. Fig. 10 shows the results found for the BigMD-BOSS
light cone compared to the CMASS data. Error bars were computed
using 100 MD-PATCHY mocks.

Fig. 10 reveals a discrepancy at scales ≈3 h−1 Mpc. However,
results are in agreement at the 2σ level, so we can consider the
data consistent with the prediction of our model. Scales below
0.5 h−1 Mpc are dominated by fibre collision. Due to this effect, the
clustering declines rapidly.

5.1.3 Fourier space

The power spectra for the BOSS CMASS sample with nearest angu-
lar neighbour upweighted weights and the BigMDPL are computed
using the Feldman et al. (1994) power spectrum estimator modi-
fied to account for the systematic weights of the galaxies. In BOSS
CMASS, each galaxy is assigned a systematics weight (equation
9), which is accounted for in the estimator. For the BigMD-BOSS

Figure 10. Projected correlation function prediction from the BigMD-
BOSS light cone (shaded region) compared to the BOSS CMASS sample.
The width of the shaded area represents 1σ errors, computed using MD-
PATCHY mocks. Our model reproduces the clustering for all relevant scales.
Scales <0.6 h−1 Mpc are dominated by fibre collision effects.

light cone, we set wg = wcp, for the power spectrum using nearest-
neighbour upweighted fibre collisions weights, and wg = 1 for the
true power spectrum.

The power spectrum for the BOSS CMASS sample is computed
using the method described in Hahn et al. (in preparation) in or-
der to correct the effects of fibre collisions on smaller scales. The
fibre collision correction method reconstructs the clustering of fibre-
collided pairs by modelling the distribution of the line-of-sight dis-
placements between them using pairs with measured redshifts. In
addition, the method corrects fibre collisions in the shot-noise cor-
rection term of the power spectrum estimator. In simulated mock
catalogues, the correction method successfully reproduces the true
power spectrum with residuals �1 per cent at k ∼ 0.3 h Mpc−1 and
<10 per cent at k ∼ 0.9 h Mpc−1. The top panel of Fig. 11 com-
pares the fibre collision and systematics corrected BOSS CMASS
power spectrum to the true power spectrum of BigMD-BOSS light
cone, showing remarkably good agreement between data and model.
Figs 8 and 11 confirm that the standard HAM is accurate in the
modelling of the clustering not only at large scales, but also in the
one-halo term.

Monopoles from our model and the BOSS CMASS data using
fibre collision weights are shown in the bottom panel of Fig. 11.
Both power spectra agree for k smaller than 1 h Mpc−1. The BigMD-
BOSS light cone and the observed data have a remarkably good
agreement in the BAO region (inset panel Fig. 11), which is not
seen in the correlation function (Fig. 9). This difference can be due
to remaining systematics that have a bigger impact on the correlation
function than in the power spectrum. The agreement between our
model and the observed data, for the true power spectrum and the
nearest-neighbour corrected power spectrum, demonstrates that the
method used to assign fibre collisions in the BigMD-BOSS light
cone is a good approach to simulate this effect.

As we discussed in Section 5.1.1, the disagreement between the
model and the data in the correlation function monopole could be
due to potential photometric calibration systematics. The effect on
the power spectrum will be limited to very small k, so that it has
less impact on the BAO scales. However, this excess of power does
not have impact on BAO measurements from correlation functions
when we marginalize the overall shape (see Chuang et al. 2013;
Ross et al., in preparation).
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Figure 11. Monopole of power spectrum from the BigMD-BOSS light
cone and the CMASS DR12 sample. Top panel: the true power spectrum
for our light cone compared to the CMASS DR12 data corrected by fibre
collisions using Hahn et al. (in preparation) method. Solid curve shows the
initial matter power spectra of the BigMDPL simulation scaled to match the
amplitude of fluctuations at long waves. A remarkable agreement between
the data and the model is found for scales k �1 h Mpc−1. Bottom panel: the
comparison between simulation and observed data using nearest-neighbour
weights (wcp). In addition to wcp, observed measurements include system-
atics weights: wstar, wzf and wsee. The agreement between the data and the
model, in both panels, shows the good performance of the fibre collision
assignment in the light cone. In bottom subpanels, dashed lines represent an
accuracy level of 10 per cent.

5.2 Three-point correlation function

We are also interested in comparing the prediction of the 3PCF
using the HAM on the BigMDPL simulation with the observed
data. The 3PCF provides a description of the probability of finding
three objects in three different volumes. In the same manner as the
2PCF, the 3PCF is defined as

ζ (r12, r23, r31) = 〈δ(r1)δ(r2)δ(r3)〉, (23)

where δ(r) is the dimensionless overdensity at the position r and
rij = ri − rj. We use the Szapudi & Szalay estimator (Szapudi &
Szalay 1998)

ζ = DDD − 3DDR + 3DRR − RRR

RRR
. (24)

Fig. 12 displays our prediction compared with the BOSS CMASS
data. We see the results for two kinds of triangles: r1 = r2 =
10 h−1 Mpc and r1 = 10 h−1 Mpc, r2 = 20 h−1 Mpc, where θ is the
angle between r1 and r2.

Figure 12. Top panel: BOSS CMASS DR12 3PCF compared with the
model prediction of this work. Shaded area shows 1σ uncertainties, with
limits r1 = 10 h−1 Mpc and r2 = 20 h−1 Mpc. Bottom panel: 3PCF for
limits r1 = r2 = 10 h−1 Mpc. The BigMD-BOSS light cone can reproduce
almost all scales between 2σ errors.

A good agreement in the shape of the 3PCF is seen in Fig. 12
between our prediction and the data. Most of the points are in
agreement within 2σ errors for both configurations represented in
Fig. 12. However, the BigMD-BOSS light cone is underestimating
the 3PCF for θ ∼ 0 and θ ∼ π . Guo et al. (2015b) find similar
discrepancies for those scales, which can be produced by velocity
effects and can be corrected including a velocity bias. Therefore, the
disagreement in the 3PCF and in the quadrupole of the correlation
function can be caused by the same kind of effects.

5.3 Stellar-to-halo mass relation

The stellar-to-halo mass ratio (SHMR) is an important quantity to
evaluate if the simulated light cone is providing a realistic halo oc-
cupation. In this way, we use results from weak lensing, which is
one of the most powerful mechanisms to know the observational
SHMR. Fig. 13 shows the SHMR predicted by the BigMD-BOSS
light cone and measurements in the Canada–France–Hawaii Tele-
scope (CFHT) Stripe 82 Survey (Shan et al. 2015). In order to
ensure the convergence of the haloes in our prediction, we select
haloes with masses larger than 5.2 × 1012 M�. This limit is 150
dark matter particles which give convergence for subhaloes (Klypin
et al. 2015).

Predictions of the abundance matching are in agreement with the
weak lensing data. In Fig. 13, shaded blue area shows the intrinsic
scatter measured. The dependence between scatter and stellar mass
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Figure 13. Stellar-to-halo mass ratio. The shaded blue area represents the
best fit of the stellar-to-halo mass relation measured using weak lensing
in the CFHT Stripe 82 Survey (Shan et al. 2015). The red area represents
previous HAM result from Behroozi, Wechsler & Conroy (2013c). The
analysis in Behroozi et al. (2013c) was modified using the Planck cosmology
parameters and changing the definition of the halo mass. Black dots are the
prediction from the HAM-BigMD-BOSS light cone. Differences between
our model and Behroozi et al. (2013c) are mainly due to the SMF adopted
in both works. Scatter between M200 and M∗ is similar between the data
and our model. We adopted constant scatter while observed data suggest a
dependence of the scatter with the stellar mass.

is clear. It is also shown in the abundance matching (e.g. Trujillo-
Gomez et al. 2011; Reddick et al. 2013). However, our HAM model
uses a constant scatter to reproduce the clustering. This approxima-
tion can generate the disagreement in the scatter between data and
mock. The red area in Fig. 13 indicates the results from Behroozi
et al. (2013c). We modify Behroozi et al. (2013c) in order to use the
same definition of halo mass and implement the Planck cosmology
in the analysis. The SMF assumptions can be one of the origins
for the disagreement between both predictions. While we use the
BOSS DR12 stellar mass catalogues to estimate the SMF, Behroozi
et al. (2013c) use the PRIMUS SMF (Moustakas et al. 2013). The
difference in how the stellar mass catalogues handle profile fitting
produces a variation in the high-mass end of both SMFs. This ef-
fect causes important difference at large stellar mass between both
predictions.

Shankar et al. (2014) present the stellar-to-halo mass relation as-
suming different mass functions and compare their results with re-
cent models. They find differences between Behroozi et al. (2013c)
and Maraston et al. (2013) similar to the one shown in our Fig. 13.
Shankar et al. (2014) also find that an intrinsic scatter in stellar
mass at fixed halo mass of 0.15 dex is needed to reproduce the
BOSS clustering. This result is in agreement with our model, which
predicts an intrinsic scatter in stellar mass of 0.14 dex at a fixed halo
mass.

5.4 Bias prediction

Using the HAM-BigMD-BOSS light cone and its corresponding
dark matter light cone, we can estimate the real-space bias, b(r),
solving the equation (Kaiser 1987; Hamilton 1992)

ξ (s) =
(

1 + 2

3
β + 1

5
β2

)
b(r)2ξDM(r), (25)

Figure 14. Scale-dependent galaxy bias from the model presented in this
work. We measure the bias with respect to the correlation function of dark
matter in the BigMDPL light cone for the data and the model. There is an
excellent agreement between the CMASS observations and the predictions
of the HAM-BigMD-BOSS light cone.

where β ≈ f/b is the redshift-space parameter and f(z = 0.55) = 0.77
(Planck cosmology).

Fig. 14 shows the linear bias, which is in agreement with previous
papers that reproduced the CMASS clustering (see Nuza et al. 2013).
For the data and the model, we use the dark matter correlation
function from the BigMD simulation. For the scales shown, the
scale-dependent bias factor is in the range 1.8–2. We use the BigMD
dark matter light cone to estimate the relative bias of the CMASS
sample to this catalogue.

6 D I SCUSSI ON

The BigMD-BOSS light cone is designed to reproduce the full
BOSS CMASS sample between redshift 0.43 and 0.7, including
observational effects. In order to recover the information at small
scales, similar papers (e.g. Nuza et al. 2013; Guo et al. 2014, 2015c)
correct the observed data by fibre collision (see Guo et al. 2012;
Hahn et al., in preparation). In this work, we assign fibre collisions
to galaxies in the light cone, and we use nearest-neighbour weights
in the data and in the model. Our model can be useful to test
methods that recover the clustering in the fibre collision region
(Guo et al. 2012) or in the production of mocks for covariance
matrices (Kitaura et al. 2016, companion paper). The fibre collision
assignment adopted in this work can reproduce in a good way this
observational effect (Fig. 11). However, this approach can introduce
small systematics that we do not include in our modelling.

White et al. (2011) model the full CMASS clustering. They find
a good fit of the HOD parameters to reproduce the observed data.
However, they cannot describe the small scales because they only
include close pair weights in the data measurements, which cannot
recover the small-scale clustering (Guo et al. 2012). Nuza et al.
(2013) also reproduce with a good agreement the CMASS data
using a standard HAM model; they correct by fibre collision using
the method explained in Guo et al. (2012). Our paper continues the
work presented in Nuza et al. (2013), including light-cone effects,
redshift evolution, radial selection function, etc. All these papers
can reproduce the clustering of the full CMASS sample.

Recent papers show tensions between models and observed data
when a most careful selection is done. Guo et al. (2015c) study
a volume-limited LRG sample in the redshift range of 0.48 < z

< 0.55 of the CMASS sample. They need a galaxy velocity bias
to describe the clustering of the most massive galaxies (∼1013–
1014 h−1 M�) using HOD. Saito et al. (2015) show an extension
of the HAM to describe the colour dependence of the clustering
for the CMASS sample. Guo et al. (2015a) present a comparison
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Figure 15. Monopole and quadrupole of the redshift-space correlation function of the CMASS DR12 sample compared to the HAM-BigMD-BOSS light
cone for three redshift bins. The monopole is fitted for all redshift ranges. The middle bin is the most complete range in the CMASS sample, and also the best
reproduced quadrupole. We perform a HAM with three different scatter parameters to fit each of the redshift bins. Differences at low and high redshift can
be due to target selection effects we do not include in this study. Another source of discrepancy can be the relation between the scatter and the more massive
galaxies (Saito et al. 2015).

between HOD and HAM models; they also modify the standard
HAM model in order to reproduce clustering at different luminosity
cuts. Favole et al. (2015b) present a study of the blue population
properties compared to the red galaxies. They present a modified
HOD which allows them to include both samples in the same mock
catalogue. The clustering dependence on stellar mass (luminos-
ity) is not implemented in our model, and we do not distinguish
between blue and red galaxies. Our implementation of the HAM
and stellar mass incompleteness is capable of reproducing the full
CMASS sample, including a big amount of data in our analysis.
Zu & Mandelbaum (2015) present a modified HOD in order to
include the stellar mass incompleteness (iHOD). This model com-
bines galaxy cluster and galaxy–galaxy lensing and allows one to
increase ∼80 per cent the number of modelled galaxies than the
traditional HOD models.

We find the largest discrepancy between our model and the data
in the quadrupole measurements (Fig. 8). For scales larger than
10 h−1 Mpc, this difference is within the 3σ errors. The disagree-
ment for s < 1 h−1 Mpc is larger than 20 per cent. However, this can
be due to the uncertainties introduced by the fibre collisions at those
scales and effects of the resolution of the simulation. Therefore, we
will focus our attention at scales larger than 5 h−1 Mpc where the
impact of fibre collision is smaller.

In order to study the clustering in different redshift bins using the
HAM implemented in this work, we divide the full range into three
bins. We select approximately the same number of galaxies in each
redshift bin in order to have similar statistics in all of them. We
perform an abundance matching (different scatter values that vary
from 0.05 to 0.5) for each range to fit the monopole. Fig. 15 shows
the monopole and quadrupole for the three different redshift bins.
The discrepancy in the quadrupole can be due to one or more of the
approaches used in this work. Possible causes of this discrepancy
are enumerated below.

(i) Guo et al. (2015c) find similar discrepancies in the quadrupole
in configuration space for scales >5 h−1 Mpc. They argue that the
underestimation of the quadrupole on large scales is possible due
to the correlated neighbouring bins in the covariance matrix. They
obtain a reasonable χ2, even with this feature of the predicted
quadrupole.

Figure 16. Correlation function for the CMASS sample in three redshift
bins. Top panel: monopole with small variations in time. Bottom panel:
the quadrupole for the selected ranges. In contrast with the monopole, the
quadrupole shows larger variations for the different redshifts.

(ii) Montero-Dorta et al. (2014) show that the intermediate-
redshift bin (0.51 < z < 0.57) is the most complete region in
the CMASS sample. The standard HAM can reproduce monopole
and quadrupole for this redshift bin (see Fig. 15), but cannot re-
produce the quadrupole for the other two bins. The CMASS DR12
sample has small variations in the monopole. However, quadrupole
changes and it becomes similar for the two redshift ranges where
the incompleteness of the sample is larger (Fig. 16).

(iii) The values of scatter used to fit the monopole of the correla-
tion function in the different redshift bins vary in a wide range. This
can be due to the evolution of the number density in the CMASS
sample and some approximations used in this work. Leauthaud
et al. (2016) show a non-negligible evolution of the SMF at low
redshift compared with the complete redshift range (0.43–0.7). Our
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approximation of non-evolving SMF could overestimate the incom-
pleteness in the low-redshift range (Fig. 5, left-hand panel), and then
the necessary scatter to reproduce the observed correlation function
will be smaller. We also assume a constant mean scatter, but indeed
scatter depends on the stellar mass; it increases with the mass of
the galaxies (Trujillo-Gomez et al. 2011; Reddick et al. 2013). This
dependence can explain why the scatter needed to reproduce the
clustering of the low-redshift range is smaller than the one used
in the intermediate redshift. At low redshift, the number density is
equal to 3.466 × 10−4 h3 Mpc−3, which is smaller than 3.942 ×
10−4 h3 Mpc−3 for the middle redshift. If both samples were com-
plete, we will expect a larger scatter in the first range. However, due
to the large incompleteness in the high-mass end at low redshift, the
mean mass of this sample is 1.86 × 1011 M� compared to 2.04 ×
1011 M� for the second redshift range. For this reason, the scatter
needed to reproduce the clustering is smaller in the low-redshift
range. In the high-redshift bin, we can only see very massive galax-
ies (see Fig. 5, right-hand panel) compared to the whole population
of galaxies in the CMASS sample. This range is complete in the
high-mass end and, compared to the other two redshift ranges, has a
number density very small (1.534 × 10−4 h3 Mpc−3), which implies
larger mean mass (2.63 × 1011 M�) and scatter than for the other
samples.

(iv) We have added a simple model for the stellar mass incom-
pleteness in the CMASS sample. However, there can be other effects
of the incompleteness in the target selection that cannot be modelled
in this simple way. Although the selection is performed to select
LRG, an incomplete blue cloud is in the sample and its fraction
compared to the red sequence evolves with redshift (e.g. Guo et al.
2013; Montero-Dorta et al. 2014). Those two populations can live in
different kinds of haloes, and therefore they should be described by
different scatter values. The errors introduced by this effect can in-
crease with redshift, because the fraction of blue galaxies increases
as well. As opposed to the low-redshift bin, the high-redshift bin is
complete in the high-mass end (Fig. 5, z = 0.65), but the fraction
of blue galaxies is larger than the middle bin, which can affect the
prediction of the quadrupole. The presence of a small fraction of
the so-called ‘green valley’ can also introduce small errors in our
modelling.

(v) The number density in the high-redshift bin (0.57 < z <

0.70) is very small compared to the middle redshift range. In this
region, the fraction of small galaxies decreases and the impact of the
most massive objects in the clustering becomes stronger. Guo et al.
(2015a) and Saito et al. (2015) need modification of the HAM model
when colour cuts are applied. In addition, Guo et al. (2015c) show
the necessity to introduce a velocity bias in the HOD to reproduce
the most massive galaxies. If the standard HAM does not describe
the clustering of the most massive galaxies, HAM mocks, which
model samples as the CMASS in the redshift range 0.57 < z <

0.70, will not reproduce accurately the clustering of the observed
data.

(vi) In addition, recent papers report results for LRG samples
where the number of significant miscentral galaxies in haloes is
larger than expected (e.g. Hoshino et al. 2015) or the presence of
off-centring for central galaxies (e.g. Hikage et al. 2013). The imple-
mentation of these results in the construction of mocks reproducing
LRG samples could also modify the quadrupole.

7 SU M M A RY

We investigated the galaxy clustering of the BOSS CMASS DR12
sample using light cones constructed from the BigMDPL simula-

tion. We perform a HAM to populate the dark matter haloes with
galaxies using the Portsmouth DR12 stellar mass catalogue. In ad-
dition, the stellar mass distribution is modelled to take into account
the incompleteness in stellar mass of the CMASS sample. Our study
included features such as the survey geometry, veto masks and fibre
collision. The combination of HAM and the BigMDPL simulation
provides results in good agreement with the observed data. Our re-
sults show that the HAM is a method extremely useful in the study
of the relation between dark matter haloes and galaxies, and can be
very helpful in the production of mock catalogues (Kitaura et al.
2016, companion paper).

