

High-Performance Scientific Computing

on FPGA aboard the Solar Orbiter PHI

Instrument

Tesis Doctoral

Programa Oficial de Posgrado Ciencias de la Computación y Tecnología Informática

Juan Pedro Cobos Carrascosa

Granada, Noviembre de 2015

INSTITUTO DE ASTROFÍSICA DE ANDALUCÍA
CONSEJO SUPERIOR DE INVESTIGACIONES

CIENTÍFICAS

DEPARTAMENTO DE ARQUITECTURA Y
TECNOLOGÍA DE COMPUTADORES

UNIVERSIDAD DE GRANADA

Tesis Doctoral

Programa Oficial de Posgrado Ciencias de la Computación

y Tecnología Informática

High-Performance Scientific

Computing on FPGA aboard the Solar

Orbiter PHI Instrument

Autor:

D. Juan Pedro Cobos Carrascosa

Directores:

Dr. D. Antonio C. López Jiménez Dr. D. Christian A. Morillas Gutiérrez

Granada, Noviembre de 2015

Instituto de Astrofísica de Andalucía

Consejo Superior de Investigaciones

Científicas

Departamento de Arquitectura y

 Tecnología de Computadores

Universidad de Granada

El doctorando, Juan Pedro Cobos Carrascosa, y los directores de la tesis, Antonio C. López

Jiménez y Christian A. Morillas Gutiérrez, garantizamos, al firmar esta tesis doctoral, que el

trabajo ha sido realizado por el doctorando bajo la dirección de los directores de la tesis y hasta

donde nuestro conocimiento alcanza, en la realización del trabajo, se han respetado los derechos

de otros autores a ser citados, cuando se han utilizado sus resultados o publicaciones.

Granada, 12 de noviembre de 2015

Director/es de la Tesis Doctorando

Fdo.: Antonio C. López Jiménez Fdo.: Juan Pedro Cobos Carrascosa

 Christian A. Morillas Gutiérrez

A Pablo, Adrián y Esther

Acknowledgements

Quiero aprovechar esta oportunidad para agradecer de la forma más sincera, y por igual, a

todas las personas que por su ayuda, o ánimos, han hecho posible este trabajo. Aun así, me

gustaría hacer algunas menciones especiales de agradecimiento a quienes han sido

fundamentales.

Al Dr. Jose Carlos del Toro, por poner sobre mis hombros toda la responsabilidad que

conlleva este apasionante e increíble reto, por toda la confianza que siempre me ha dado para

llevarlo a cabo y, por supuesto, por su inconmensurable ayuda. Todo ello ha sido la motivación

que me ha hecho esforzarme al máximo en este trabajo y, sobre todo, disfrutar haciéndolo.

A Ramos y Bea, a Bea y Ramos, compañeros infatigables en esta aventura. Junto a los que

empujar hacia delante codo con codo ha sido un placer.

Al Dr. Antonio López, por la dirección de esta tesis, por sus siempre certeros consejos y

por el espléndido ambiente de trabajo que ha creado en el IAA.

Al Dr. Christian Morillas y al profesor Francisco Pelayo, por la motivación que me dieron

siendo estudiante, por llevarme al mundo de la investigación en tecnología y, por supuesto, por

sus revisiones y consejos.

Al IAA SO/PHI Team quienes contagian su ilusión y que con su ingente trabajo harán que

un instrumento tan complejo, y de tal magnitud, como lo es SO/PHI sea un éxito. A María,

Dani, Fernando, Pierre, Joaquín, Miguel, Berta y Luis.

A todos los compañeros del IAA con quienes es inspirador el trabajar, compartir despacho

y convivir. A pesar de todas las barreras, trabajan desmesuradamente por hacer la mejor ciencia

y tecnología posibles.

Al Dr. David Orozco por toda su ayuda y paciencia.

Para llevar a cabo esta tesis no ha sido suficiente toda esa ayuda en el plano profesional,

porque sin todas las personas que me rodean nunca hubiese podido llegar hasta aquí.

A Esther, por estar siempre a mi lado y darme todo su apoyo. Por toda la alegría que me

trasmite y sin quien no hubiera sido posible realizar todo este esfuerzo.

A Pablo y Adrián, cuyas risas, imaginación y energía hacen de cada día el mejor de los

días.

A mi madre cuyo ejemplo de lucha y esfuerzo siempre ha sido el mejor de sus consejos.

Casi por último, y no por eso menos importante, a mis hermanos y familia, quienes siempre

me han cubierto de cariño.

Y para finalizar, agradezco al Plan Nacional del Espacio y a la Junta de Andalucía por

subvencionar los proyectos que han hecho posible este trabajo. Así como al Consejo Superior de

Investigaciones Científicas por brindarme esta magnífica oportunidad.

i

Abstract

SO/PHI (Solar Orbiter Polarimetric and Helioseismic Imager) is a filtergraph-based, solar

magnetograph aimed at mapping the vector magnetic field and the line-of-sight (LOS) velocity

of the solar photospheric plasma. It belongs to the scientific payload of the European Space

Agency’s Solar Orbiter mission which will orbit the Sun at 0.28 astronomical units.

The limited telemetry rate combined with the large amount of scientific information

retrieved by the SO/PHI instrument demand a sophisticated on-board data reduction and

scientific analysis through the study of the polarization state of a specific spectral line. The main

aim is to perform the complicated algorithm needed to translate the polarization state of the light

spectrum in terms of some specific solar parameters like the magnetic field vector and velocity.

Technically speaking, the inference of the solar physical quantities through a

spectropolarimetric study is based on the inversion of the Radiative Transfer Equation (RTE)

and these tasks require the processing of a huge quantity of data in parallel.

The RTE inverter is the core of the on-board scientific data analysis and, probably, one of

the most innovative parts of the instrument. Due to the unavailability of qualified for space

processors, DSPs, or GPGPUs that fulfil the stringent computational requirements with the

limited room and power consumption allocated to the instrument, a specifically designed

hardware device has been implemented in SO/PHI. This device is in charge of inverting the

RTE aboard Solar Orbiter under narrow time and power constraints.

The main aim of this thesis is to design, build, and test such a hardware device for SO/PHI.

With that goal in mind, we propose two different high-performance computing architectures for

carrying out the RTE inversion using FPGA devices embedded in the SO/PHI instrument.

The first of these proposals is a distributed-memory MIMD multiprocessor architecture on

a Virtex-5 FPGA that exploits the functional and data fine parallelism. It uses a pipelined

execution based on a novel MIMD programming method. The processors within the architecture

are simplified for saving resources but they are able of eliminating latency and exploiting the

computing power that the FPGA provides. The synchronization and the communication network

between processors have been simplified using this proposal.

The second proposal consists of a SIMD multiprocessor architecture to reach high

performance in floating point operations. This architecture on a Virtex-4 FPGA squeezes the

FPGA resources in order to reach the time constraints. It is focused in exploiting the data

parallelism using several processors working together and using different data streams. One of

the most important contributions of this architecture is the ability of saving resources allocating

operation cores in a shared operation block, which is accessed by every processor. Some details

for extending the architecture to other problems are pointed out. A study of how the radiation

induced errors affect each block of the architecture is detailed, and two fault mitigation

strategies are described.

We also present a novel software tool, which automates the entire design process and

system settings from an input C-like pseudo-code. This tool uses advanced techniques of

software pipelining and parallelizing scientific algorithms in multicore systems. A compiler

within the tool makes it easier the use and programming of the proposed MIMD and SIMD

architectures.

As a byproduct of our development, a specific, novel Singular Value Decomposition

(SVD) architecture within the SIMD architecture is proposed as well. SVD is one of the steps in

the RTE inversion but can be of interest to other developments as is a fairly common

mathematical tool.

The achieved FPGA systems improve the time and power consumption of ground-based

systems based on commercial CPUs.

The final system is tested using synthetic and real data. It satisfies the scientific precision

requirements and the engineering computing time and power consumption requirements.

iii

Resumen

SO/PHI (Solar Orbiter Polarimetric and Helioseismic Imager) es un magnetógrafo, basado

en un filtrógrafo, destinado a crear mapas del vector campo magnético y de la velocidad del

plasma solar a lo largo de la línea de visión. Pertenece a la carga útil científica de la misión

Solar Orbiter de la Agencia Espacial Europea, la cual orbitará el Sol a una distancia de 0,28

unidades astronómicas.

La limitación en la tasa de telemetría combinada con la gran cantidad de información

científica obtenida por el instrumento SO/PHI requieren que se realice a bordo una sofisticada

reducción de datos y un análisis científico a través del estudio del estado de polarización de una

específica línea espectral. El principal objetivo es realizar el complicado algoritmo necesario

para trasladar el estado de polarización del espectro de la luz a términos de algunos parámetros

solares específicos como el campo magnético y velocidad. Técnicamente hablando, la inferencia

de las magnitudes físicas solares a través de un estudio espectropolarimétrico está basada en la

inversión de la ecuación de transporte radiativo (RTE) y estas tareas requieren del

procesamiento de una gran cantidad de datos en paralelo.