Our main results can be summarized as follows.

(i) We model the observed monopole in configuration space us-
ing HAM. Assuming a complete sample, the scatter parameter is
very large compared to previous studies. The modelling of stel-
lar mass incompleteness significantly decreases the value of scat-
ter to σHAM(Vpeak|M∗) = 0.31. Our model reproduces the observed
monopole for nearly every scale.

(ii) The prediction of the quadrupole in configuration space ap-
pears to be in disagreement with the observed data. We present
possible explanations of this disagreement. In future works, we
will concentrate on reducing the possible systematics, in order to
understand better the limits of our model.

(iii) We compute the projected correlation function and the 3PCF,
finding good agreement between the model and the observed data
within 1σ errors for most of the scales. For scales ∼0 and ∼π , the
differences are of the order of 2σ errors, which can be related to the
same factors of the disagreement in the quadrupole. The monopole
in k-space of the BigMD-BOSS light cone is in remarkable agree-
ment with the measurement from the CMASS sample corrected by
fibre collisions (∼10 per cent of difference at k = 0.9). The same
agreement is found when we use nearest-neighbour weights, which
shows that the assignment of fibre collision in the light cone can
reproduce the observed data.

(iv) We compare our prediction of the stellar-to-halo mass rela-
tion with lensing measurements. The results are in good agreement
with the observed data. Our assumption of a constant scatter is re-
flected in the differences with observations. Lensing measurements
suggest the need to include the stellar mass dependence in the scatter
of the HAM.

The BigMD-BOSS light cone is publicly available. It can be
found in the SDSS SkyServer.3 The current version includes angular
coordinates (RA, Dec.), redshift in real space and redshift space,
peculiar velocity in the line of sight, M200, Vpeak and M∗. Properties
of galaxies such as effective radius (Reff), velocity dispersion (σ v)
and mass-to-light ratio (M/L) will be included in future updates.
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CHAPTER 4

MultiDark-Patchy mocks for the BOSS-DR12

Publication: Monthly Notices of the Royal Astronomical Society, Volume 456, Issue 4,
p.4156-4173

Motivation

Unlike other branches of Physics, Cosmology and Astrophysics cannot have in-situ different
realisations of their experiments. We consider our Universe as a huge experiment of the
physical processes that govern its mass-energy content. This raises a problem in the analysis
of the data coming from observations, because there is no simple way to estimate uncertainties
from the data, although there are some methods that use subvolumes of the observed data
to have an estimation of errors. However, they do not take into account all the relevant
errors in the data set. At this point, cosmological simulations take an important place in
these measurements. Theoretical models can reproduce the growth of structures with good
agreement, so we can assume these simulations are possible realisations of the Universe. So we
combine different ingredients to produce the most realistic mock catalogues thus improving
the covariance matrices estimation.
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ABSTRACT
We reproduce the galaxy clustering catalogue from the SDSS-III Baryon Oscillation Spec-
troscopic Survey Final Data Release (BOSS DR11&DR12) with high fidelity on all relevant
scales in order to allow a robust analysis of baryon acoustic oscillations and redshift space
distortions. We have generated (6000) 12 288 MultiDark PATCHY BOSS (DR11) DR12 light
cones corresponding to an effective volume of ∼192 000 [h−1 Gpc]3 (the largest ever simulated
volume), including cosmic evolution in the redshift range from 0.15 to 0.75. The mocks have
been calibrated using a reference galaxy catalogue based on the halo abundance matching
modelling of the BOSS DR11&DR12 galaxy clustering data and on the data themselves. The
production follows three steps. First, we apply the PATCHY code to generate a dark matter field
and an object distribution including non-linear stochastic galaxy bias. Secondly, we run the
halo/stellar distribution reconstruction HADRON code to assign masses to the various objects.
This step uses the mass distribution as a function of local density and non-local indicators
(i.e. tidal field tensor eigenvalues and relative halo exclusion separation for massive ob-
jects) from the reference simulation applied to the corresponding patchy dark matter and
galaxy distribution. Finally, we apply the SUGAR code to build the light cones. The resulting
MultiDarkPATCHY mock light cones reproduce the number density, selection function, survey
geometry, and in general within 1σ , for arbitrary stellar mass bins, the power spectrum up
to k = 0.3 h Mpc−1, the two-point correlation functions down to a few Mpc scales, and the
three-point statistics of the BOSS DR11&DR12 galaxy samples.

Key words: methods: numerical – galaxies: haloes – galaxies: statistics – large-scale structure
of Universe.

1 IN T RO D U C T I O N

The observable Universe represents a unique realization of an
underlying physical cosmological process. Large galaxy redshift

�E-mail: kitaura@aip.de
†Karl-Schwarzschild-fellow.
‡Campus de Excelencia Internacional UAM/CSIC Fellow.
§MultiDark Fellow.

surveys like the Baryon Oscillation Spectroscopic Survey (BOSS;
e.g. Bolton et al. 2012; Dawson et al. 2013; Alam et al. 2015), a
branch of the ongoing Sloan Digital Sky Survey (SDSS-III; Eisen-
stein et al. 2011), scan the sky with unprecedented accuracy trying to
unveil structure formation in an expanding Universe. One important
question arises in the analysis of the data provided by such surveys:
if the Universe is comparable to a huge unique experiment, how
can we determine the uncertainties in the measurement of quanti-
ties derived from observing it? One strategy consists of dividing
the observations into subvolumes, treating each of the subsamples

C© 2016 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
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as independent measurements, and computing the errors with jack-
knife or bootstrap estimates. While this approach continues being
relevant as a way to obtain error estimates directly from the data
(see e.g. Norberg et al. 2009), it also implies several disadvantages.
First, it does not include systematic errors present in all subvolumes,
secondly it does not lead to a physical understanding of the data
by itself, and thirdly it introduces variance beyond the one already
present in the data on scales larger than the subvolumes. The last
point is especially critical when the signal sought has a large charac-
teristic scale and its detection significance crucially depends on the
volume, as is the case for baryon acoustic oscillations (BAOs; see
e.g. Seo & Eisenstein 2005; White, Song & Percival 2009). During
the past decades, there has been a huge effort to encode our physical
knowledge of structure formation in computational algorithms, and
compare the theoretical models to the actual observations. Pioneer-
ing works started with qualitative comparisons (see e.g. Klypin &
Shandarin 1983; Blumenthal et al. 1984; Davis et al. 1985). Since
then simulations have grown and such comparisons have turned in-
creasingly more quantitative (see e.g. Klypin et al. 2003; Springel
et al. 2005; Boylan-Kolchin et al. 2009; Klypin, Trujillo-Gomez &
Primack 2011). These efforts are essential to understand structure
formation and yet they suffer from a strong limitation: as simula-
tions always push the computational limits, they are not suited for
massive production. In fact, the number of current state-of-the-art
large-volume N-body simulations is of order 10 (Kim et al. 2009;
Alimi et al. 2012; Angulo et al. 2012; Prada et al. 2012; Fosalba
et al. 2015; Ishiyama et al. 2015; Klypin et al. 2014; Skillman et al.
2014; Watson et al. 2014). However, an ideal approach to deter-
mine the uncertainties from current and upcoming surveys scanning
large sky areas, and hence covering huge volumes, such as BOSS1

(White et al. 2011), DESI2/BigBOSS (Schlegel et al. 2011), DES3

(Frieman & Dark Energy Survey Collaboration 2013), LSST4

(LSST Dark Energy Science Collaboration 2012), J-PAS5 (Ben-
itez et al. 2014), 4MOST6 (de Jong et al. 2012), or Euclid7 (Cimatti
et al. 2009; Laureijs 2009), requires thousands of such simulations
if the simplest error determination methods are used (Dodelson &
Schneider 2013; Taylor, Joachimi & Kitching 2013; Percival et al.
2014). Alternative more efficient methods need to be considered
to face this challenge. A few pioneering works explored a viable
strategy more than a decade ago relying on simplified fast gravity
solvers using perturbation theory (PT): PINOCCHIO (Monaco et al.
2002, 2013) and PTHALOS (Scoccimarro & Sheth 2002). Neverthe-
less, these methods are not trivial, need calibration with N-body
simulations, and still demand high computational efforts. For this
reason, some of the first analysis of large surveys (Percival et al.
2001; Cole et al. 2005) was done based on lognormal realizations
(see also Percival, Verde & Peacock 2004; Beutler et al. 2011),
which match the two-point statistics by construction (Coles & Jones
1991), although their three-point statistics is very different from the
true one (see e.g. White, Tinker & McBride 2014; Chuang et al.
2015b). It is also not clear that their four-point statistics will be
accurate (Cooray & Hu 2001; Takada & Hu 2013).

1 http://www.sdss3.org/surveys/boss.php
2 http://desi.lbl.gov/
3 http://www.darkenergysurvey.org
4 http://www.lsst.org/lsst/
5 http://j-pas.org/
6 http://www.aip.de/en/research/research-area-ea/research-groups-and-
projects/4most
7 http://www.euclid-ec.org

The analysis of past data releases of the BOSS collaboration uti-
lized 1000 mocks, created based on an improved version of PTHALOS

(Manera et al. 2013, 2015). The use of approximate gravity solvers
in these methods came at the expense of only matching clustering
statistics on a wide range of scales to ∼10 per cent precision (and
strongly deviating towards small scales �20 h−1 Mpc).

This sets the agenda for the current BOSS data release
DR11&DR12 and the requirements for a new generation of mock
galaxy catalogues. Ideally, one would like to base these on efficient
solvers that are trained on exact solutions and deliver a comparable
precision. A new generation of methods that can meet these high re-
quirements have been developed during the past two years, in partic-
ular, PATCHY (Kitaura, Yepes & Prada 2014), QPM (White et al. 2014),
and EZMOCKS (Chuang et al. 2015a). The key concept exploited by
these methods is to rely only on the large-scale density field obtained
from approximate gravity solvers and use biasing prescriptions to
populate it with mock galaxies, in a similar way to the methods
proposed to augment the resolution of N-body simulations (de la
Torre & Peacock 2013; de la Torre et al. 2013; Angulo et al. 2014;
Ahn et al. 2015). One should however be careful, as computing an
accurate dark matter field is a necessary, but not sufficient condi-
tion to reproduce the correct halo/galaxy three-point statistics. The
bias parameters are degenerate in the two-point statistics and need
to be additionally constrained to reproduce higher order statistics
(Kitaura et al. 2015). We will rely in this work on the PATCHY method
due to its verified accuracy in the two- and three-point statistics for
different populations of objects (see application of the HADRON code
to PATCHY and EZMOCK; Zhao et al. 2015). An additional set of galaxy
mocks fitting the BOSS DR11&DR12 (CMASS and LOWZ) data
at two mean redshifts (respectively) based on QPM have been pro-
duced in an unprecedented effort. These are constructed with a dif-
ferent structure formation model based on low-resolution particle
mesh solvers, and a different galaxy bias, based on a rank-ordering
scheme assigning most massive objects to the highest density peaks
(for a comparison of both sets of catalogues, see Section 3 and
Gil-Marı́n et al. 2015a).

Another approach uses approximate PT-based solutions to speed
up N-body solvers (see COLA method; Tassev, Zaldarriaga &
Eisenstein 2013; Howlett, Manera & Percival 2015; Koda et al.
2015). This method is very promising to generate ensembles of
reference mock catalogues; however, it has the drawback of requir-
ing large computational memory for the force calculation and large
number of particles to resolve the haloes (see Chuang et al. 2015b),
and is therefore not suitable for the massive production aimed in
this work. The speed of the method over N-body simulations comes
at the expense of not resolving the substructures required to produce
a realistic galaxy catalogue. This problem can be circumvented by,
e.g., augmenting the missing objects with the halo occupation dis-
tribution (HOD) model, hereby losing some of the advantage of
having a higher precise description of the non-linear clustering over
the above-mentioned methods which rely only on the large-scale
dark matter field, as shown in a comparison study (see Chuang et al.
2015b, and references therein). One may need an approach like
COLA, to model the large-scale structure, combined with the galaxy
bias presented in this work for future emission line galaxy-based
surveys. We will, however, demonstrate here that this is not nec-
essary to model the distribution of luminous red galaxies (LRGs)
aimed in this work.

One could argue whether mock catalogues are required at all, as
analytical models may deliver an almost direct computation of error
bars and covariance matrices (Hartlap, Simon & Schneider 2007;
Hamaus et al. 2010; Dodelson & Schneider 2013; Taylor et al. 2013;

MNRAS 456, 4156–4173 (2016)
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Kalus, Percival & Samushia 2016). It still remains to be shown that
these methods making simple assumptions, such as that the density
field is Gaussian distributed, yield the same accuracy as covariance
matrices based on large sets of mock catalogues.

Nevertheless, the purpose of mock catalogues is manifold, as
they not only serve to provide error estimates, but also to provide an
understanding of the systematics of the survey and of the method-
ology. Any analytical prediction or data analysis method should be
cross-checked with large ensembles of mock galaxy catalogues for
which the products of this work could be useful. One clear example
is the case of BAO reconstruction techniques (see e.g. Eisenstein
et al. 2007; Padmanabhan et al. 2012; Anderson et al. 2014; Ross
et al. 2015).

We exploit the efficiency and accuracy of the PATCHY code to
produce 12 288 galaxy mock catalogues8 including the light-cone
evolution of galaxy bias based on the halo abundance matching
(HAM) technique applied to the reference BigMultiDark N-body
simulation (see Rodrı́guez-Torres et al. 2015, companion paper),
and to the peculiar motions based on the observational data, match-
ing the two-, three-point statistics, in real and redshift space of the
BOSS DR11&DR12 galaxy clustering data at different redshifts and
for arbitrary stellar mass bins. Special care has been taken to in-
clude all relevant observational effects including selection functions
and masking. The MultiDark PATCHY BOSS DR11 mock catalogues
presented in this work are publicly available.9

This paper is structured as follows: in Section 2 we describe the
methodology. This section starts with the generation of the refer-
ence catalogue using N-body simulations and the HAM technique.
Subsequently, the scheme to massively generate mock catalogues
is described. Then we show in Section 3 the statistical comparison
between the mock catalogues and the BOSS DR12 data. Subse-
quently, we discuss future work (Section 4). Finally, in Section 5
we present the conclusions. The reader interested only in the results
may skip Section 2 and directly go to Section 3.

2 M E T H O D O L O G Y

To construct high-fidelity mock light cones for interpreting the
BOSS DR11&DR12 galaxy clustering, we adopt an iterative train-
ing procedure in which a reference catalogue is statistically repro-
duced with approximate gravity solvers and analytical–statistical
biasing models. The whole algorithm involves several steps and is
summarized in the flow chart in Fig. 1.

(i) The first step consists of the generation of an accurate refer-
ence catalogue. Here we rely on a large N-body simulation capable
of resolving distinct haloes and the corresponding substructures.
This permits us to apply the HAM technique to reproduce the clus-
tering of the observations with only one parameter: the scatter in
the stellar mass-to-halo mass relation (see Rodrı́guez-Torres et al.
2015, companion paper; and Section 2.1). This technique is applied
at different redshift bins to obtain a detailed galaxy bias evolution
spanning the redshift range covered by BOSS DR11&DR12 galax-

8 This corresponds to an effective volume of ∼192 000 [h−1 Gpc]3, a factor
of ∼20 times larger than the volume of the DEUS FUR simulation (Alimi
et al. 2012), and a factor of ∼375 times larger than the DarkSky ds14
simulation (Skillman et al. 2014).
9 http://data.sdss3.org/sas/dr11/boss/lss/dr11_patchy_mocks/ The BOSS
DR12 mock catalogues will be made publicly available together with the data
catalogue: http://data.sdss3.org/sas/dr12/boss/lss/dr12_patchy_mocks/.

ies. In this way, we obtain mock galaxy catalogues in full cubical
volumes of 2.5 h−1 Gpc side at different redshifts.

(ii) In the second step, we train the PATCHY code (Kitaura et al.
2014, 2015) to match the two- and three-point clustering of the full
mock galaxy catalogues for each redshift bin. Here we consider all
the mock galaxies together in a single bin irrespectively of their
stellar mass.

(iii) In the third step, we apply the HADRON code (Zhao et al. 2015)
to assign stellar masses to the individual objects.

(iv) In the fourth step, we apply the SUGAR code (see Rodrı́guez-
Torres et al. 2015, companion paper) which includes selection ef-
fects, masking, and combines different boxes at different redshifts
into a light cone.

(v) In the fifth step, the resulting MultiDark PATCHY mock cata-
logues are compared to the observations. The process is iterated until
the desired accuracy for different statistical measures is reached.

In the next sections, we will describe in detail these steps de-
scribed above for the massive generation of accurate mock galaxy
catalogues. The reader interested only in the results may directly go
to Section 3.

2.1 Reference mock catalogues

The reference catalogues are extracted from one of the BigMul-
tiDark simulations10 (Klypin et al. 2014), which was performed
using GADGET-2 (Springel et al. 2005) with 38403 particles on a
volume of (2.5 h−1 Mpc )3 assuming � cold dark matter Planck
cosmology with { �M = 0.307 115, �b = 0.048 206, σ 8 = 0.8288,
ns = 0.9611} , and a Hubble constant (H0 = 100 h km s−1 Mpc−1)
given by h = 0.6777. Haloes were defined based on the Bound
Density Maximum halo finder (Klypin & Holtzman 1997).

We rely here on the HAM technique to connect haloes to galax-
ies (Kravtsov et al. 2004; Neyrinck, Hamilton & Gnedin 2004;
Tasitsiomi et al. 2004; Vale & Ostriker 2004; Conroy, Wechsler &
Kravtsov 2006; Kim, Park & Choi 2008; Guo et al. 2010; Wetzel &
White 2010; Trujillo-Gomez et al. 2011; Nuza et al. 2013).

We note that there are alternative methods connecting haloes to
galaxies like the HOD model, which we are not going to consider
here (e.g. Berlind & Weinberg 2002; Kravtsov et al. 2004; Zehavi
et al. 2005; Zentner et al. 2005; Zheng, Coil & Zehavi 2007; Ross &
Brunner 2009; Skibba & Sheth 2009; Zheng et al. 2009; White et al.
2011). These methods are based on a statistical relation describing
the probability that a halo of virial mass M hosts N galaxies with
some specified properties. In general, theoretical HODs require the
fitting of a function with several parameters, which we want to avoid
here.

At first order HAM assumes a one-to-one correspondence be-
tween the luminosity and stellar or dynamical masses: galaxies
with more stars are assigned to more massive haloes or subhaloes.
The luminosity in a red band is sometimes used instead of stellar
mass. There should be some degree of stochasticity in the rela-
tion between stellar and dynamical masses due to deviations in the
merger history, angular momentum, halo concentration, and even
observational errors (Tasitsiomi et al. 2004; Behroozi, Conroy &
Wechsler 2010; Leauthaud et al. 2011; Trujillo-Gomez et al. 2011).
Therefore, we include a scatter in that relation necessary to accu-
rately fit the clustering of the BOSS data (see Rodrı́guez-Torres
et al. 2015, companion paper). To do this, we modify the maximum

10 http://www.multidark.org/MultiDark/
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Figure 1. Flowchart of the methodology applied in this work for the generation of high-fidelity BOSS DR11&DR12 mock galaxy catalogues: i) starting from
a reference mock catalogue calibrated with the observations, ii) followed by the reproduction of the whole catalogue, iii) with the subsequent mass assignment,
iv) and survey generation. v) The final catalogues are compared with the observations and the simulation, and the previous steps are repeated until the mock
catalogues are compatible with the observations within 1σ for the monopole and quadrupole up to k ∼ 0.3 h Mpc−1.

circular velocity (Vmax) of each object adding a Gaussian noise:
V scat

max = Vmax(1 + N (0, σ )), where N (0, σ ) is a Gaussian random
number with mean 0 and standard deviation σ . Then, we sort all
objects by V scat

max , and then we selected objects starting from the one
with larger V scat

max and we continue until we get the proper number
density at different redshifts bins.

By construction, the method reproduces the observed luminosity
function (or stellar mass function). It also reproduces the scale de-
pendence of galaxy clustering over a large range of epochs (Conroy
et al. 2006; Guo et al. 2010). When abundance matching is used for
the observed stellar mass function (Li & White 2009), it gives also
a reasonable fit to lensing results (Mandelbaum et al. 2006) and to
the relation between stellar and virial mass (Guo et al. 2010).

2.2 Generation of mock galaxy catalogues

All covariance matrix estimates based on a finite number of mock
catalogues, Ns, are affected by noise, which must be propagated
into the final constraints. The impact of the uncertainties in the

covariance matrix on the derived cosmological constraints has been
subject of several recent analyses (Dodelson & Schneider 2013;
Taylor et al. 2013; Percival et al. 2014). In particular, Dodelson
& Schneider (2013) showed that this additional uncertainty can be
described by a rescaling of the parameter covariances derived from
the distribution of measurements from a set of mocks with a factor
given by

m = 1 + (Ns − Nb − 2)
(
Nb − Np

)

(Ns − Nb − 1)(Ns − Nb − 4)
, (1)

where Nb is the number of bins in the corresponding clustering
measurements and Np is the number of parameters measured. This
implies that a large number of mock catalogues are necessary for a
robust analysis of the galaxy clustering data.

For the anisotropic BAO measurements of Cuesta et al. (2015),
the estimation of the full covariance matrix of the monopole and
quadrupole of the two-dimensional correlation function from the
ensemble of 1000 QPM corresponds to an additional uncertainty of
2 per cent on the constraints on H(z)rd and DA(z)/rd. Using the 2048
MultiDark PATCHY mock catalogues, the effect is reduced to the order
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of 1 per cent. Large sets of catalogues are even more important
for full-shape fits of anisotropic clustering measurements, where
the inclusion of information from smaller scales can significantly
improve the constraints based on redshift space distortion (RSD;
requiring a larger number of bins). For example, in the analysis
of Sánchez et al. (in preparation), based on measurements of the
clustering wedges statistic (Kazin, Sánchez & Blanton 2012), the
use of mock catalogues corresponds to a rescaling of the parameter
covariances by m = 1.04 and 1.085 when using 1000 or 2048
catalogues, respectively. This additional uncertainty corresponds
to a degradation of the true constraining power of the clustering
measurements, which should be minimized by using a larger number
of mock catalogues. For this reason, we have made the effort in the
BOSS collaboration of producing at least 1000 mocks for each
BOSS DR11&DR12 subsample.

The strategy for the massive production of mock galaxy cata-
logues relies on generating dark matter fields with approximate
gravity solvers on a mesh. We use grids of 9603 cells with volumes
of (2.5 h−1 Gpc)3 and resolutions of 2.6 h−1 Mpc for which the
structure formation model can be considered to be accurate (see
Section 2.2.1). Then the galaxies are populated on the mesh accord-
ing to a combined non-linear deterministic (see Section 2.2.2) and
stochastic bias model (see Section 2.2.3). In a post-processing step,
we assign halo/stellar masses to each object (see Section 2.2.5).
Finally, we apply the survey geometry and selection functions (see
Section 2.2.6).

Let us start describing the PATCHY code (PerturbAtion Theory
Catalog generator of Halo and galaxY distributions).

2.2.1 Approximate fast structure formation model

We rely on augmented Lagrangian perturbation theory (ALPT) to
simulate structure formation. Let us recap the basics of this method
and refer for details to Kitaura & Heß (2013). In this approxima-
tion, the displacement field �(q, z), mapping a distribution of dark
matter particles at initial Lagrangian positions q to the final Eule-
rian positions x(z) at redshift z (x(z) = q + �(q, z)), is split into
a long-range �L(q, z) and a short-range component �S(q, z), i.e.
�(q, z) = �L(q, z) + �S(q, z).

We rely on second order LPT (2LPT) for the long-range compo-
nent �2LPT (for details on 2LPT, see Buchert 1994; Bouchet et al.
1995; Catelan 1995).

The resulting displacement field is filtered with a kernel
K: �L(q, z) = K(q, rS) ◦ �2LPT(q, z). We apply a Gaussian filter
K(q, rS) = exp (−|q|2/(2r2

S)), with rS being the smoothing radius.
We use the spherical collapse approximation to model the short-
range component �SC(q, z) (see Bernardeau 1994; Mohayaee et al.
2006; Neyrinck 2013). The combined ALPT displacement field

�ALPT(q, z) = K(q, rS) ◦ �2LPT(q, z)

+ (1 − K(q, rS)) ◦ �SC(q, z) (2)

is used to move a set of homogeneously distributed particles from
Lagrangian initial conditions to the Eulerian final ones. We then
grid the particles following a clouds-in-cell scheme to produce a
smooth density field δALPT. One may get some improvements pre-
venting voids within larger collapsing regions, which essentially
extends the collapsing region towards moderate underdensities (see
MUSCLE method in Neyrinck 2016). This approach requires about
eight additional convolutions being about twice as expensive, as
the approached used here. Moreover, we have checked that the

improvement provided by including MUSCLE is not perceptible when
using grids with cell sizes of 2.6 h−1 Mpc.

2.2.2 Deterministic bias relations

In this section, we describe the deterministic part of our bias model.
This is combined with a stochastic element, described in Sec-
tion 2.2.3, and a non-local element, described in Section 2.2.5, to
produced the full model. The deterministic bias relates the expected
number counts of haloes or galaxies ρg ≡ 〈Ng〉∂V at a given finite
volume to the underlying dark matter field ρM, with 〈[· · ·]〉∂V being
the ensemble average over the differential volume element ∂V (in
our case the cell of a regular mesh). This relation is known to be
non-linear, non-local, and stochastic (Press & Schechter 1974; Pea-
cock & Heavens 1985; Bardeen et al. 1986; Fry & Gaztanaga 1993;
Mo & White 1996, 2002; Dekel & Lahav 1999; Sheth & Lemson
1999; Seljak 2000; Berlind & Weinberg 2002; Smith, Scoccimarro
& Sheth 2007; Desjacques et al. 2010; Beltrán Jiménez & Dur-
rer 2011; Valageas & Nishimichi 2011; Baldauf et al. 2012, 2013;
Chan, Scoccimarro & Sheth 2012; Elia, Ludlow & Porciani 2012;
Ahn et al. 2015). In general, this bias relation will be arbitrarily
complex:

ρg = fg B(ρM), (3)

with B(ρM) being a general bias function, fg = 〈ρg〉V
〈B(ρM)〉V , 〈ρg〉V being

the number density N̄g, and 〈[···]〉V being the ensemble average
over the whole considered volume V (in our case the volume of the
considered mesh).

The deterministic bias model we consider in this work has the
following form:

ρg = fg θ (ρM − ρth) exp

[
−
(

ρM

ρε

)ε]
ρα

M (ρM − ρth)τ , (4)

with

fg = N̄g/〈θ (ρM − ρth) exp

[
−
(

ρM

ρε

)ε]
ρα

M (ρM − ρth)τ 〉V , (5)

and { ρ th, α, ε, ρε , τ} the parameters of the model. We have
modelled threshold bias (Kaiser 1984; Bardeen et al. 1986; Cole &
Kaiser 1989; Sheth, Mo & Tormen 2001; Mo & White 2002) as a
combination of a step function θ (ρM − ρ th) (Kitaura et al. 2014)

and an exponential cut-off exp
[
−
(

ρM
ρε

)ε]
(Neyrinck et al. 2014).

The local bias expansion (Cen & Ostriker 1993; Fry & Gaztanaga
1993) is summarized by a power law (de la Torre & Peacock 2013;
Kitaura et al. 2014). In addition, we consider a bias (ρM − ρ th)τ

which compensates for the missing power of PT-based methods.
Non-local bias has been recently found to be relevant (McDonald

& Roy 2009; Baldauf et al. 2012; Chan, Scoccimarro & Sheth 2012;
Sheth, Chan & Scoccimarro 2013; Saito et al. 2014). A non-local
bias introduces a scatter in the local deterministic bias relations
described above. In this work, the scatter is first described by a
stochastic bias relation (see Section 2.2.3). We have investigated
second-order non-local bias with PATCHY without finding that this can
have a relevant effect on the mock catalogues considering stochastic
bias and the full (one single mass bin) catalogue (see Autefage et al.,
in preparation). In fact, once one considers different populations of
halo or stellar mass objects, then non-local bias plays an important
role. We solve this in a post-processing step when assigning the
masses to each galaxy (see Section 2.2.5 and Zhao et al. 2015).
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2.2.3 Stochastic biasing

The halo distribution is a discrete sample Ng, i of the continuous
underlying dark matter distribution ρg, i:

Ng,i � P (Ng,i | ρg,i , {pSB}), (6)

for each cell i and {pSB} being the set of stochastic bias parameters.
To account for the shot noise, one could do Poissonian realizations
of the halo density field as given by the deterministic bias and the
dark matter field (see e.g. de la Torre & Peacock 2013). However,
it is known that the excess probability of finding haloes in high-
density regions generates overdispersion (Somerville et al. 2001;
Casas-Miranda et al. 2002).

The strategy up to now has been to generate a mock catalogue
which reproduces the clustering of the whole population of galax-
ies for a given redshift. This has the advantage that by mixing
massive and low-mass galaxies we will always be dominated by
overdispersion, which is much easier to model than underdisper-
sion. In particular, we consider the negative binomial probability
distribution function (for non-Poissonian distributions, see Saslaw
& Hamilton 1984; Sheth 1995) including an additional parameter
β to model overdispersion (tends towards the Poisson probability
distribution function for β → ∞ and for low λ values).

We note that a proper treatment of the deviation from Poissonity is
also crucial to get accurate density reconstructions (see Ata, Kitaura
& Müller 2015 and Ata et al., in preparation).

We will need, however, to take care of the different statistical
nature of each population of galaxies when we assign masses to
each object (see Section 2.2.5).

2.2.4 Redshift space distortions

Let us recap here the way in which RSDs are treated in the PATCHY

code (see Kitaura et al. 2014).
The mapping between Eulerian real space x(z) and redshift

space s(z) is given by s(z) = x(z) + vr (z), with vr ≡ (v · r̂)r̂/(Ha),
where r̂ is the unit sightline vector, H the Hubble constant, a the
scale factor, and v = v(x) the 3D velocity field interpolated at the
position of each halo in Eulerian space x using the displacement
field �ALPT(q, z). We split the peculiar velocity field into a coher-
ent vcoh and a (quasi-) virialized component vσ : v = vcoh + vσ . The
coherent peculiar velocity field is computed in Lagrangian space
from the linear Gaussian field δ(1)(q) using the ALPT formulation
consistently with the displacement field (see equation 2):

vcoh
ALPT(q, z) = K(q, rS) ◦ v2LPT(q, z)

+ (1 − K(q, rS)) ◦ vSC(q, z), (7)

with v2LPT(q, z) being the second-order and vSC(q, z) being the
spherical collapse component (for details see Kitaura et al. 2014).

We use the high correlation between the local density field and the
velocity dispersion to model the displacement due to (quasi-) virial-
ized motions. Effectively, we sample a Gaussian distribution func-
tion (G) with a dispersion given by σv ∝ (

1 + bALPTδALPT (x)
)γ

.
Consequently,

vσ
r ≡ (vσ · r̂)r̂/(Ha) = G

(
g × (

1 + δALPT (x)
)γ )

r̂. (8)

For the Gaussian streaming model see Reid & White (2011), and for
non-Gaussian models see e.g. Tinker (2007). In closely virialized
systems, the kinetic energy approximately equals the gravitational
energy and a Keplerian law predicts γ close to 0.5, leaving only
the proportionality constant g as a free parameter in the model

(see also Heß, Kitaura & Gottlöber 2013). We assign larger dis-
persion velocities to low-mass objects considered to be satellites.
The parameters g and γ have been adjusted to fit the damping
effect in the monopole and quadrupole as found in the BigMul-
tiDark N-body simulation first and later further constrained with
the BOSS DR12 data for different redshift bins (see discussion in
Section 3).

2.2.5 Halo/stellar mass distribution reconstruction

Once we have a spatial distribution of objects {rg} which accu-
rately reproduce the clustering of the whole galaxy sample at a
given redshift, we assign the halo/stellar masses Ml

g to each object l
according to the statistical information extracted from the BigMulti-
Dark simulation using the Halo mAss Distribution ReconstructiON
(HADRON) code (for technical details see Zhao et al. 2015). In partic-
ular, we sample the following conditional probability distribution
function

Ml
g � P (Ml

g|{rg}, ρM, T ,�rM
min, {pc}, z), (9)

where ρM is the local density, T the tidal field tensor (in particular the
eigenvalues), �rM

min a minimum separation between massive objects
due to exclusion effects, {pc} a set of cosmological parameters, and
z the redshift at which we want to apply the mass reconstruction.
We note that at this stage we consider non-local biasing through the
tidal field tensor and the minimum separation of objects. Using all
this information, it has been proven that one can recover compatible
clustering for arbitrary halo mass cuts with the N-body simulation
up to scales of about k = 0.3 h−1 Mpc (Zhao et al. 2015). We extend
the algorithm to stellar masses including the rank-ordering relation
and scatter described in Section 2.1.

2.2.6 Survey generator

The SUrvey GenerAtoR (SUGAR) code is an openMP code which
constructs light cones from mock galaxy catalogues (see Rodrı́guez-
Torres et al. 2015, companion paper). This code applies geometrical
features of the survey, including the geometry (using the publicly
available MANGLE mask; Swanson et al. 2008), sector completeness,
veto masks, and radial selection functions.

The SUGAR code can construct light cones using a single box
or multiples boxes at different redshifts, in order to include the
redshift evolution in the final catalogue. The first step in the con-
struction of the light cone is to locate the observer (z = 0) and to
transform from comoving Cartesian coordinates to equatorial coor-
dinates (RA,Dec.) and redshift. To compute the observed redshift
(redshift space) of an object, first we compute the comoving distance
from the observer to the object, and then we transform it to red-
shift space following s = rc + (v · r̂)/aH (zreal) (see Section 2.2.4),

where rc(z) is computed from rc(z) =
zreal∫
0

cdz′

H0

√
�M(1+z′)3+��

.

Once we compute the redshift of each galaxy, we consider two
options to select objects in the radial direction:

(i) downsampling: this option preserves the clustering of the in-
put box selecting objects randomly to have the desired number
density.

(ii) selecting by halo property: this consists of rank ordering
objects by a halo property and selecting them sequentially until the
correct number density is obtained.
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Figure 2. Pie plot of the BOSS DR12 observations (upper-left region) and one MultiDark PATCHY mock realization (lower-right region).

3 R ESU LTS: STATISTICAL COMPARISO N
B E T W E E N T H E MU LT I DA R K PAT C H Y M O C K S
A N D T H E BO S S D R 1 2 DATA

Following the method described in Section 2, we generate 12 288
mock light-cone galaxy catalogues for BOSS DR1211 (2048 for
each LOWZ, CMASS, combined, southern, and northern galactic
cap). We call these catalogues MultiDark PATCHY mocks, MD PATCHY

mocks in short. The corresponding computations required about
500 000 CPU hours (30–50 min for each box on 16 cores and a
total of 40 960 boxes). Since each PATCHY+HADRON run requires
less than 24 Gb shared memory for a grid with 9603 cells, we
were able to make use of 128 nodes with 32 Gb each in parallel
from the BSC Marenostrum facilities, taking about one week wall
clock time for all 40 960 catalogues. The light-cone generation with
SUGAR required an additional ∼1000 CPU hours. The equivalent

11 We have produced half the amount of mock catalogues for DR11, i.e.
1024 for each LOWZ, CMASS, combined, southern, and northern galactic
cap.

computations based on N-body simulations would have required
about 9000 million CPU hours (∼2.3 million CPU hours for each
light cone). The effective number of particles is ∼(61 440)3 (given
that the reference catalogue required 38403 particles to resolve the
objects we reproduce in the MD PATCHY catalogues).

We used 10 redshift bins to construct the light cones. This permits
us to obtain the galaxy bias, the growth, and the peculiar motion
evolution as a function of redshift. A visualization of the BOSS
DR12 and one MD PATCHY mock realization is shown in Fig. 2. We
can clearly see from this plot that both the data and the mocks follow
the same selection criteria including the survey mask (the colour
code stands for the stellar mass), and there are no obvious visual
differences beyond cosmic variance. The empty regions seem to be
similarly distributed for both cases, indicating that the three-point
statistics should be close, and the statistical comparison between the
MD PATCHY mock galaxy catalogues and the observations of BOSS
DR12 yields good agreement. The number densities for LOWZ and
CMASS galaxy samples are recovered by construction (see Fig. 3).
We investigate the performance of the mock galaxy catalogues in
detail in the following subsections.
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Figure 3. Number density for the LOWZ (left) and CMASS (right) samples. The observations are given by the blue solid lines. The shaded contours represent
the 1σ regions according to the MD PATCHY mocks.

Figure 4. Monopole for different stellar mass bins as indicated in the legend with the corresponding colour code. The error bars represent the BOSS DR12
data. The shaded contours represent the 1σ regions according to the MD PATCHY mocks.

To avoid redundancy, we show only the results for BOSS DR12,
as the only difference with respect to the BOSS DR11 mocks is the
applied mask and selection function.

3.1 Two-point and three-point correlation functions

We perform first an analysis in configuration space computing the
two- and three-point correlation functions. To compute the clus-
tering signal in the correlation function for the MD PATCHY mock
light cones and the observed data, we rely on the Landy & Szalay
(1993) estimator. We will follow their notation referring to the data
sample (either simulation or observed data) as D and to the random
catalogue as R.

The correlation function is then constructed in the following
way:

ξ (s) = DD − 2DR + RR

RR
, (10)

as a function of separation between pairs of galaxies in redshift
space s.

The three-point correlation function gives a description of the
probability of finding three objects in three different volumes, and
can be computed following Szapudi & Szalay (1998),

ζ (s12, s23, s13) = DDD − 3DDR + 3DRR − RRR

RRR
, (11)

as a function of separation between the vertices of triangles spanned
by triplets of galaxies in redshift space s12, s23, s13.