El inversor RTE es el núcleo del análisis científico a bordo y, probablemente, una de las

partes más innovadoras del instrumento. Debido a la inexistencia de procesadores, DSPs o

GPGPUs cualificados para el espacio que cumplan con los exigentes requisitos de cómputo, de

limitación de espacio y de consumo de potencia del instrumento, ha sido necesario el

desarrollado un dispositivo hardware específico para SO/PHI. Este dispositivo es el encargado

de invertir la ecuación RTE a bordo de Solar Orbiter bajo estrechas limitaciones de tiempo y

potencia.

El objetivo principal de esta tesis es diseñar, construir y probar tal dispositivo hardware

para SO/PHI. Con ese objetivo en mente, proponemos dos arquitecturas de cálculo científico de

altas prestaciones para llevar a cabo la inversión RTE usando dispositivos FPGA embebidos en

el instrumento SO/PHI.

La primera de estas propuestas es un arquitectura multiprocesador tipo MIMD de memoria

distribuida en FPGA que explota el paralelismo fino a nivel de datos y funcional. Usa una

ejecución segmentada basada en un innovador método de programación MIMD. Los

procesadores de la arquitectura son simplificados para ahorrar recursos pero son capaces de

eliminar latencias y de explotar la potencia de cálculo que la FPGA provee. Usando esta

propuesta se simplifica la sincronización entre procesadores y la red de comunicaciones.

La segunda propuesta consiste de una arquitectura multiprocesador tipo SIMD para

alcanzar alto rendimiento en las operaciones en coma flotante. Esta arquitectura en la FPGA

Virtex-4 exprime los recursos de la FPGA para alcanzar las restricciones de tiempo. Está

enfocada en explotar el paralelismo de datos usando varios procesadores que trabajan juntos y

usan diferentes flujos de datos. Una de las contribuciones más importantes de esta arquitectura

es la habilidad de ahorrar recursos alojando núcleos de operación en un bloque de operaciones

compartidas, el cual es accedido por todos los procesadores. También se dan propuestas para

extender la arquitectura a otros problemas y se hace un estudio detallado de como los errores

inducidos por radiación afectan a cada bloque de la arquitectura. Además se describen dos

estrategias para mitigar errores.

También presentamos una innovadora herramienta software, la cual automatiza

completamente el proceso de diseño y la configuración del sistema para un seudocódigo de

entrada tipo C. Esta herramienta usa técnicas avanzadas de segmentación de software y

paralelización de algoritmos científicos en sistemas multiprocesador. El compilador que forma

parte de la herramienta facilita el uso y programación de las arquitecturas propuestas SIMD y

MIMD.

Como un subproducto de este desarrollo también se ha generado una arquitectura

innovadora para el cálculo de la descomposición en valores singulares (SVD) de una matriz que

se aloja en la arquitectura SIMD. El cálculo del SVD es uno de los pasos dentro de la inversión

RTE pero puede ser de interés para otros desarrollos ya que es justamente una herramienta

matemática muy común.

El sistema en FPGA obtenido mejora el tiempo y consumo de potencia de los sistemas

terrestres basados en ordenadores comerciales.

Finalmente, se presentan los resultados obtenidos usando datos sintéticos y reales. Se ha

comprobado que se satisfacen los requisitos de precisión científica, de tiempo de cálculo y de

consumo de potencia.

v

High-Performance Scientific Computing on FPGA Aboard the

Solar Orbiter PHI Instrument

Table of Contents

Abstract .. i

Resumen ... iii

1 Introduction ... 1

 The Solar Orbiter mission .. 2 1.1
 The PHI instrument .. 5 1.2
 SO/PHI Measurement principles .. 8 1.3
 The SO/PHI data processing pipeline ... 9 1.4
 The Data Processing Unit in SO/PHI ... 12 1.5
 The PHI Team .. 16 1.6
 Objectives of this thesis .. 17 1.7
 Methodology and thesis structure ... 18 1.8

2 The Radiative Transfer Equation inversion .. 23

 The RTE inversion in SO/PHI .. 23 2.1
 The RTE inversion algorithm ... 27 2.2
 Computational cost of the RTE inversion code .. 29 2.3
 Reliability and robustness of C-MILOS ... 32 2.4
 Precision of the calculations in C-MILOS .. 34 2.5
 Improving the RTE inversion code... 35 2.6
 C-MILOS inversion time .. 38 2.7

3 High performance scientific computing on FPGA .. 39

 Introduction .. 39 3.1
 Custom architectures on FPGA .. 40 3.2
 Parallel computing using multi-processor architectures 42 3.3
 Multi-processors architecture in FPGAs .. 45 3.4