Fig. 4 shows that we accurately recover the clustering (monopole)
for arbitrary stellar mass bins showing almost perfect agreement
with observations. Only for the two largest stellar mass bin, we
find deviations larger than 1σ . This is mainly due to the ‘halo ex-
clusion effect’, which is only approximately modelled, assuming
a minimum separation for massive galaxies, and not the full sepa-
ration distribution function (Zhao et al. 2015). We find, however,
that these differences are not critical, as they are restricted to small
scales (�20 h−1 Mpc) and only a low number of objects are affected.
We further compute the monopole and quadrupole for LOWZ and
CMASS (see Fig. 5 and Section 3.3). The monopole agrees towards
small scales down to a few Mpc within 1σ .

There is a deviation of the monopole around the BAO peak and
towards larger scales. While the galaxy mock catalogues cross zero
right after the BAO peak, the observations do not. In this study,
we have applied all of the systematic weights, such as the stellar
density contamination, detailed in Reid et al. (2016) and Ross et al.
(in preparation). The correlation function measurements are quite
covariant between s bins at these scales, making the deviations
less significant than one would expect by the visual impression.
The significance and potential causes of the large-scale excess are
studied in Ross et al. (in preparation), where it is also shown that
it has no significant impact on BAO measurements. This is even
more so, as the overall shape of ξ (s) in BAO measurements is
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Figure 5. Monopole (on the left) and quadrupole (on the right) for LOWZ and CMASS in the first and second rows, respectively. The shaded contours
represent the 1σ regions according to the MD PATCHY mocks, correlation function in red, quadrupole in blue.

Figure 6. Left-hand and central panels: three-point statistics comparing the MD PATCHY mocks (blue shaded region) with the BigMultiDark mocks of the
N-body simulation (red shaded region) and the observations (black error bars) for LOWZ (left) and CMASS galaxies (central). Right-hand panel: three-point
statistics comparing the QPM mocks (LOWZ: blue shaded region, CMASS: red shaded region) to the observations (LOWZ: black error bars, CMASS: green
error bars). Corresponding ratios are shown in the bottom panels. Shaded area shows 1σ uncertainties, r1 = 10 and r2 = 20 h−1 Mpc and θ is the angle between
r1 and r2 h−1 Mpc.

marginalized over with a polynomial (see e.g. Anderson et al. 2014).
See also Ross et al. (2012) and Chuang et al. (2013) for similar
studies on an earlier BOSS data set and Huterer et al. (2013) for
potential photometric calibration systematics, which have not been
accounted for in this analysis.

In the case of RSD measurements, one has to make sure that the
analysis is performed on scales which are not affected by system-
atics (Gil-Marı́n et al. 2015a, companion paper). The quadrupole

is in very good agreement on all scales, further supporting that
RSD analysis should be safe, even in case there are some remnant
systematics in the data.

An investigation of the three-point function demonstrates that
the MD PATCHY mocks have a quality very similar to those based on
N-body simulations after calibration (see the left-hand and central
panels in Fig. 6). We have constrained the galaxy bias parame-
ters (see Sections 2.2.2, 2.2.3, and 2.2.5) based on the reference
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catalogues from the BigMultiDark simulation on cubical full vol-
umes at each of the 10 redshift bins, matching the two- and the
three-point statistics. To fit the latter, we focused on matching the
higher order correlation functions through the probability distri-
bution function of galaxies in the reference catalogues following
the approach presented in Kitaura et al. (2015). Using the obser-
vations to constrain the three-point statistics is not trivial, due to
incompleteness effects. This explains why the MD PATCHY mock
catalogues better fit the reference catalogue than the data, espe-
cially for the CMASS galaxies. The three-point statistics performs
worse for the QPM mocks, possibly because they do not include
an iterative validation step fitting higher order statistics (beyond the
two-point correlation function). The non-linear RSD parameter (see
Section 2.2.4) was iteratively constrained based on the observations,
as we explain in the next section.

3.2 Monopole and quadrupole in Fourier space

The galaxy power spectrum P and the galaxy bispectrum B are
the two- and three-point correlation functions in Fourier space.
Given the Fourier transform of the galaxy overdensity, δg(x) ≡
ρg(x)/ρ̄g − 1,

δg(k) =
∫

d3x δg(x) exp(−ik · x), (12)

where ρg(x) is the number density of objects and ρ̄g its mean value,
and the galaxy power spectrum and galaxy bispectrum are defined
as

〈δg(k)δg(k′)〉 ≡ (2π)3P (k)δD(k + k′), (13)

〈δg(k1)δg(k2)δg(k3)〉 ≡ (2π)3B(k1, k2)δD(k1 + k2 + k3), (14)

with δD being the Dirac delta function. Note that the bispectrum is
only well defined when the set of k-vectors, k1, k2, and k3, close
to form a triangle, k1 + k2 + k3 = 0. It is common to define the
reduced bispectrum Q as

Q(α12|k1, k2) ≡ B(k1, k2)

P (k1)P (k2) + P (k2)P (k3) + P (k1)P (k3)
, (15)

where α12 is the angle between k1 and k2. This quantity is inde-
pendent of the overall scale k and redshift at large scales and for a

power spectrum that follows a power law. Moreover, it presents a
characteristic ‘U-shape’ predicted by gravitational instability. Mode
coupling and power-law deviations in the actual power spectrum
induce a slight scale and time dependence in this quantity. How-
ever, in practice it has been observed that at scales of the order of
k ∼ 0.1 h Mpc−1 the reduced bispectrum does not present a high
variation in its amplitude.

The measurement of the bispectrum is performed in the same way
as the approach described in Gil-Marı́n et al. (2015c). This method
consists of generating k-triangles and randomly orientating them in
k-space. When the number of random triangles is sufficiently large,
the mean value of their bispectra tends to the fiducial bispectrum
(for details see Gil-Marı́n et al. 2015c).

Discreteness adds a shot noise contribution to the measured power
spectrum and bispectrum. In this paper, we assume that these con-
tributions are of Poisson type and therefore are given by

Psn(k) = 1

n̄
(16)

Bsn(k1, k2) = 1

n̄
[P (k1) + P (k2) + P (k3)] + 1

n̄2
, (17)

where k3 = |k1 + k2| and n̄ is the number density of haloes.
For both power spectrum and bispectrum, we present the BOSS

DR12 data error bars computed from the dispersion among 2048
and 100 realizations of MD PATCHY mock catalogues, respectively.

The Fourier space analysis has been used to improve the mod-
elling of the RSDs in the galaxy mock catalogues. We have assigned
higher peculiar random motions to about 10 per cent of the galaxies
to fit the quadrupole of the data with a specific value for each of the
10 redshift bins. The resulting monopoles and the quadrupoles show
good agreement with the observations over the range relevant to
BAOs and RSDs up to at least k  0.3 h−1 Mpc for both LOWZ and
CMASS (see Fig. 7). This agreement is further supported after BAO
reconstruction, as can be seen in Fig. 8. Only towards the very large
scales (k � 0.02 h−1 Mpc), we can find that the observed monopole
tends to be larger than the mock catalogues (both MD PATCHY and
QPM). This hints towards the discrepancy in the monopole found in
configuration space (see the previous section). Although the PATCHY

method can potentially yield accurate two-point statistics up to
k ∼ 1 h−1 Mpc (see Kitaura et al. 2014; Chuang et al. 2015b), we
have restricted the study to lower ks, as the analysis of BAOs and

Figure 7. Monopole (red) and quadrupole (blue) in Fourier space for the LOWZ (left) and CMASS galaxies (right) for the mean over 2048 MD PATCHY mocks
for both southern and northern galactic caps, the average and 1σ uncertainties are shown. The results for QPM (1000 mocks for each LOWZ/CMASS, and
north/south) are shown with dashed magenta lines. The error bars assigned to the data points have been computed based on 2048 MD PATCHY mocks. The ratio
plots in the bottom panels have been only done for the MD PATCHY mocks.

MNRAS 456, 4156–4173 (2016)



4166 F.-S. Kitaura et al.

Figure 8. Monopole (on the left) and quadrupole (on the right) before and after BAO reconstruction (see Vargas-Magana et al., in preparation). The error bars
represent the BOSS DR12 data. The solid lines correspond to the mean, and the shaded contours represent the 1σ regions, according to the MD PATCHY mocks
(red pre-, and blue post-reconstruction).

RSDs will not be done beyond k = 0.3 h−1 Mpc, and the compu-
tation of power spectra for thousands of mocks with large grids
becomes very expensive.

This fitting procedure had, however, as a consequence that the
three-point correlation function is slightly less precise at angles
close to θ ∼ 0 and θ ∼ π, as can be seen in Fig. 6, which prior to this
operation was fully compatible with the reference catalogue. In fact,
the reference BigMultiDark catalogue used in this study showed
a highly discrepant quadrupole, as compared to the observations.
This has been deeply analysed and better agreement has been found
based on an improved HAM procedure applied to the BigMultiDark
simulation (see Rodrı́guez-Torres et al. 2015, companion paper),
which however was not available at the moment of the generation
of the MD PATCHY mocks. The HOD model adopted in the QPM mock
catalogues assumed about 10 per cent satellite galaxies. This yields
a compatible quadrupole for the CMASS galaxies. However, as
these catalogues were not iteratively calibrated for different redshift
slices, their agreement with the LOWZ galaxies is less accurate.

A detailed analysis of the bispectra is presented in Figs 9 and 10
demonstrating reasonable agreement between the mocks and the
observations for different configurations of triangles across a wide
range of scales, given the high uncertainties introduced by the mask,
selection function, and cosmic variance.

3.3 Cosmic evolution

The cosmic evolution modelled in the MD PATCHY mocks was
achieved by fitting the clustering of 10 redshift bins for the full
redshift range spanning about 5 Gyr. This implied running structure
formation with ALPT for each redshift, i.e. modelling the growth
of structures and the growth rate, and additionally fitting the galaxy
bias evolution and the non-linear RSDs. The evolution of clustering
for both sets of mocks in the full redshift range is shown in Fig. 11.
While the correlation function for CMASS galaxies does not show
strong differences along the CMASS redshift range, this evolution
is very apparent for the LOWZ sample. Fig. 12 shows the compar-
ison between the mocks and the observations for different LOWZ
in more detail. The QPM mocks do not include a detailed cosmic
evolution within LOWZ or CMASS being based on mean redshifts
for each case. This explains why these mocks lose accuracy in the
two-point statistics towards low redshifts.

We investigate now the cosmic evolution of the covariance matri-
ces derived from the MD PATCHY mocks12 computed as in Anderson
et al. (2014):

cov[i, j ] =
∑

l(ξ
l
i − 〈ξ l

i 〉)(ξ l
j − 〈ξ l

j 〉)
Ns − 1

, (18)

with bins i and j, mock sample l, and Ns being the number of
simulations.

The correlation matrices for different redshift bins shown in
Fig. 13 were constructed upon the covariance matrices following

C[i, j ] = cov[i, j ]√
cov[i, i]

√
cov[j, j ]

. (19)

We find that the correlation matrices vary in subsequent redshift
bins. First, the correlation matrices are increasingly correlated close
to the diagonal for both the monopole and the quadrupole towards
lower redshifts, as expected from gravitational evolution coupling
different scales. This is seen in Fig. 13 as the diagonal red band
becomes broader especially comparing the highest redshift bin with
the lower ones. Secondly, we find that moderate off-diagonal corre-
lations present at higher redshifts disappear towards lower redshifts.
And thirdly, we can see that the correlation between the monopole
and the quadrupole at large scales becomes maximal in the redshift
bin 0.43 < z < 0.55, as can be seen in the white region in the lower-
right and upper-left blocks. This ‘triangular’ correlation is expected
from linear theory (see equations 7 and 9 in Chuang & Wang 2013).

Further calculations of the correlation functions including QPM

mocks are shown in companion publications (Gil-Marı́n et al.
2015a,b, companion papers).

Additionally, we show in Fig. 14 the angular correlation function
and in Fig. 15 the multipole moments (including the hexadecapole)
for different redshift bins based on the combined sample showing
good agreement between the MD PATCHY mocks and the data.

4 FU T U R E WO R K

We have taken advantage in this survey of the characteristic bias
of LRGs, being massive objects residing in high-density regions.

12 Covariance matrices for the different catalogues (LOWZ, CMASS, and
combined sample) will be made publicly available with the publication of
the galaxy catalogue.
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Figure 9. Bispectra and reduced bispectra for LOWZ mocks and observed galaxies for different configurations indicated above each panel. The red solid line
corresponds to the mean and the red shaded region to the 1σ contour of 100 MD PATCHY mocks. The black dots correspond to the BOSS DR12 data with the
error bars taken from the MD PATCHY mocks.

This work confirms that threshold bias is an essential ingredient to
explain the clustering of LRGs. This facilitates our analysis, since
the low-density filamentary network did not need to be accurately
described, and it has permitted us to rely on low-resolution (aug-
mented Lagrangian) PT-based methods. This will no longer apply
for upcoming surveys based on emission line galaxies residing in
the whole cosmic web. One could improve the methodology pre-
sented in this work by substituting the structure formation model
based on PT with a more accurate one (e.g. COLA). Whether this
is necessary, or whether more efficient alternative approaches are
sufficient (e.g. ALPT with MUSCLE corrections), will be investigated
in future works.

Non-local bias was only considered in the mass assignment step,
but neglected in the generation of the full galaxy population. This
may become important to model for emission line galaxies, and
needs a deeper analysis.

The approximate ‘halo exclusion’ modelling is mainly responsi-
ble for the deviation in the clustering of the most massive objects,
and could be improved by taking their full distribution of relative
distances, instead of taking a sharp minimum separation for each
mass bin, as is done here.

Another aspect which still needs to be improved in the catalogues
is the clustering on sub-Mpc scales. We have randomly assigned
positions of dark matter particles to the mock galaxies without con-
sidering that some of them are satellites of central galaxies. This
implies that these mocks are not appropriate for fibre-collision anal-
ysis. For the time being, we will leave the mock catalogues as they
are, since most of the studies are not affected by this. Neverthe-
less, we would like to stress that this aspect can easily be corrected
by assigning to a fraction of the mock galaxies close positions to
the major most massive ones in the neighbourhood, without the
need of redoing the catalogues. The QPM mocks better model fibre
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Figure 10. Bispectra and reduced bispectra for CMASS mocks and observed galaxies for different configurations. The red solid line corresponds to the mean
and the red shaded region to the 1σ contour of 100 MD PATCHY mocks. The black dots correspond to the BOSS DR12 data with the error bars taken from the
MD PATCHY mocks.

collisions, as the HOD adopted in this work successfully reproduced
the fraction of close satellites and central galaxies (Gil-Marı́n et al.
2015a, companion paper).

Also the photometric calibration systematics, presumably respon-
sible for the excess of power in the data towards large scales, require
further investigation.

We have considered one fiducial cosmology. It would be, how-
ever, interesting to provide sets of mock catalogues running over
different combinations of cosmological parameters.

Let us finally mention that we have ignored in this study super-
survey modes, which may be especially relevant for the analysis of
the power spectrum at very large scales (Takada & Hu 2013; Li, Hu
& Takada 2014a,b; Carron & Szapudi 2015).

We aim at addressing all these issues in future works.

5 SU M M A RY A N D C O N C L U S I O N S

We have presented 12 288 mock galaxy catalogues for the BOSS
DR12, including all relevant physical and observational effects, to
enable a robust analysis of BAOs and RSDs.

The main features of these mock catalogues are as follows:

(i) large number of catalogues: 2048 for each LOWZ, CMASS,
and combined LOWZ+CMASS and northern and southern galactic
cap,

(ii) accurate structure formation model on scales of a few Mpc,
(iii) accurate galaxy bias model including non-linear, stochastic,

threshold bias, and a non-local bias dependence on the tidal field
tensor and the exclusion effect separation of massive objects,

(iv) modelling redshift evolution of galaxy bias, growth of struc-
tures, growth rate, and non-linear RSDs,

(v) and additional survey features, such as geometry, sector com-
pleteness, veto masks, and radial selection functions.

The same degree of accuracy is achieved for the BOSS DR11 MD
PATCHY mocks, for which only 6000 light-cone mock catalogues
were produced (1000 for each LOWZ, CMASS, and combined
LOWZ+CMASS and northern and southern galactic cap).

The MD PATCHY mocks have shown a better match to the data
than the QPM mocks in terms of two- and three-point statistics.
Investigating the origin for these differences can be interesting as
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Figure 11. Monopole and the quadrupole for different redshift bins over the redshift range 0.15 < z < 0.7. The black error bars stand for the BOSS DR12
data. The shaded contours represent the 1σ regions according to the MD PATCHY mocks in blue and according to the QPM mocks in red. These measurements
are used in the BAO and RSD analysis in Chuang et al. (in preparation).

Figure 12. Monopole showing the evolution for LOWZ. The corresponding
redshift bins for the PATCHY mocks are represented by shaded regions, and
the observations by the error bars.

the physical models, and in particular the galaxy bias, adopted in
each method are quite different.

We note that neglecting the stochastic bias considered in the MD
PATCHY mocks, modelling the deviation from Poisson shot noise

(predominantly overdispersion), could underestimate the clustering
uncertainties.

The mock catalogues have enabled a robust analysis of the BOSS
data yielding the necessary error estimates and the validation of the
analysis methods. In particular, the studies include the following:

(i) a full clustering analysis (Grieb et al., in preparation; Sánchez
et al., in preparation: see Fig. 15),

(ii) a tomographic analysis of the large-scale angular galaxy clus-
tering, where full light-cone effects (e.g. growth, bias, and velocity
field evolution) are essential (Salazar-Albornoz et al., in prepara-
tion: see Fig. 14),

(iii) a study of the BAO reconstructions (see Vargas-Magana
et al., in preparation, and Fig. 8 showing the performance on the
MD PATCHY mocks),

(iv) and an RSD analysis (Gil-Marı́n et al. 2015a, companion
paper; Beutler et al., in preparation).

We have demonstrated that the MD PATCHY BOSS DR12 mock
galaxies match, in general within 1σ , the clustering properties of the
BOSS LRGs for the monopole, quadrupole, and hexadecapole of
the two-point correlation function both in configuration and Fourier
space. In particular, we achieve a high accuracy in the modelling of
the monopole up to k ∼ 0.3 h Mpc−1. We have furthermore shown
that we also obtain three-point statistics with the same level of
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Figure 13. Cosmic evolution of the correlation matrices for different redshift bins indicated in the legend in bins of 5 h−1 Mpc. Lower-left block for the
monopole, upper-right block for the quadrupole, and upper-left and lower-right blocks for the correlations between the monopole and the quadrupole. See
Section 3.3 for details of the calculation. These correlation matrices are used in the BAO and RSD analysis in Chuang et al. (in preparation).

accuracy as N-body-based catalogues at scales larger than a few
Mpc, which are close to the observations.

The good agreement between the models and the observations
demonstrates the level of accuracy reached in cosmology, our un-
derstanding of structure formation, galaxy bias, and observational
systematics.

All the mock galaxy catalogues and the corresponding covariance
matrices will be made publicly available together with the release
of the BOSS DR12 galaxy catalogue.
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Figure 14. Angular correlation functions based on the combined sample. Left-hand panel: angular auto-correlation function on small scales for two different
tomographic bins (see key for redshift ranges), where colour bands are the mean and 1σ region of MD PATCHY and symbols correspond to the measurements
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as the left-hand panel. Right-hand panel: large-scale angular auto-correlation function for two different redshift bins. These measurements are used in the
tomographic analysis of galaxy clustering in Salazar-Albornoz et al. (in preparation).
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for redshift ranges), where colour bands are the mean of MD PATCHY and symbols correspond to the measurements on the DR12 combined sample. These
measurements are used in the wedges analysis of galaxy clustering in Grieb et al. (in preparation).
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CHAPTER 5

Clustering of Quasars in the eBOSS-Y1Q

Publication: Monthly Notices of the Royal Astronomical Society, Volume 468, Issue 1,
p.728-740

Motivation

Current and future surveys are mapping deep regions of the Universe. They are covering
huge volumes which becomes a challenge for cosmological simulations. Quasars allow us to
explore these regions. However, the connection between these objects and dark matter is
not well understood. Most models analyse them at large scales. Here, we produce mock
catalogues using a new method to describe the quasar-halo connection and learn more about
the evolution of the structures shown by these quasars.
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1Instituto de Fı́sica Teórica, (UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
2Campus of International Excellence UAM+CSIC, Cantoblanco, E-28049 Madrid, Spain
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ABSTRACT
In current and future surveys, quasars play a key role. The new data will extend our knowledge
of the Universe as it will be used to better constrain the cosmological model at redshift
z > 1 via baryon acoustic oscillation and redshift space distortion measurements. Here, we
present the first clustering study of quasars observed by the extended Baryon Oscillation
Spectroscopic Survey. We measure the clustering of ∼70 000 quasars located in the redshift
range 0.9 < z < 2.2 that cover 1168 deg2. We model the clustering and produce high-
fidelity quasar mock catalogues based on the BigMultiDark Planck simulation. Thus, we use
a modified (sub)halo abundance matching model to account for the specificities of the halo
population hosting quasars. We find that quasars are hosted by haloes with masses ∼1012.7 M�
and their bias evolves from 1.54 (z = 1.06) to 3.15 (z = 1.98). Using the current extended
Baryon Oscillation Spectroscopic Survey data, we cannot distinguish between models with
different fractions of satellites. The high-fidelity mock light-cones, including properties of
haloes hosting quasars, are made publicly available.

Key words: quasars: general – cosmology: observations – large-scale structure of Universe.

1 IN T RO D U C T I O N

How quasars (QSO) populate the large-scale structure is a puzzle
in modern cosmology. It is known that these objects trace the dark
matter density field. Therefore, using measurements of the baryon
acoustic oscillations (BAO) or redshift space distortions (RSD) from
quasars, one can infer information of the cosmological model. How-

� E-mail: sergio.rodriguez@uam.es
†Campus de Excelencia Internacional UAM/CSIC Scholar.
‡ Severo Ochoa Fellow.

ever, for these studies or to increase the knowledge of the evolution
of quasars, we require a good estimation of their distribution at all
scales. Thus, spectroscopic surveys and high-fidelity galaxy mocks
from simulations are a great help when solving many riddles con-
cerning quasars.

Large galaxy spectroscopic surveys are an excellent tool to con-
struct a precise 3D map of our Universe. They allow us to study the
distribution of different populations in the Universe and constrain
cosmological information via BAO scale or RSD measurements.
The Sloan Digital Sky Survey (SDSS; York et al. 2000) and the
two degree field galaxy redshift survey (Norberg et al. 2001) first
measured the BAO scale in the local universe (Cole et al. 2005;

C© 2017 The Authors
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Eisenstein et al. 2005). The Baryon Oscillation Spectroscopic Sur-
vey (BOSS; Dawson et al. 2013), included in the SDSS III program
(Eisenstein et al. 2011), recently provided accurate redshifts for
1.5 million galaxies as faint as i = 19.1, that cover the redshift range
0.2 < z < 0.75 on 10 000 deg2. In combination with SDSS-I/II (York
et al. 2000), it provided a subpercent level measurement of the posi-
tion of the BAO peak at redshift z = 0.57 (Alam et al. 2016). SDSS
is an example of how spectroscopic surveys can provide strong
constraints on our knowledge of the Universe.

Bright quasars constitute the best targets to sample the matter
field at high redshift with a small exposure time. Indeed, quasars
bear an active galactic nucleus (AGN) that generates light which
outshines the entire host galaxy. SDSS I/II published a sample of
∼100 000 confirmed quasars (Schneider et al. 2010) and SDSS-III
observed ∼170 000 quasars with redshift 2.1 < z < 3.5 as faint as
g = 22 (Pâris et al. 2014). Using both samples, the BAO feature
was measured to a few per cent in the Lyman α (Ly α) forest (Font-
Ribera et al. 2014; Delubac et al. 2015). Despite the large sample
of quasars observed by the SDSS programs, there is still a large
region in redshift (1 < z < 2.1) that ought to be studied by targeting
quasars fainter than i = 19.1 in the SDSS imaging. Recent data
from other experiments (Wright et al. 2010, e.g. WISE) provides
additional information to best target quasars. A cutting-edge target
selection algorithm was implemented in Myers et al. (2015) and is
being observed by the extended Baryon Oscillation Spectroscopic
Survey (eBOSS; Dawson et al. 2016), part of the SDSS-IV program.
It will increase the number of quasars found by SDSS I/II in the
redshift range 0.9 < z < 2.2 by a factor of 5. This new sample will
cover ∼7500 deg2, increasing both the volume and the low number
density of the previous samples. It is designed to measure the BAO
scale with quasars as tracers of the matter field. In this study, we
consider the eBOSS First Year QSO data (hereafter Y1Q). For more
details, please see Section 2.1.

Different models have been used to analyse the clustering of
quasars. In the literature, many studies focus on the linear regime
(large scales). At these scales, correlation function can be described
by a power law (e.g. Chehade et al. 2016), mostly due to the intrinsic
low density of quasars. A more sophisticated method used to model
the galaxy clustering and generate mock catalogues is the halo oc-
cupation distribution (HOD; Jing, Mo & Börner 1998; Peacock &
Smith 2000; Scoccimarro et al. 2001; Berlind & Weinberg 2002;
Cooray & Sheth 2002; Zheng et al. 2005). The HOD model recov-
ers the quasar clustering, but its parameters are largely degenerate,
producing poor constraints on the host halo masses and satellite
fraction (Richardson et al. 2012; Shen et al. 2013). Galaxy samples
have also been studied with another method, namely halo abun-
dance matching (HAM), which reproduces the clustering of com-
plete galaxy samples with a reasonable agreement (e.g. Kravtsov
et al. 2004; Conroy, Wechsler & Kravtsov 2006; Behroozi, Conroy
& Wechsler 2010; Guo et al. 2010; Trujillo-Gomez et al. 2011;
Nuza et al. 2013; Reddick et al. 2013). By including the stellar
mass distribution (or luminosity distribution), the HAM also ac-
counts for incomplete samples (e.g. Rodrı́guez-Torres et al. 2016).
HAM requires knowledge of the stellar mass function, the scatter in
the stellar mass to halo mass relation and the incompleteness of the
sample. In the case of quasars, obtaining such information is not an
easy task. However, modifications of the standard method can be
implemented to describe the quasar population.

In this study, we generate light-cones based on the BigMultiDark
Planck simulation (BigMDPL; Klypin et al. 2016), using a modified
HAM technique to reproduce the Y1Q clustering properties. The
BigMDPL is an N-body simulation with box size 2.5 h−1 Gpc and

38403 particles, which yields a volume large enough to encompass
Y1Q. A variety of mocks, which model different populations of
galaxies, has already been constructed using the BigMDPL sim-
ulation. They predict, with a good agreement, the observed two-
point and three-point statistics (Guo et al. 2015; Favole et al. 2016;
Rodrı́guez-Torres et al. 2016).

This paper is structured as follows. In Section 2, we describe the
data used in our analysis. Section 3 presents the different steps to
construct the BigMDPL eBOSS quasar mocks, including how we
populate dark matter haloes using a modified HAM algorithm. A set
of predictions from our model is shown in Section 4. Subsequently,
we discuss and summarize the most relevant results in Sections 5
and 6. In this paper, we assume a fiducial � cold dark matter
(�CDM) cosmology with the PLANCK-I parameters �m = 0.307,
�B = 0.048, �� = 0.693 (Planck Collaboration XVI 2014).

2 DATA

2.1 eBOSS QSO survey and clustering

The eBOSS (Dawson et al. 2016) is part of a six year SDSS-IV
programme (fall 2014 to spring 2020). It combines the potential of
SDSS-III/BOSS and new photometric information to optimize tar-
get selection and extend BAO studies to higher redshift. eBOSS uses
the 2.5-m Sloan Foundation Telescope at Apache Point Observatory
(Gunn et al. 2006) and the same fibre-fed optical spectrograph as
BOSS, where each fibre subtends a 2 arcsec diameter of the sky
(Smee et al. 2013). This survey will provide redshifts for 300 000
luminous red galaxies (LRG) in the redshift range 0.6 < z < 1.0, a
new sample of ∼200 000 emission line galaxies (ELG) at redshift
z > 0.6, more than 500 000 spectroscopically confirmed quasars at
0.9 < z < 2.2 and ∼120 000 new Ly α forest quasars at redshift
z > 2.1.

eBOSS dedicates 1800 plates to cover an area of 9000 deg2:
1500 plates to measure LRG and QSO redshifts on 7500 deg2 and
300 plates to measure ELG redshifts on 1000 deg2. The first two
years, observations were dedicated to the QSO and LRG samples. In
order to maximize the tiling completeness and fibre efficiency in the
LRG/QSO sample, a tiered priority is adopted (Dawson et al. 2016),
where the QSO targets have maximal priority and are assigned to
fibres first.

eBOSS has adopted two approaches to target quasars for redshift
>0.9 (Myers et al. 2015). In the first approach, ‘Clustering’ quasar
targets (QSO_CORE) are used as a direct tracer of the large-scale
structure in the redshift range 0.9 < z < 2.2. The second approach
consists in detecting quasars at z > 2.1 to map the large-scale
structure via absorption of the Ly α forest (Palanque-Delabrouille
et al. 2016).

(i) The CORE quasar sample is constructed combining optical se-
lection in ugriz using a likelihood-based routine called XDQSOZ

(Bovy et al. 2011), with a mid-IR–optical colour cut. eBOSS CORE

selection (to g < 22 or r < 22) should obtains ∼70 quasars deg−2

at redshifts 0.9 < z < 2.2 and about 7 quasars deg−2 at z > 2.2.
(ii) The Ly α quasar selection is based on variability in multi-

epoch imaging from the Palomar Transient Factory (Palanque-
Delabrouille et al. 2016). It recovers an additional 3 or 4 quasars
deg−2 at z > 2.2 to g < 22.5. A linear model of how imaging sys-
tematics affect target density recovers the angular distribution of
eBOSS CORE quasars over 96.7 per cent (76.7 per cent) of the SDSS
North (South) Galactic Cap area (Myers et al. 2015).

MNRAS 468, 728–740 (2017)
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Table 1. Distribution of the Y1Q sample in four redshift bins. n̄

represents the comoving number density of QSO, N is the number of
QSO and V is the comoving volume of the redshift bin subtended by
1168 deg2. The last line shows the values for the complete sample.

Redshift n̄ N V
(10−5 Mpc−3 h3) (109 h−3 Mpc3)

0.9 < z < 1.2 1.36 13 484 0.99
1.2 < z < 1.5 1.48 17 578 1.19
1.5 < z < 1.8 1.36 17 778 1.31
1.8 < z < 2.2 1.05 19 429 1.84

0.9 < z < 2.2 1.28 68 269 5.34

Busca et al. (2013) measure the BAO scale using Ly α quasars
from the BOSS data. Font-Ribera et al. (2014) also give measure-
ments of this scale using the cross-correlation between visually
confirmed quasars with the Ly α forest absorption. One of the goals
of eBOSS is to provide a first detection of the BAO scale using only
the CORE quasar sample.

In this context, we focus our study on the spectroscopically con-
firmed QSO using the Y1Q data which includes 68 269 objects that
cover 1168 deg2 of the sky. Table 1 shows the abundance of CORE

QSO at different redshift ranges.

2.2 Redshift error and statistical weights

eBOSS expects a redshift precision better than 300 s−1km rms for
the QSO CORE at z < 1.5 and better than [300+400(z −1.5)] km
s−1 at z > 1.5 (Myers et al. 2015). It corresponds to redshift errors
of the order of 1× 10−3 for z < 1.5 and ∼5 × 10−3 for larger red-
shift. These errors have an important impact on scales smaller than
10 h−1Mpc (see Appendix B). For this reason, we add redshift er-
rors to the mock catalogues using these upper limits. In addition,
less than 1 per cent of the sample is expected to have catastrophic
redshift errors.

In order to include the observed redshift precision in the light-
cones, we model redshift errors using a Gaussian distribution with
mean value ztrue and width �z,

z = ztrue + �zN (0, 1), (1)

where N (0, 1) is a random number coming from a Gaussian distri-
bution with mean 0 and standard deviation 1 and

�z =
{

300 km s−1c−1 if z<1.5

[300 + 400(z − 1.5)] km s−1c−1 if z ≥ 1.5,
(2)

c represents the speed of light. We also include 1 per cent of catas-
trophic redshift errors, which introduces a reduction in the amplitude
of the correlation function of ∼1 per cent at all scales (Appendix B).
In order to include these errors, we randomly select 1 per cent of the
mock galaxies and replace their redshift by a random value within
the range of the catalogue.

A correct estimation of redshift errors is important in order to
understand the behaviour of the clustering at small scales. The
monopole of the correlation function is affected by over 50 per cent
at scales below 10 h−1 Mpc. The impact is larger on the quadrupole,
where the effects are detected at scales below 40 h−1 Mpc (Reid
& White 2011). In Appendix B, we explore with more detail the
impact of these errors on clustering measurements. Nevertheless,
even if we model the redshift errors, this is still an approximation
that can introduce unphysical effects. This can result in a wrong
estimation of the model’s parameters if scales affected by errors

are included in the fitting procedure. For this reason, we fix the
parameters using the monopole of the correlation function between
10 and 40 h−1 Mpc, where the impact of redshift errors decreases
and the effects of the cosmic variance and shot noise become smaller
(Appendix B).

In addition to redshift measurement, the 5σ detection limit for
point sources (also called depth) of the SDSS photometric survey
varies across the footprint and differs for each band. The amplitude
of the variations implies that faint targets end up very close to the
detection limit. These targets are then more likely to be missed by the
target selection algorithm. eBOSS corrects this effect by applying
a depth-dependent weight, called ‘systematics weight’ wsys to each
quasar (see Laurent et al., in preparation for a detailed description).

Finally, eBOSS takes fibre collisions and redshift failures into
account by using weights for each, wcp and wz f, respectively. Those
quantities are initialized to one for all objects. Then, if a quasar has
a nearest neighbour with a redshift failure or its redshift was not
obtained because it was in a close pair, wz f or wcp are increased by
one (Ross et al. 2012). Including all these effects, the total weight
for each quasar in the observed data is given by

wQ = wFKPwsys(wcp + wzf − 1), (3)

where wFKP is the density weight applied for an optimal estimation
of the two-point function and is defined by the expression (Feldman,
Kaiser & Peacock 1994)

wFKP = 1

1 + n(z)PFKP
, (4)

where n(z) is the number density at redshift z and PFKP =
6000 h−3 Mpc3.

Corrections for fibre collisions using close pair weights do not
provide an accurate clustering signal at small scales (Guo, Zehavi &
Zheng 2012; Hahn et al. 2017). However, in the quasar sample the
distribution of objects is disperse and the number of collided pairs
is very small. Additionally, our analysis does not use scales below
10 h−1Mpc, so the close pair correction is good enough for our
purpose. In the case of the simulated quasars, we include FKP
weights but do not simulate the effects that require any of the
additional weights applied to the data sample.

2.3 The eBOSS BigMultiDark light-cone

The suite of MultiDark1 Planck (MDPL) simulations adopts a flat
�CDM model with PLANCK-I cosmological parameters (Planck Col-
laboration XVI 2014): �m = 0.307, �B = 0.048, �� = 0.693,
σ 8 = 0.829, ns = 0.96 and a dimensionless Hubble parameter
h = 0.678. We only use two of the N-body simulations described
in Klypin et al. (2016). The BigMultiDark (BigMDPL) has a
box length of 2.5 h−1 Gpc with 38403 particles of mass 2.4 ×
1010 h−1M� and the MDPL has a box length of 1.0 h−1 Gpc with
38403 particles with a mass of 1.5 × 109 h−1 M�. Both were built
with GADGET-2 (Springel 2005) using initial Gaussian fluctuations
generated with the Zel’dovich approximation at redshift 100.

From the dark matter catalogues of the simulation, haloes are de-
fined with the Robust Overdensity Calculation using K-Space Topo-
logically Adaptive Refinement halo finder (ROCKSTAR; Behroozi,
Wechsler & Wu 2013). Spherical dark matter haloes and subhaloes
are identified using an approach based on adaptive hierarchical re-
finement of friends-of-friends groups in six-phase space dimensions

1 http://www.multidark.org/
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Table 2. Deviation from the mass function at redshift 0 for the MDPL and the BigMDPL simulations. The masses and the maximum circular
velocities are the threshold above which the completeness in this box relative to the mass function is higher than the percentage given in the
header (see equation 6). The corresponding number of particles is provided in brackets.

log (M200c(z)/M�) Vmax

Fraction 80 per cent 90 per cent 95 per cent 97 per cent 80 per cent 90 per cent 95 per cent 97 per cent

Central haloes

MDPL 11.04 (71) 11.10 (82) 11.26 (119) 11.61 (266) 57.3 68.6 98.3 121.9
BigMD 12.22 (69) 12.28 (79) 12.32 (87) 12.36 (98) 131.0 145.9 201.6 299.3

and one time dimension. ROCKSTAR computes halo mass using spher-
ical overdensities of a virial structure (Bryan & Norman 1998). Be-
fore calculating halo masses and circular velocities, the halo finder
performs a procedure that removes unbound particles from the final
mass of the halo.2 We include observational effects and construct
a catalogue with similar volume to the eBOSS sample, by making
light-cones based on different snapshots of the BigMDPL simula-
tion.

We perform the modified HAM by using the maximum circular
velocity of the halo (Vmax) in order to link dark matter haloes and
quasars. The maximum circular velocity is one of the best candidates
for matching dark matter haloes and galaxies (Reddick et al. 2013).
Vmax can be related to the virial mass of the halo through a power
law given by

Vmax = β(z)[MvirE(z)/(1012h−1M�)]α(z) (5)

where, E(z) = √
��,0 + �m,0(1 + z)3, log10β(z) = 2.209 +

0.060a − 0.021a2 and α(z) = 0.346 − 0.059a + 0.025a2, with
a = 1/(1 + z) the scalefactor (see Rodriguez-Puebla et al. 2016).
There are better candidates to perform the matching between dark
matter haloes and galaxies, such as, the maximum circular velocity
along the whole history of the halo (Vpeak). However, the BigMDPL
simulation has a small number of snapshots (4) in the quasar red-
shift range thus preventing a good estimation of quantities that are
computed by tracing haloes between snapshots. For this reason, we
use Vmax to implement our model. Differences between Vpeak and
Vmax become important in case of substructures, while the selection
of host haloes is similar with both quantities. Reddick et al. (2013)
show a significantly larger amount of subhaloes when Vpeak is used
rather than other quantities. However, in our model the impact of
choosing Vmax can be compensated by using the fraction of satel-
lites as a free parameter. Furthermore, the poor information of the
one halo term in the quasar sample and the large errors in observa-
tions will not allow us to distinguish which quantity performs the
matching better.