4 A MIMD architecture ... 47

 The multicore MIMD architecture.. 47 4.1
 A novel MIMD programming model ... 50 4.2
 The RTE algorithm in the MIMD architecture ... 53 4.3
 MIMD architecture in FPGA .. 54 4.4

5 A SIMD architecture ... 57

 The SIMD architecture ... 59 5.1
 The SIMD architecture on the FPGA ... 67 5.2
 The RTE inversion algorithm within the SIMD architecture 69 5.3
 A reconfigurable and scalable SIMD architecture .. 72 5.4

6 The TAPAS tool ... 75

 MIMD TAPAS ... 75 6.1
 The SIMD TAPAS ... 80 6.2

7 The Singular Value Decomposition within the RTE inverter 89

 Introduction to the SVD ... 89 7.1
 The Jacobi iterative method .. 90 7.2
 The Brent’s algorithm ... 91 7.3
 The SVD architecture design .. 96 7.4
 Results .. 107 7.5

8 The RTE inverter aboard SOPHI .. 113

 Fault mitigation, detection, and correction on the FPGA 113 8.1
 Integration of the RTE inverter in the DPU .. 119 8.2

9 Results... 127

 The RTE inverter within the SO/PHI development status 128 9.1
 Time requirements and computing performance .. 129 9.2
 Power consumption requirements... 136 9.3
 RTE inversion scientific requirements ... 138 9.4

10 Conclusions and future prospects ... 147

11 Appendix I. The Voigt function .. 153

12 Appendix II. HLS description of a RTE inversion block ... 155

13 Appendix III. MIMD architecture notes ... 157

14 Appendix IV. SIMD architecture notes .. 163

15 Appendix V. Communications based on RS-232 schematic 173

16 Appendix VI. SVD notes .. 175

17 Appendix VII. Communication notes ... 183

18 Appendix VIII. Documentation packets ... 187

19 Appendix IX. Virtex-4 FPGA development board ... 189

20 Appendix X. Publications and other merits .. 191

21 Acronyms .. 193

22 References ... 195

1

________________________________ 1 ________________________________

1 Introduction

rom the early days of humankind, the Sun has unquestionably been the main celestial body,

and the one that breathes life into the Earth. Soon, the Sun was ascended to a god category.

Inti, in the Inca Empire, Ra, for Egyptians, and Helios, in the Greek culture, were deifications of

the Sun.

The first astronomic attempt to explain how the universe works located the Earth as its

center. Several centuries after that paradigm, Nicolaus Copernicus shifted the center of the

known universe to the Sun. Back then, the Sun was not a god any more. The road had been

opened for a scientific thought that was able of mathematically explaining the universe.

Newton, after Galileo and Kepler, laid the foundations of modern science with its formal

models and methodology. Four centuries later, the same thirst for knowledge has carried us to

space exploration for searching the principles that manage the universe.

This PhD dissertation is an example of how the everlasting dichotomy between science and

technology is old fashioned. It is a technological step forward with the background goal of

helping science to increase our basic knowledge. The main goal of this dissertation is obtaining

more efficient and powerful computing models to fulfil the stringent requirements of a solar

physics problem. Hence, it can be considered advancement in the computer science field (thus

improving computing technology) that can be used as a tool for astrophysics. As a by-product,

many of the developments described in this dissertation can be used in other applications where

high-performance scientific computing is needed.

F

2

Chapter 1. Introduction

 The Solar Orbiter mission 1.1

The Earth is within the extended atmosphere of the Sun, called Heliosphere. Advances in our

understanding of both the Sun and the Heliosphere are therefore expected to improve not only

our knowledge but our life on Earth as well. This is the goal of Solar Orbiter, an ESA mission

in collaboration with NASA that was selected as the first medium (M)-class mission of ESA’s

Cosmic Vision 2015 – 2025 program.

An outline about the scientific objectives of Solar Orbiter is adopted from [Müller (2013)]:

“The results from current and past solar and heliospheric missions such as Helios

[Porsche (1977); Schwenn (1990); Schwenn (1991)], Voyager [Stone (1977)], Ulysses [Wenzel

(1992)], Yohkoh [Acton (1992)], SOHO [Domingo (1995)], TRACE [Handy (1999)], RHESSI

[Lin (2002)], Hinode [Kosugi (2007)], STEREO [Kaiser (2008)] and SDO [Pesnell (2012)]

have greatly improved our knowledge of the solar corona, the solar wind, and the three-

dimensional Heliosphere. Each of these missions had a specific focus, being part of an overall

strategy of coordinated solar and heliospheric research. However, none of these missions have

been able to fully explore the interface region where the solar wind is born and heliospheric

structures are formed with sufficient instrumentation to link solar wind structures back to their

source regions at the Sun.