Table 2 presents the deviation of each simulation from a model
of the complete mass function (Comparat et al. 2017), which is
obtained by fitting a data set that contains the complete part of each
of the MultiDark Planck simulation (SMDPL, MDPL, BigMDPL,
HMDPL). Masses in Table 2 fulfil the condition given by

Nsim(M200 > Mi)/Nmod(M200 > Mi) < percentage, (6)

where Nsim is the number of objects in the simulation with M200

smaller than the threshold mass Mi and Nmod is the corresponding
number of haloes in the model. Previous works showed that quasars
live in haloes with masses of the order of log (M/M�) ∼ 12.5 (Shen
et al. 2013; Chehade et al. 2016). Both simulations mentioned above
are complete for this mass as is shown in Table 2. But depending

2 http://www.cosmosim.org/

on the dispersion of the distribution of haloes hosting QSO, a small
fraction of haloes coming from the incomplete part of the simulation
enter in the final mock. We quantify the effect of the resolution in
our catalogues with the MDPL, where this effect is negligible thanks
to its higher resolution. MDPL has enough resolution to cover the
halo mass range for the QSO population. However, its volume is
smaller than the one covered by eBOSS, so one cannot construct
a complete light-cone without box replications. Furthermore, the
shot noise from a mock using this volume is very large, due to
the low number density of the observed sample. In Appendix A,
we show this effect by comparing the mocks generated from both
simulations.

We include the redshift evolution in the number density and of
the clustering when constructing light-cones from the BigMDPL
simulation. These light-cones cover the redshift range 0.9 < z < 2.2
and 1,481.75 deg2 of the sky, which is comparable with the area of
Y1Q. The mocks are built with the SUrvey GenerAtoR code (SUGAR;
Rodrı́guez-Torres et al. 2016). In this procedure, we use all avail-
able snapshots from the BigMDPL simulation, z = 2.145, 1.445,1,
0.8868. In order to analyse the effects of the incompleteness, we
select only the closest snapshots from the MultiDark simulation
(z = 1.425, 0.987, see Appendix A). We present results from three
different light-cones, the first one uses a single set of parameters
to describe the Y1Q (BigMDPL-QSO). The second one is obtained
by fitting the clustering in four redshift bins with a different set of
parameters (BigMDPL-QSOZ). The last light-cone uses a single
set of parameters, but only host haloes are included (the fraction of
substructures is equal to zero, BigMDPL-QSO-NSAT).

2.4 Galaxy mocks for QSO (GLAM)

In order to estimate the uncertainties in the clustering measurements,
we use the GaLAxy Mocks (GLAM) scheme for the eBOSS quasar
sample. For this application, GLAM implements a new parallel
particle mesh method (Klypin & Prada 2017) to construct the dark
matter density field and an optimization to populate the simulation
with quasars (Comparat et al., in preparation). We run the SUGAR

code to construct light-cones (Rodrı́guez-Torres et al. 2016). Er-
rors are extracted from the covariance matrix of 1000 GLAM-QSO
mocks which cover the same area as the data. They are computed
using the diagonal terms, σi(xi) = √

Cii , thus these errors corre-
spond to one standard deviation (1σ ) away from the mean value of
the mocks. We use the covariance matrix estimator given by

Cij = 1

ns − 1

ns∑

k=1

(
xk

i − μi

)(
xk

j − μj

)
, (7)

where ns is the total number of mocks and the mean of each mea-
surement is

μi = 1

ns

ns∑

k=0

xk
i . (8)
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Using the covariance matrix from these mocks we perform the
fitting with the χ2 statistics,

χ2 =
∑

ij

[
xd

i − xm
i

]
C−1

ij

[
xd

j − xm
j

]
, (9)

where xm
i and xd

i are the measurements from the model and the
data in the bin i, respectively. χ2 values presented in this work are
computed from the monopole of the correlation function.

3 C L U S T E R I N G MO D E L

One of the best ways to study the observed clustering of a sur-
vey is to simulate not only the effect of the gravity on the dark
matter but also on the baryonic matter. In this case, stellar physics
should be included to provide a direct prediction of the relation
between dark matter haloes and the galaxies and their evolution
in time. This approach is undertaken by hydrodynamical simula-
tions, that include galaxy formation processes, stellar physics and
AGN feedback. EAGLE (Rahmati et al. 2015) and ILLUSTRIS
(Sijacki et al. 2015) are two of the most recent realizations which
predict a realistic distribution of galaxies and quasar populations.
However, these simulations are constructed in rather small boxes of
∼75 h−1 Mpc and this impedes studies of the large-scale structure.
The large amount of computational resources required for a hydro-
dynamic simulation is prohibitive and the computation of volumes
comparable to observations nearly infeasible.

An alternative approach, cheaper in computational time, is to use
the dark matter only simulations and add galaxies in a statistical
way. There are two widely used models based on these statisti-
cal relations. The first one is the HOD (e.g. Guo et al. 2014),
which gives the probability, P(N|Mh), that a halo of mass Mh

hosts N galaxies. This probability is described by a fitting for-
mula, which is fixed using the clustering measurements from the
observational data. The second method to populate the dark mat-
ter haloes is the HAM (e.g. Reddick et al. 2013). This model as-
sumes that the most massive galaxies populate the most massive
haloes.

3.1 The modified SHAM model

Favole et al. (2016) introduced a modified (sub)halo abundance
matching (SHAM), designed to reproduce the clustering of the
BOSS ELG sample. They select haloes from the simulation using a
probability function which is the sum of two terms corresponding
to host and satellite haloes. This probability is a Gaussian function
described by three parameters: the mean mass, the width of the dis-
tribution and the satellite fraction. This method is useful to describe
incomplete samples, such as the Y1Q, which is not complete in
halo mass or stellar mass whatsoever. In this paper, we use a similar
model to study the clustering of quasars. Favole et al. (2016) use the
virial mass of haloes to implement their method. Instead of that, we
use Vmax and assume that the distribution of haloes hosting quasars
has a Gaussian shape. The most general model is split in central
and satellite haloes as done in Favole et al. (2016). When a QSO
is located in the centre of a host halo, it is denoted as a central
QSO. The satellite fraction refers to the fraction of QSO living in a
subhalo. This fraction does not represent systems of binary quasars.
The central halo which is the counterpart of a satellite QSO can host
another kind of galaxy.

In the case of quasars, we do not use the luminosity or the stel-
lar mass of the observed sample. Our model only uses the Vmax

distribution of haloes, as done by Nuza et al. (2013). Rodrı́guez-
Torres et al. (2016) extend the HAM technique implemented by
Nuza et al. (2013) using the stellar mass function and mod-
elling the incompleteness of the sample. In that study, galax-
ies are assigned to haloes via a standard HAM and then they
are downsampled to obtain the observed stellar mass distribu-
tion. Here, we assume that the intrinsic scatter between quasars
and dark matter haloes, plus the incompleteness of the sample
will produce a Vmax distribution with a Gaussian shape. Then, the
model orders haloes by Vmax and downsamples objects as done by
Rodrı́guez-Torres et al. (2016).

3.2 Implementation

Assuming that the final Vmax distribution of the simulated quasar
catalogue is Gaussian, we need to construct a probability distribu-
tion function that selects haloes from the complete simulation based
on this condition. In a general case, the Vmax distribution of the final
catalogue will be

φQSO(Vmax) = φs
QSO + φc

QSO

= Ps(Vmax)φs
sim(Vmax) + Pc(Vmax)φc

sim(Vmax)

= Gs(Vmax) + Gc(Vmax),

where φc
sim and φs

sim represent the Vmax distribution of host haloes
and subhaloes, respectively, Gc and Gs are Gaussian functions with
mean Vmean, standard deviation σ max and each one is normalized
using
∫

Gs(Vmax, z)dVmax = Ntot(z)fsat

∫
Gc(Vmax, z)dVmax = Ntot(z)(1 − fsat),

where Ntot(z) is the total number of quasars per redshift bin given
by the observed number density.

In order to construct the probability distribution, we sort all haloes
in the simulation and compute the maximum circular velocity func-
tion (Vmax) for subhaloes and host haloes separately. Using the
fraction of satellites as a free parameter and the observed num-
ber density, we normalize the Gaussian distribution for central and
satellite haloes. We split all haloes of the simulation in bins of Vmax

and compute the probability of assigning a quasar to a dark matter
halo (central or satellite) per bin as

Ps/c(Vmax) = N
gaus
s/c

N tot
sub/host

, (10)

where N tot
sub/host is the total number of subhaloes/host haloes in the

range [Vmax − �Vmax/2, Vmax + �Vmax/2] and N
gaus
s/c is the number

of satellite/central quasars necessary to produce the final Gaussian
shape. Using equation (10), we downsample all haloes in the simu-
lation to obtain the QSO mock catalogue.

Our model consists of five different parameters, the mean and
standard deviation values for satellite and central distributions
and the fraction of satellites. However, we assume the same mean
and standard deviation for central and satellite quasars thus de-
creasing the number of parameters. In addition, the current data do
not provide enough information at small scales (<1.0 h−1 Mpc)
to extract precise information about the standard deviation of the
distribution and the satellite fraction of the eBOSS QSO sample.
For these reasons, our unique parameter to fit the clustering is the
mean value of the distribution (Vmean).
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3.3 Parameters

The most general model is defined by three parameters. However,
due to the poor information at small scales, we only use one free
parameter (Vmean) to describe the Y1Q sample. Fig. 2 presents the
χ2 maps we obtain for different combinations of the three param-
eters Vmean, σ max and fsat. We find the satellite fraction, fsat, to be
degenerate with Vmean (left-hand panel of Fig. 2) and this degener-
acy could be broken only with information from the one halo term.
However, the current Y1Q data do not allow going to those scales.
For this reason, we do not fix the number of satellites in two of the
three mocks presented, which means that host haloes and subhaloes
are not distinguished when the selection is implemented. In addi-
tion, just as Favole et al. (2016), we do not find a dependency of
the clustering with the width of the Gaussian distribution (σ max).
σ max cannot be constrained with the current data as is shown in the
right-hand panel of Fig. 2. In the mass regime where QSOs live,
σ max impacts the clustering at small scales (<0.5 h−1 Mpc), so it is
not possible to constrain this parameter.

In the case of quasars, at scales larger than 1.0 h−1 Mpc, the
clustering amplitude only depends on Vmean. In order to fix σ max,
we use previous results in the literature. The model shown in
Chehade et al. (2016) is consistent with a width in Vmax of σ max =
45 km s−1. However, due to the resolution of BigMultiDark, we
decrease this value to σ max = 30 km s−1. If we use larger values of
σ max, we will include a larger fraction of haloes from the incom-
plete mass region of the simulation. Fixing σ max = 30 km s−1, we
ensure that the BigMDP light-cones have only ∼2 per cent of haloes
selected from regions where the incompleteness is greater than 10.
Thus, we avoid including any unphysical effects coming from the
low resolution of the simulation.

Thus, our model describes the quasar sample with a single param-
eter which is fixed by minimizing the χ2 distribution. As mentioned
previously, we use the monopole of the correlation function between
10 and 40 h−1 Mpc (10 data points shown in Fig. 1), thereby avoid-
ing systematic effects that influence the clustering measurements at
small scales. Varying Vmax, we find that the χ2 distribution is well
described by a quadratic function. This is used to find the parameter
that best represents the data.

4 R ESU LTS

We compare the Y1Q 2-point correlation function (2PCF) with that
of the mocks using the χ2 statistics with 9 degrees of freedom
(10 data points and 1 parameter). In order to compute the 2PCF,
we use a modified version of the Correlation Utilities and Two-
point Estimation code (CUTE; Alonso 2012). We first analyse the
complete sample, using the clustering measurements in the redshift
range 0.9 < z < 2.2. We find the best value for the parameter
Vmean = 341.2 km s−1, which corresponds to a sample of mock QSO
with mean mass log [M200/M�] = 12.66 ± 0.16. Fig. 1 presents
the clustering measurements (2PCF and power spectrum) along
with the prediction of the best-fitting mock light-cone. We find an
excellent agreement between the data and the model for the studied
scales.

When fitting is performed using the clustering of the complete
redshift range, the evolution of the mass distribution is not taken into
account. In order to investigate this effect, we divide the sample in
four redshift bins and find the best parameter to match the clustering
in each individual redshift range. It slightly improves the quality of
the fits, presented in Table 3 which gives the best-fitting values of
Vmean and their corresponding reduced χ2.

Figure 1. Top panel: monopole of the correlation function in configura-
tion space of Y1Q (points with error bars). The shaded area represents the
BigMDPL-QSOZ light-cone fitted in four different redshift bins. The dashed
line represents the BigMDPL-QSO light-cone fitted on a single redshift bin
and the dotted line is the BigMDPL-QSO-NSAT. The vertical lines represent
the limit values used for fitting the parameters. Bottom panel: monopole
of power spectrum of the Y1Q (points with error bars) and the three
BigMDPL light-cone. The agreement between the best model and the data
is remarkable. Error bars and dashed areas are computed using 1000 GLAM
catalogues and correspond to 1σ deviation from the mean value. Differences
at high k are due to redshift errors.

Table 3. Results of the fit per redshift bin. A gives the area in deg2 subtended
by the mock light-cone. z bin gives the lower and upper boundary of the
redshift bin. Vmean is the best-fitting parameter found. log10(M200/M�)
is the corresponding mean ± standard deviation of the halo mass of the
population selected. χ2

r is the reduced χ2 per 9 degrees of freedom. We
fixed σmax = 30 km s−1 and fsat is percentage of satellites in the catalogue.

A (deg2) z bin Vmean (s−1km) log10
M200
M� χ2

r fsat

BigMDPL-QSO

1481.75 0.9–2.2 341.2 ± 30.0 12.66 ± 0.16 1.78 5.3

BigMDPL-QSOZ

3275.06 0.9–1.2 282.8 ± 30.2 12.53 ± 0.17 1.47 9.0
2371.81 1.2–1.5 324.1 ± 30.1 12.63 ± 0.14 1.85 5.0
1879.13 1.5–1.8 339.5 ± 29.9 12.69 ± 0.14 1.70 4.3
1481.75 1.8–2.2 353.5 ± 29.7 12.60 ± 0.13 2.24 3.3

BigMDPL-QSO-NSAT

1481.75 0.9–2.2 349.5 ± 30.3 12.70 ± 0.16 1.52 0.0
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Table 4. Mean halo mass and satellite fraction prediction from the
BigMDPL light-cones.

Light-cone Vmean log10[M200/M�] fsat

(s−1Km)

BigMDPL-QSOZ 326.9 12.61 0.048
BigMDPL-QSO 341.2 12.66 0.053
BigMDPL-QSO-NSAT 349.5 12.70 0.0

Figure 2. χ2 maps for the three parameters of the model implemented on
the BigMDPL-QSO. The left-hand panel shows the satellite fraction versus
Vmean. It is possible to note a degeneracy between both parameters. This
is why we use the fsat given by the simulation. The dashed line shows the
satellite fraction given by the simulation for different values of Vmean. The
right-hand panel presents σmax versus Vmean. σmax cannot be constrained
using the current data.

Comparing the values of M200 presented in Table 3 with those of
Table 2, we infer that the best-fitting mocks have less than 1 per cent
of objects taken from a bin where the completeness is lower than
90 per cent. The effect of the resolution on the clustering is discussed
in more detail in Appendix A.

Table 3 shows the values of satellite fractions of the BigMDPL
light-cones. As we explained in Section 3.3, we do not use fsat as
a parameter so the fraction of satellites in the mock has the same
dependency with Vmax as the complete simulation. The third light-
cone is the only catalogue where we fix fsat = 0. We include it to
show the impact of removing all substructures from our analysis.
The second parameter of the model, σ max is also not constrained
(see Fig. 2). A similar problem was found by Shen et al. (2013), their
HOD parameters are largely degenerate and the fraction of satellites
is not well constrained. For these reasons, we only vary the mean
value of the Gaussian distribution (Vmean) to fix the clustering of the
model.

4.1 Trends of the QSO clustering with redshift

The signal of the quasar clustering does not have an important
evolution, as shown in Fig. 3. The monopole varies mildly in the
linear regime in all four redshift bins. If we assume a constant
distribution of Vmax for the whole redshift range, the evolution of
the dark matter field will produce a non-constant signal of cluster-
ing in the different redshifts. In order to reproduce the observed
evolution and predict a most realistic linear bias, we divide the
complete redshift range into four regions, fitting the clustering of
the light-cone in each bin. Table 3 presents the redshift range and
the best-fitting parameters found to match the observed data. We
use different areas for each redshift bin to maximize the volume

Figure 3. Monopole 2PCF versus redshift. We show the Y1Q (points) and
the best-fitting mock (shaded area) of the BigMDPL-QSOZ light-cone (see
Table 3). Each panel corresponds to a different redshift bin. Error bars and
dashed areas are computed using 1000 GLAM catalogues and correspond
to 1σ deviation from the mean value.

used from the simulation. These larger areas increase the statistics
and reduce the shot noise in the 2PCF of the mocks as seen in
Table 3.

Fig. 1 shows the monopole of the correlation function and
the power spectrum of the three different mocks (BigMDPL-
QSO/QSOZ/QSO-NSAT) compared to the observed data for the
whole redshift range. All light-cones can reproduce the eBOSS
data with a good agreement. We underline that the BigMDPL light-
cones have shot noise and cosmic variance similar to the data. Due
to these large errors in the model and the data, it is difficult to distin-
guish which light-cone reproduces the data better in the complete
redshift range. However, if the model reproduces the clustering at
different redshifts, we can estimate the evolution of the bias with
better accuracy.

In order to quantify the difference between two models, we com-
pare them using the Bayes factor. We can compute it with the
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Figure 4. Quadrupole versus comoving scale in redshift space predicted by
the BigMDPL-QSOZ (shaded region), BigMDPL-QSO (dashed line) and
BigMDPL-QSO-NSAT (dotted lines) compared to the Y1Q (black points).
All mocks are in agreement with observations. Error bars and shaded areas
are computed using 1000 GLAM catalogues and correspond to 1σ deviation
from the mean value.

maximum likelihood

P (x|p) = |C̃−1|
(2π )p

exp

[
− 1

2

∑

ij

(
xd

i − xi(p)
)

C̃
−1
ij

(
xd

j − xj (p)
)]

(11)

where xd represents the data and x(p) the model. We estimate the
inverse covariance matrix using equation (7) and correcting for bias
using the Hartlap factor (Hartlap, Simon & Schneider 2007)

C̃
−1
ij = Nmock − Np − 2

Nmock − 1
C−1

ij , (12)

where Np represents the number of data points used. The Bayes fac-
tor between the BigMDPL-QSO and the BigMDPL-QSOZ model
is

K = P (ξdata|ξQSOZ)

P (ξdata|ξQSO)
= 5.45. (13)

This result suggests that BigMDPL-QSOZ model is more sub-
stantially supported by the data than BigMDPL-QSO. The Bayes
factor between the BigMDPL-QSOZ and the BigMDPL-QSO-
NSAT is K = 1.67. In this case, we cannot conclude which model
better reproduces the data. Furthermore, the BigMDPL light-cones
have an important variability between realizations when the random
seed is changed and it is not possible to construct a sufficient number
of independent light-cones to make a definitive statement about the
two models. In terms of χ2 both light-cones are in agreement with
the current data, though including a model with more parameters
will improve the fitting of the data.

4.2 Checking ξ 2(s) and wp(rp)

The quadrupole is very sensitive to processes affecting the small
scales. Effects due to fibre collisions have an important impact at
scales beyond the fibre size. However, the effect of fibre collisions
is very small in the QSO sample. The most important observational
effect is due to redshift errors, as shown in Appendix A. Fig. 4
shows the quadrupole of the BigMDPL-QSO, BigMDPL-QSOZ
and BigMDPL-QSO-NSAT light-cones compared to the observa-
tions. All light-cones reproduce the data within 1σ error. This agree-

Figure 5. Projected correlation function predicted by the BigMDPL-QSOZ
(shaded region), BigMDPL-QSO (dashed line) and BigMDPL-QSO-NSAT
(dotted line) compared to the Y1Q (black points). The width of the shaded
area represents 1σ errors computed with 1000 GLAM catalogues and cor-
respond to 1σ deviation from the mean value. Our model reproduces the
clustering for all relevant scales.

ment suggests that we are using a reasonable model to account for
redshift errors. We note that the BigMDPL-QSOZ light-cone repro-
duces the quadrupole better than the other two light-cones.

We compared the projected correlation function for the three
light-cones and the observed data, finding a good agreement shown
in Fig. 5.

The clustering predicted by the best-fitting model, which is
mainly determined by the Vmean, reproduces with good agreement
the two-point statistics of the observed data. We do not find sig-
nificant differences between the three light-cones presented, all of
them can reproduce the two-point statistics of the complete Y1Q
sample with good agreement.

4.3 Bias

The Y1Q data allows for accurate measurements of the corre-
lation function ξ (r) and of the quasar bias bQ, within the red-
shift range 0.9 < z < 2.2. Laurent et al. (in preparation) obtain
bQ = 2.45 ± 0.05, when averaged over separations between 10
and 90 h−1 Mpc. This value is compatible with previous SDSS
measurements, bQ(z = 1.58) = 2.42 ± 0.40, by Ross et al. (2009).

We estimate the bias using the dark matter counterpart of the
QSO mock light-cone. Using the autocorrelation of the dark matter
sample, and the correlation function of the QSO mock in real space,
we estimate the bias using

b(r)2 = ξ (r)

ξDM(r)
. (14)

Fig. 6 presents the bias of the BigMDPL-QSOZ and the BigMDPL-
QSO compared to previous studies.

The bias measurements presented in Fig. 6 come from spectro-
scopically confirmed quasars in the two degree field (Porciani &
Norberg 2006) at 0.8 < z < 2.1, SDSS-I/II (Ross et al. 2009) at
z < 2.2, the Quasar Dark Energy Survey pilot (2QDESp; Chehade
et al. 2016) for redshift between 0.8 and 2.5 and the BOSS sam-
ple (Eftekharzadeh et al. 2015) at 2.2 < z < 2.8. All these studies
parametrize the real space correlation function by a power law,
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Figure 6. QSO bias as a function of redshift. The bias is computed us-
ing BigMDPL-QSOZ and BigMDPL-QSO light-cones. We include results
from Chehade et al. (2016), Eftekharzadeh et al. (2015), Font-Ribera et al.
(2014), Ross et al. (2009) and Porciani & Norberg (2006). eBOSS bias
measurements are in agreement with previous results and about 10 times
more precise. Results of eBOSS from Laurent et al. (in preparation) are also
included.

ξ (r) = (r/r0)γ , which can be related with the observed correlation
function (redshift space) by

ξ (s) =
(

b2
Q + 2

3
bQf + f 2

5

)
ξ (r), (15)

where f = [�m(z)]0.56 is the gravitational growth factor. In addi-
tion, we include measurements of quasars via Lyman α absorption
at redshift 2.4 from the BOSS sample (Font-Ribera et al. 2014).
Eftekharzadeh et al. (2015) also show a comparison between dif-
ferent estimations of the bias. At the redshifts studied, the bias
measurements obtained in our study are in good agreement (see
Fig. 6) and they are a factor 5 to 10 times more precise than previ-
ous studies.

4.4 Cross-correlation coefficients

The linear bias provides a good description of the relationship be-
tween dark matter and QSO mock in the linear regime. However, a
single parameter bQ is not enough to understand the link between
galaxies and dark matter at all scales. To parametrize this rela-
tionship, we use the second-order bias, which is related to scales
smaller than 10 h−1 Mpc. The second-order bias is inferred from
the cross-correlation coefficient. It gives an estimation of the cor-
relation between the positions of quasars and the dark matter field
(Dekel & Lahav 1999). The cross-correlation, denoted rcc, between
quasars and the dark matter field is defined as

rcc(r) = ξqm(r)√
ξqq (r)ξmm(r)

, (16)

where q denotes the quasar sample and m the dark matter. rcc is
sensitive to the non-linear stochastic bias of the sample. Fig. 7
shows the cross-correlation coefficient between BigMDPL-QSOZ
and the dark matter field. For scales larger than 10 h−1 Mpc, the
cross-correlation function is consistent with 1. As expected, in this
regime, we have ξ gm = bQξmm and ξgg = b2

Qξmm. At smaller sepa-
rations, rcc becomes smaller than one. This tendency is described
in perturbation theory (Baldauf et al. 2010), where rcc is described
with the second-order bias by

rcc(r) ≈ 1 − b2
2

ξlin(r)

4
, (17)

Figure 7. Cross-correlation coefficient between the dark matter field and
the BigMDPL-QSOZ light-cone. The best model from (17) is shown with a
solid line.

where b2 is the second-order bias and ξ lin is the linear correlation
function. The cross-correlation coefficient fit directly to the cluster-
ing by b2 = 0.314 ± 0.030. This relation is sufficient for the scales
studied (1 < rh−1 Mpc <10), see the solid line in Fig. 7.

4.5 Halo occupation distribution

Table 5 shows the mean mass of haloes hosting quasars, the satellite
fraction characterizes how quasars populate dark matter haloes and
the mean value of Vmax for all light-cones built in this study.

If the satellite fraction is not fixed (no distinction between haloes
and subhaloes), we obtain a non-negligible fraction of satellites,
∼5 per cent. This value is consistent with Shen et al. (2013) which
finds a satellite fraction of 6.8 per cent. However, due to the degener-
acy between Vmean and fsat, our model could also match the clustering
with a negligible fraction (Fig. 2), as presented in Richardson et al.
(2012).

Another way to formulate how QSO populate the density field is
the probability of finding N quasars in a halo of mass M (〈N(M)〉),
namely the HOD model. This method describes how quasars would
statistically populate haloes using a set of parameters fitted directly
on the clustering. In SHAM models, 〈N(M)〉 is given by the halo
catalogue by counting the total number of host haloes and the num-
ber of QSO per bin of mass. Fig. 8 shows the HOD predicted by the
BigMDPL-QSO light-cone. We use this light-cone rather than the
other as it has a negligible fraction of objects from the incomplete

Table 5. Mass prediction of haloes hosting quasars for different samples.
It is presented with the name of the method used to analyse the sample and
the used redshift range.

Sample NQSO z Method log10(Mh/M�)

eBOSSa 68 269 0.9–2.2 HAM 12.5–12.82
SDSS-I/IIb 8198 0.3–0.9 Power-law fit 12.75
SDSS-I/IIc 48 000 0.4–2.5 HOD 12.70–12.77
BOSSd 27 129 2.2–2.8 Power-law fit 12.59–11.65
BOSSe 55 826 2.2–2.8 Power-law fit 11.63-12.63
2QDESpf 10 000 0.8–2.5 Power-law fit 12.17–12.64

Notes. aThis work; bShen et al. (2013); cRichardson et al. (2012); dWhite
et al. (2012); eEftekharzadeh et al. (2015); fChehade et al. (2016).
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Figure 8. HOD for central plus satellites predicted from the BigMDPL-
QSO light-cone. We present three light-cones using different fraction of
satellites. The shaded area is computed adding 1σ error in the Vmean param-
eter for each light-cone. In addition, we vary the width of the distribution
from 10 to 60 s−1 km to see the impact of this parameter in the HOD. fsat is
also changed from 0 to 0.12

part of the BigMDPL simulation. It also allows σ max and fsat to vary
in a wide range, letting us show the dependency of 〈N(M)〉 on these
parameters reflected in the different lines of Fig. 8.

Additionally, we construct light-cones with different Vmean in-
cluding variations of 1σ from the best fit. We also vary the width of
the distribution between 10 and 60 s−1 km. We do not use a larger
σ peak, because we do not want to include a large fraction of objects
coming from the incomplete part of the simulation. fsat also varies
between 0 and 10 per cent. The shaded area in Fig. 8 represents all
HODs encompassed by these parameter variations.

Compared to previous HOD results (Shen et al. 2013), our
model puts new constraints for masses below 1013 M�. We find
a distribution dominated by the mean halo mass of the sample.
However, 〈N(M)〉 has a strong dependency with the other two pa-
rameters of the model, which we cannot constrain with the cur-
rent data. An improvement on small scales of the QSO clustering
or the cross-correlation between ELG and QSO in future surveys
would constrain σ peak and fsat and therefore provide better HOD
predictions.

5 D ISC U SSION

Previous HOD analysis of the SDSS QSO sample combined dif-
ferent data sets to get more information about the distribution of
QSOs inside haloes. However, due to large uncertainties in the data,
the parameters of the HOD remain degenerate. eBOSS will greatly
increase the statistical size of quasar samples, giving an excellent
opportunity to learn more about this population and its connection
with the dark matter. What we do here is to present the first study
of the Y1Q clustering introducing a modified HAM that allows us
to predict the HOD, masses of the dark matter haloes and the bias
of the sample.

Several studies have provided information about quasars at dif-
ferent redshifts using their clustering measurements. Richardson
et al. (2012) study the clustering of the 48 000 QSO from the SDSS
sample in the redshift range 0.4 < z < 2.5. They interpret the mea-
surements of the projected correlation function at redshift 1.4. In

addition, 4426 spectroscopically identified quasars in the redshift
interval 2.9 < z < 5.4 (Shen et al. 2007) are used to study the
small-scale clustering. However, they use a regular HOD without
including a duty cycle. For this reason, their parameters repro-
duce the clustering, but most of them are unphysical. Shen et al.
(2013) study the two-point cross-correlation function of 8198 SDSS
QSO and 349 608 BOSS CMASS galaxies in the redshift range
0.3 < z < 0.9. They provide predictions of the HOD from quasars.
However, the large degeneracies of the parameters make it impossi-
ble to have a well-constrained HOD. The BOSS sample provides a
set of CORE QSO which is studied by Eftekharzadeh et al. (2015).
They extend the analysis of the projected correlation function of the
BOSS sample done by White et al. (2012). In that analysis, ∼70 000
quasars in the redshift range 2.2–3.4 are studied. In a more recent
study, Chehade et al. (2016) combine the optical photometry of the
2dF Quasar Dark Energy Survey pilot (2QDESp) and the bands of
the Wide-field Infrared Survey Explorer (WISE) to provide a sample
of ∼10 000 QSO in the redshift range 0.8–2.5. Our study uses a
larger and wider QSO sample than in previous works. It allows us
to have a good estimation of the clustering in the redshift range
0.9 < z < 2.2.

The mean mass of haloes hosting quasars has been measured by
different methods finding a reasonable agreement between their re-
sults. However, the range of masses cover by quasars is still not
well constrained. Richardson et al. (2012) predict a mean halo
mass for central haloes Mcen ∼ 1012.77 M� with a small fraction
of QSO satellites, 7.4 × 10−4. This result is in agreement with
the BigMDPL-QSO-NSAT, which provides host halo masses for
quasars of 1012.7 ± 0.16 M�. Shen et al. (2013) model the cross-
correlation between CMASS galaxies and QSO by a power law,
ξQG = (r/r0)γ , with r0 = 6.61 ± 0.25 h−1 Mpc and γ = 1.69 ± 0.07
for scales r = 2–25 h−1 Mpc. They find a characteristic mean
halo mass of 1012.8 M�. In contrast to Richardson et al. (2012), a
non-negligible satellite fraction is predicted by Shen et al. (2013).
They find that 6.8 per cent of QSO are hosted by subhaloes. This
result is in better agreement with our mocks without fixing the
fraction of satellites, which predict ∼5 per cent of quasars living
in subhaloes. The halo masses predicted by this HOD are also in
agreement within 1σ errors with our measurements. Nevertheless,
they have larger degeneracies between their parameters. From the
BOSS sample, White et al. (2012) find the quasar halo masses cov-
ering a wide mass range between 1011.59 and 1012.65 M�. Just as
in the previous cases, these values of masses are still in agreement
with our results shown in Table 3. The Chehade et al. (2016) re-
sults are compared with other surveys (SDSS, 2QZ and 2SLAQ).
As in previous works, they find no evidence of a dependency be-
tween the clustering and the luminosity of the QSO. In addition,
they show that quasar clustering depends on redshift, in particular,
when BOSS data are included. They describe the clustering of the
sample using a power law, where r0 = 7.3 ± 0.1 h−1 Mpc at red-
shift 2.4, while the correlation scale for the whole redshift range is
r0 = 6.1 ± 0.1 h−1. Their measurements are consistent with host
haloes masses of ∼1012.46. Future observations will allow cross-
correlations between ELGs and quasars, which will enable a better
understanding of the distribution of quasars within the dark matter
halo. These measurements could fix the satellite fraction of quasars.
However, the width of the distribution is more difficult to constrain.
In the similar case of ELG, Favole et al. (2016) faced an equiva-
lent problem to describe their clustering. They use constraints from
lensing measurements to understand the clustering on the small-
est scales. Unfortunately, such measurements are not available for
quasars.
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Using our model, the signal of the clustering in the linear regime
is dominated by the mean halo mass of the distribution. This is
clear in the HOD (Fig. 8), where the distribution has a strong peak
near the mean halo mass of the sample. We find a more constrained
HOD region for quasars than Shen et al. (2013). However, more
information from small scales is needed to have better constraints in
the satellite fraction and width of the distribution in order to provide
more realistic uncertainties. We find a bias equal to 2.37 ± 0.12 for
the redshift range 0.9 < z < 2.2, which is in good agreement with
previous analysis and with eBOSS data from Laurent et al. (in
preparation, Fig. 6). We provide measurements for the evolution
of the bias using the BigMDPL-QSOZ light-cone, finding that the
eBOSS quasars are in agreement with bQ=1.54, 2.08, 2.21, 3.15
for redshift 1.06, 1.35, 1.65, 1.98. Furthermore, to give a complete
parametrization of the scales studied in this work, we calculate the
second-order bias from the cross-correlation coefficients, finding
b2 = 0.314 ± 0.030. Table 5 presents a comparison of the halo mass
predictions of previous studies and our result.

6 SU M M A RY

We modelled the clustering of ∼70 000 optical quasars from the
eBOSS Y1Q CORE sample in the redshift range 0.9 < z < 2.2. We
used a modified HAM that takes into account the incompleteness
of the QSO sample and the intrinsic scatter between QSOs and
dark matter haloes. This model was implemented in a light-cone
constructed from a 2.5 h−1 Gpc simulation, covering an area com-
parable to the eBOSS Y1Q sample.

Our main results can be summarized as follows.

(i) We assume that the Vmax distribution of haloes hosting QSOs
is described by a Gaussian function which is defined by its mean
and width plus one parameter for the satellite fraction. The current
observations do not bear information on small-scale clustering. For
this reason, we cannot constrain the fraction of satellites. Hence, we
do not distinguish between host and subhaloes when the selection
is done. The final mock thus has the same fraction of satellites as
the complete simulation in the mass range used.

(ii) We model the clustering of the Y1Q using a single free pa-
rameter (Vmean). The width of the Gaussian distribution is fixed to
30 s−1 km and we only impose a value to the satellite fraction in the
BigMDPL-QSO-NSAT light-cone, for the other light-cones we do
not fix this parameter.

(iii) The prediction of our model is in a good agreement with the
2PCF and the monopole of the power spectrum of the Y1Q data. The
light-cone is constructed assuming Gaussian redshift errors given
by Dawson et al. (2016). Their modelling improves the agreement
between our model and the data. It provides a good description of
the observed clustering on small scales, which is very sensitive to
variations caused by these errors.

(iv) We construct three kinds of light-cones: one including the
evolution of the parameters with redshift (BigMDPL-QSOZ), an-
other describing the whole redshift range with a single parameter
(BigMDPL-QSO) and a third one fixing the satellite fraction to zero
(BigMDPL-QSO-NSAT). The mean halo masses are 1012.61, 1012.66

and 1012.70 M�, respectively.
(v) Using the Bayes factor, we find a strong evidence that the

BigMDPL-QSOZ (four parameters) reproduces the data better than
the BigMDPL-QSO (one parameter). However, we cannot make
the same conclusion with the model without satellites, which repro-
duces the data with a similar agreement to the BigMDPL-QSOZ
model.

(vi) We find a mean bias of the Y1Q sample equal to 2.37 ± 0.12
and a second-order bias b2 = 0.314 ± 0.030, which both describe
the relation between the dark matter and the QSO mock for the
studied scales.

BigMDPL-QSOs and GLAM-QSO eBOSS mocks are publicly
available through the Skies and Universes website.3

AC K N OW L E D G E M E N T S

SRT is grateful for support from the Campus de Excelencia Inter-
nacional UAM/CSIC.

SRT, JC, FP acknowledge support from the Spanish MICINN
Consolider-Ingenio 2010 Programme under grant MultiDark
CSD2009-00064 MINECO Severo Ochoa Award SEV-2012-0249
and grant AYA2014-60641-C2-1-P.

GY acknowledges financial support from MINECO/FEDER
(Spain) under research grants AYA2012-31101 and AYA2015-
63810-P.

The BIGMULTIDARK simulations have been performed on the Su-
perMUC supercomputer at the Leibniz-Rechenzentrum (LRZ) in
Munich, using the computing resources awarded to the PRACE
project number 2012060963. The authors want to thank V. Springel
for providing us with the optimised version of GADGET-2.

Funding for the Sloan Digital Sky Survey IV has been provided
by the Alfred P. Sloan Foundation, the U.S. Department of En-
ergy Office of Science and the Participating Institutions. SDSS
acknowledges support and resources from the Center for High-
Performance Computing at the University of Utah. The SDSS web
site is www.sdss.org.

SDSS is managed by the Astrophysical Research Consortium
for the Participating Institutions of the SDSS Collaboration in-
cluding the Brazilian Participation Group, the Carnegie Institution
for Science, Carnegie Mellon University, the Chilean Participa-
tion Group, the French Participation Group, Harvard-Smithsonian
Center for Astrophysics, Instituto de Astrofı́sica de Canarias,
The Johns Hopkins University, Kavli Institute for the Physics
and Mathematics of the Universe (IPMU)/University of Tokyo,
Lawrence Berkeley National Laboratory, Leibniz Institut für Astro-
physik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA
Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garch-
ing), Max-Planck-Institut für Extraterrestrische Physik (MPE), Na-
tional Astronomical Observatories of China, New Mexico State
University, New York University, University of Notre Dame, Ob-
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APPENDI X A : SIMULATION R ESOLUTI O N

In order to reproduce the observed clustering of QSO or ELG sam-
ples, simulations with large volume and a high resolution are needed
to resolve haloes of masses ∼1012.5 M�. The Y1Q sample covers
∼1100 deg2 of the sky. This area is comparable to the BigMDPL-
QSO light-cone. However, a small part of the halo mass range
occupied by quasars can be in the incomplete part of the simulation.

We use the 1 h−1 Gpc MDPL simulation to quantify the effect of
incompleteness of the BigMDPL light-cone. We select two snap-
shots from each simulation with similar redshift (Table A1). We
apply the model using the parameters of Table 3. Table A1 presents
a comparison between both simulations. In terms of halo mass,
mocks constructed with both simulations provide consistent mean
halo masses. Similar results are found for the satellite fraction.

In terms of clustering, both simulations give coherent results with
differences of the order of 3 per cent. Fig. A1 shows the difference
on the monopole between both simulations. These discrepancies are
not a problem for our analysis, where errors from the data are of the
order of 15 per cent.

In addition to the large errors in the data, discrepancies between
both boxes seem reasonable if we notice the other sources of error.

(i) Both simulations have different initial conditions, this in-
cludes variations due to the cosmic variance between simulations.

Table A1. Comparison of the halo mass of mocks constructed with the
BigMDPL and MDPL simulations. For comparison, all snapshots of the
BigMDPL simulation in the redshift range 0.9 < z < 2.2 were used. We
select snapshots with the nearest redshift from the MDPL simulation.

Box z log10[M/M�] Vmean fsat

MDPL 0.987 12.41 284.25 0.08
1.425 12.54 325.95 0.07

BigMDPL 1.000 12.40 284.25 0.11
1.445 12.55 325.95 0.07

Figure A1. Ratio between BigMDPL and MDPL mocks of the monopole of
the correlation function in configuration space. The horizontal lines represent
3 per cent differences. The shaded area shows 1σ dispersion due to the
random selection in the MDPL boxes. We use 15 realizations to compute
the shaded area.

MNRAS 468, 728–740 (2017)



740 S. A. Rodrı́guez-Torres et al.

(ii) The shot noise in the correlation function is larger in the
MDPL simulation due to the smaller volume.

(iii) The random selection of our model is another source of
errors. The shaded area in Fig. A1 represents the 1σ dispersion of
15 mocks produced with different seeds.

(iv) The BigMDPL simulation includes long waves that are not
included in the 1 h−1 Gpc box size.

AP P EN D IX B: EFFECTS O F O BSERVATIONAL
E R RO R S O N T H E C L U S T E R I N G

The model presented in this work includes two observational errors:
catastrophic redshift errors and redshift errors. The first errors cause
a constant reduction in the clustering amplitude at all the scales.
Fig. B1 shows the effect of applying 1 per cent of catastrophic
redshifts. We find a reduction of ∼1 per cent in all scales of the
correlation function in configuration space.

Redshift errors have the strongest impact on the clustering. The
selection of QSO implies fixing maximum width (precision) to iden-
tify the emission/absorption features of the spectra. We introduce
the effect of this tolerance using Gaussian errors with a width given
by Dawson et al. (2016). Redshift errors have an important impact at
scales <10 h−1 Mpc. In Fig. B1, it is possible to see a disagreement
larger than 40 per cent, which cannot be explained by statistical
errors of the sample (shaded area in Fig. B1).

Figure B1. Top panel: impact of catastrophic redshift errors and redshift
errors on the monopole of the correlation function. A light-cone reproducing
the Y1Q 1-point and two-point statistics is used for this comparison. Bottom
panel: normalized differences between mocks including redshift errors (blue
dotted line) and catastrophic redshift errors (red line) with a model without
errors. The shaded area represents the statistical errors in the light-cone
computed from 1000 GLAM catalogues. Differences due to catastrophic
redshift errors are ∼1 per cent. Redshift errors have an important impact at
small scales which cannot be explained by uncertainties from mocks.

Figure B2. Impact of redshift errors in the quadrupole of the correlation
function in configuration space. Lines show the normalized difference be-
tween observed data and model without redshift errors (red solid line),
constant redshift error �z = 0.005 (blue dotted line) and including redshift
errors given by equation (2) (black dashed line). Shaded area represent 1σ

error computed with 1000 GLAM catalogues for one light-cone.

The impact of redshift error is very important in the monopole
of the correlation function. However, the effects on the quadrupole
are larger. Fig. B2 shows the ratio of quadrupole from the observed
data and the different mocks. The model introduced in this work
describes the very large difference found between our mock and the
observed data.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Conclusions

This thesis was done within the BOSS and eBOSS projects which are part of the SDSS III
and IV programs respectively. It is the result of numerous discussions and contributions
with other members of the collaborations. In the case of BOSS, we focus our research on
the Luminous Red Galaxy population (LRG). However, while working on my PhD I also
collaborated in studies on Emission Line Galaxies (ELG). For eBOSS, we focus our work
on the clustering of quasars. It is important to recall that our clustering models can also
be applied to other eBOSS galaxy populations such as LRG and ELG. Furthermore, as a
member of the MultiDark simulation project, I have had access to a set of the top N-body
simulations currently available.

Chapter 3 presents the Halo Abundance Matching (HAM) model used to describe the LRG
BOSS population. This model has been implemented in the BigMultiDark Planck1 simulation
in order to describe the redshift range 0.43 < z < 0.7 of the CMASS sample. In this project,
we include observational effects, such as the stellar mass incompleteness of the data, and
features of the observations, such as fiber collisions, angular completeness, radial selection
function or geometry of the survey. We also include the evolution of dark matter halos using
light-cones constructed from the simulations. All these ingredients enable us to produce
simulated galaxy catalogues which reproduce the observed sample with high precision.

Our work results from combining a simulation run with the best estimation of the cosmological
parameters and features of the survey that can have a direct impact in the observational
measurements. In spite of the simplicity of the model, its results have been very successful
because we can generate galaxy catalogues that reproduce the observed two- and three-
point correlation functions and their analogues in Fourier-space, the power spectrum and
bispectrum.

In comparison with previous studies, our work shows the important impact of the observa-
tional effects and the cosmological parameters on the clustering signal. Results of this model
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prove that the best ΛCDM model that best fit the CMB anisotropies (Planck Collaboration
et al., 2014) predicts with an excellent agreement the clustering of LRG at z ∼ 0.5. Future
surveys will increase the accuracy of the clustering measurements and they will allow us to
extend and test our current models including effects such as the assembly bias.

In addition to the clustering measurements, we show the prediction of the stellar to halo mass
relation, which is in agreement with weak lensing data. All these results make our model a
very useful tool for the study of observations and the analysis of systematic effects on the
surveys. Using this model we collaborated with different research groups analysing different
observations.

Numerical simulations allow us to compare theoretical models and observations directly in-
cluding non-linear effects. If a model reproduces the large-scale structure with a good agree-
ment, it is possible to make predictions from the simulation, such as the characteristic halo
mass of a given galaxy population. Numerical simulations also help study possible sys-
tematic effects presented in observations. Finally, one of the problems in cosmology is the
impossibility to repeat experiments in order to estimate errors in the measurements. That
is why numerical simulations are important. They can be used as possible realisations of the
Universe allowing us to constrain our measurements.

In this context, Chapter 4 shows the different steps followed to construct the catalogues for
covariance matrices. These catalogues are widely used by other studies in the SDSS program.
We carefully explained each step and thus allow us to construct thousands of simulated
realisations of our Universe. The main goal of this project is to create mock catalogues which
describe the distribution of observed galaxies in an accurate way. So, we run simulations
using the patchy code and the initial conditions from the BigMultiDark simulation. We fix
the bias of the galaxy sample using a modified version of the model presented in Chapter 3.
Once the simulations are run, halo masses are included with hadron code. Finally, we build
a pipeline using sugar code in order to complete the final production of mock catalogues.
This pipeline is schematically shown in Figure 1 of Chapter 5.

md-patchy mock catalogues are designed to reproduce the two-point correlation function of
the observed sample (monopole and quadrupole). Furthermore, observational effects such as
fiber collisions, radial and angular selection function and the incompleteness of the sample
are included, just as in the model presented in Chapter 3. The final result is the production
of more than 12,000 mock catalogues for BOSS LOWZ and CMASS samples, covering the
northern and southern regions. These catalogues reproduce the power spectrum, the three
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point correlation function and the bispectrum. md-patchy mocks represent a step forward
in the construction of covariance matrices, because their accuracy makes them the best
candidates to provide information about the constraints of our measurements.

Future surveys will represent a new challenge for the covariance matrix construction. One
of the most important features of the available codes to construct mock catalogues is their
low computational cost. However, time and memory needed will dramatically increase for
the volumes of the future surveys. Furthermore, these simulations will have to reproduce
samples of galaxies with a bias smaller than the one of LRG. This makes that in the current
large surveys, such as eBOSS, the available methods can only resolve large scales, which
prevents the analysis on intermediate scales. These troubles are also present in numerical
simulations. The increasing computational cost due to large volumes and high resolutions is a
huge obstacle to run them. However, current simulations still allow us to study distributions
of quasars but will represent a problem for ELG and future surveys.

In Chapter 5, we present a modified halo abundance matching which models the clustering
of quasars. This method assumes that the circular velocity distribution of halos hosting
quasars is Gaussian and can be described by three parameters. This simple model allows us
to reproduce observations with a good agreement. Due to the features of the eBOSS quasar
sample, it is necessary to fix two parameters by hand. Then, the mean of the Gaussian
distribution is the only free paremeter to reproduce the clustering. This simple model is
being used as initial conditions in the construction of covariance matrices, just as in the case
of LRG. We also use it to find the typical host halo mass of quasars, which varies between
1012.5 M� and 1012.8 M�. This wide range is mainly due to the uncertainties in fraction
of QSO that live in subhalos which is not fixed by the current data. This model can also
be applied to ELG, because they live in dark matter halos with similar masses. Future
observations will provide measurements of the cross-correlation between different types of
galaxies, which will allow us to better estimate the parameters of our model.

The SUrvey GenerAtoR code will be available soon in the GitHub repository6.
6https://github.com/seroto36/SUGAR

https://github.com/seroto36/SUGAR




Conclusiones

Los proyectos de esta tesis fueron desarrollados dentro de las colaboraciones BOSS y eBOSS
del SDSS III y IV respectivamente. Los resultados presentados son fruto de numerosas
discusiones y valiosos aportes de la comunidad científica que rodea estos proyectos. Mi in-
vestigación en el poryecto BOSS se enfocó en el estudio del agrupamiento de las galaxias
luminosas rojas (LRG), sin embargo, durante el transcurso del doctorado también participé
en estudios sobre las galaxias de líneas de emisión (ELG). En el actual proyecto del SDSS,
eBOSS, mi trabajo se centró en el estudio de la distribución espacial de los cuásares. Cabe
notar que nuestros modelos también pueden ser aplicados a las poblaciones de galaxias de
eBOSS (LRG y ELG). Adicionalmente, como miembro del proyecto de simulaciones Mul-
tiDark, he tenido acceso a uno de los mejores conjuntos de simulaciones cosmológicas de
N-cuerpos de la actualidad.

En el Capítulo 3 se presenta el modelo HAM utilizado para describir la población de galaxias
luminosas rojas. Dicho modelo es aplicado en la simulación BigMultiDark para reproducir
características del CMASS en el rango 0.43 < z < 0.7. En este proyecto se incluyen efectos
observacionales tales como la incompletitud en masa estelar de la muestra y características
propias del telescopio como lo son las colisiones de fibras, la completitud angular, la función
de selección radial y la geometría del cartografiado. De igual forma, se incluye la evolución
de los halos de materia oscura construyendo conos de luz que dan como resultado catálogos
simulados de galaxias que reproducen con muy buena precisión las características de las
observaciones.

Nuestro trabajo combina una simulación basada en las mejores mediciones de los parámetros
cosmológicos y características del cartografiados que pueden tener un impacto importante en
las mediciones del agrupamiento de galaxias. A pesar de la simpleza del modelo utilizado para
conectar galaxias y halos de materia oscura, éste genera catálogos de galaxias que reproducen
las medidas observacionales de la función de correlación de dos y de tres puntos, así como
de su análogo en espacio de Fourier, el espectro de potencias y el biespectro. Siendo éste un
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resultado muy relevante para el modelo ΛCDM, ya que los parámetros cosmológicos utilizado
son medidos en el fondo cósmico de microondas.

Nuestro trabajo, comparado con estudios anteriores, muestra la importancia de incluir efectos
observacionales y de instrumentación, así como el gran impacto que tiene la correcta selección
de los parámetros cosmológicos en la distribución de galaxias simuladas. Los resultados
obtenidos son una prueba de que el modelo ΛCDM, que describe con una alta precisión
el fondo cósmico de microondas (Planck Collaboration et al., 2014), también predice con
una excelente exactitud la distribución de LRG para z ∼ 0.5. Los futuros cartografiados
mejorarán la precisión de las medidas del agrupamiento de galaxias, lo que permitirá extender
y probar otros modelos que conecten halos de materia oscura y galaxias, los cuales podrán
incluir efectos como el sesgo por ensamblaje de los halos (Assambly bias).

Adicionalmente, en el trabajo se muestra la predicción de la relación entre la masa las galaxias
y la masa de los halos, la cual se ajusta perfectamente a las medidas observacionales hechas
mediante lentes gravitacionales. Todas estas características hacen de nuestros catálogos unas
herramientas muy útiles para el estudio de observaciones, así como para el análisis de efectos
sistemáticos de los cartografiados. De esta forma, nuestro modelo nos ha permitido trabajar
con otros grupos de investigación en el análisis de diferentes muestras de galaxias.

Las simulaciones numéricas son el mecanismo por medio del cual podemos comparar teoría y
observaciones incluyendo física no lineal. Cuando un modelo reproduce la estructura a gran
escala del Universo, es posible hacer predicciones con las simulaciones de cantidades como
la masa característica de los halos para un determinado tipo de galaxias. Las simulaciones
también sirven en el estudio de posibles efectos sistemáticos en las observaciones. Finalmente,
uno de los problemas dentro de la cosmología es la imposibilidad de repetir experimentos para
fijar errores en las mediciones, a diferencia de otros campos de la física. En este sentido, las
simulaciones numéricas son utilizadas como posibles realizaciones del Universo que permiten
calcular las incertidumbres en las mediciones observacionales.

En este sentido, en el Capítulo 4 se muestra la metodología seguida para construir los catál-
ogos para el cálculo de las matrices de covarianza, las cuales utilizamos para conocer el nivel
de precisión de las mediciones observacionales. Estos catálogos han sido utilizados en difer-
entes estudios dentro de la colaboración SDSS. En este capítulo se muestran los diferentes
pasos realizados para poder construir miles de realizaciones simuladas de nuestro Universo.
El objetivo fundamental en este proyecto fue la creación de catálogos que pudieran describir
de forma precisa la distribución de galaxias observada. Para esto se corrieron simulaciones
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con el código patchy y se utilizaron las condiciones iniciales de la simulación BigMultiDark.
La relación entre galaxias y halos de materia oscura es fijada con una versión especial del
modelo presentado en el Capítulo 3. Una vez las simulaciones son generadas, la masa es asig-
nada a los halos usando el código hadron. Finalmente, se construye un algoritmo basado
en el código sugar para la producción final de los catálogos. Los pasos seguidos se pueden
observar esquemáticamente en la Figura 1 del Chapter 4.

Los catálogos md-patchy fueron diseñados para reproducir la función de correlación de
dos puntos, específicamente el monopolo y el cuadrupolo. Adicionalmente, como en el caso
presentado en el Capítulo 3, se incluyeron efectos como la colisión de fibras, las funciones de
selección radial y angular o la incompletitud de la muestra de galaxias. Como resultado final
se realizaron más de 12,000 catálogos para las muestras LOWZ y CMASS, en las regiones
localizadas en el norte y en el sur, reproduciendo también el espectro de potencias, la función
de correlación de tres puntos y el biespectro. md-patchy ha representado un paso adelante
en la generación de catálogos para la construcción de matrices de covarianza, su nivel de
precisión hace de éstos unos catálogos que representan mejor las observaciones y por lo tanto
pueden darnos una mejor información sobre las incertidumbres en las distintas mediciones.

Los futuros cartografiados van a traer un nuevo reto para la construcción de matrices de
covarianza. Todos los códigos utilizados en este tipo de simulaciones son efectivos debido a
su bajo consumo computacional, sin embargo, el tiempo y la memoria necesaria aumentan
demasiado al incrementar el volumen de los cartografiados. Además, estas simulaciones
tendrán que describir muestras de galaxias con un bias mucho menor al utilizado para las
LRG. Esto hace que en experimentos recientes como eBOSS, los métodos actuales solo puedan
resolver grandes escalas, impidiendo el análisis de escalas intermedias. Este problema también
está presente en las simulaciones numéricas, el incremento del tiempo computacional debido
al aumento del volumen y la resolución necesaria se vuelven un impedimento a la hora de
correr estas simulaciones. Sin embargo, con los cartografiados y las simulaciones actuales
todavía podemos realizar estudios sobre objetos como los cuásares, los cuales estarán en el
punto de mira de las observaciones en los años venideros.

En el Capítulo 5 presentamos una modificación del modelo de abundancia de halos, con el cual
podemos describir el agrupamiento de los cuásares observados por eBOSS. En este método
asumimos que la distribución de la velocidad circular de los halos de materia oscura donde
habitan cuásares es Gaussiana y puede ser descrita por tres parámetros. Este simple modelo
permite importantes variaciones debido a los tres parámetros, lo que permite reproducir
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de una forma precisa los datos observacionales. Debido a las características de la muestra
de cuásares de eBOSS, es necesario fijar dos de los tres parámetros, siendo la mediana de
la distribución Gaussiana el único parámetro libre que utilizamos. Este sencillo modelo
está siendo utilizado, como en el caso de las LRG, para definir condiciones iniciales de las
simulaciones para las matrices de covarianza, así como poner límites a las masas de halos
donde viven los cuásares. En este sentido, se ha encontrado que los cuásares viven en halos
de masas típicas entre 1012.5 M� y 1012.8 M�, esto dependiendo principalmente de la fracción
de subhalos incluidos en el análisis, el cual no arroja ninguna conclusión sobre la fracción de
cuásares viviendo en subhalos. El modelo descrito en este trabajo también puede ser aplicado
a las galaxias de líneas de emisión, pues éstas habitan en halos con masas similares a la de los
cuásares. Futuras observaciones podrán dar mediciones de la cross-correlación entre distintos
tipos de galaxias, lo que dará herramientas para mejorar la estimación de los parámetros de
nuestro modelo, así como obtener información de la forma en que se seleccionan los halos,
es decir, si un proceso aleatorio como el actual es suficiente o se requieren métodos más
elaborados.

El código SUrvey GenerAtoR estará próximamente disponible en el repositorio GitHub7.
7https://github.com/seroto36/SUGAR

https://github.com/seroto36/SUGAR
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