With a combination of in-situ and remote-sensing instruments and its inner-heliospheric

mission design, Solar Orbiter will address the central question of heliophysics: How does the

Sun create and control the Heliosphere? This primary, overarching scientific objective can be

expanded into four interrelated top-level scientific questions that will be addressed by Solar

Orbiter:

• What drives the solar wind and where does the coronal magnetic field originate from?

• How do solar transients drive heliospheric variability?

• How do solar eruptions produce energetic particle radiation that fills the Heliosphere?

• How does the solar dynamo work and drive connections between the Sun and the

Heliosphere?

These questions represent fundamental challenges in solar and heliospheric physics today.

By addressing them, we expect to make major breakthroughs in our understanding of how the

inner solar system works and is driven by solar activity. To answer these questions, it is

essential to make in-situ measurements of the solar wind plasma, fields, waves, and energetic

particles close enough to the Sun that they are still relatively pristine and have not had their

properties modified by subsequent transport and propagation processes. This is one of the

1.1 The Solar Orbiter mission

 3

fundamental drivers for the Solar Orbiter mission, which will approach the Sun to as close as

0.28 Astronomical Unit (AU)”

It is important to remark that Solar Orbiter will also have the possibility of observing the

solar poles. An orbital inclination of 25° will be reached during the nominal mission, and a

maximum inclination about the ecliptic of 34° – 36° in the extended mission.

The scientific payload of the Solar Orbiter mission is formed by ten instruments. In Figure

1 the instrument accommodation onboard Solar Orbiter is shown. In short, there are in-situ

instrument for measuring the solar wind, energetic particles and magnetometers. Also there are

remote-sensing instruments that basically are imagers for providing visual images, and for doing

spectroscopy with different aims as study solar wind or X-ray emissions. One of them is the

Polarimetric and Helioseismic Imager instrument (PHI).

Also in [Müller (2013)] are introduced the instruments that compose the scientific payload

of Solar Orbiter. We adopted this introduction below.

“Relating these in-situ measurements back to their source regions and structures on the

Sun requires simultaneous, high-resolution imaging and spectroscopic observations of the Sun

in and out of the ecliptic plane. The resulting combination of in-situ and remote-sensing

instruments on the same spacecraft, together with the new, inner-heliospheric perspective,

distinguishes Solar Orbiter from all previous and current missions, enabling science which can

be achieved in no other way.

The scientific payload elements of Solar Orbiter will be provided by ESA member states,

NASA and ESA and have been selected and funded through a competitive selection process.

These are:

The in-situ instruments:

• The Energetic Particle Detector (EPD) experiment (J. Rodriguez-Pacheco, PI, Spain; R.

F. Wimmer-Schweingruber, co-PI, Germany) will measure the properties of suprathermal ions

and energetic particles in the energy range of a few keVn−1 to relativistic electrons and high-

energy ions (100 MeVn−1 protons, 200 MeVn−1 heavy ions).

• The Magnetometer (MAG) experiment (T.S. Horbury, PI, UK) will provide detailed in-

situ measurements of the heliospheric magnetic field.

• The Radio and Plasma Waves (RPW) experiment (M. Maksimovic, PI, France) will

measure magnetic and electric fields at high time resolution and determine the characteristics

of electromagnetic and electrostatic waves in the solar wind from almost DC to 20 MHz.

• The Solar Wind Analyser (SWA) instrument suite (C.J. Owen, PI, UK) will fully

characterize the major constituents of the solar wind plasma (protons, alpha particles,

electrons, heavy ions) between 0.28 and 1.2 AU.

4

Chapter 1. Introduction

The remote-sensing instruments:

• The Extreme Ultraviolet Imager (EUI, P. Rochus, PI, Belgium) will provide image

sequences of the solar atmospheric layers from the photosphere into the corona.

• The Multi Element Telescope for Imaging and Spectroscopy (METIS) Coronagraph (E.

Antonucci, PI, Italy) will perform broad-band and polarized imaging of the visible K-corona,

narrow-band imaging of the UV and EUV corona and spectroscopy of the most intense lines of

the outer corona.

• The Polarimetric and Helioseismic Imager (PHI, S.K. Solanki, PI, Germany; J.C. del

Toro Iniesta, co-PI, Spain) will provide high-resolution and full-disk measurements of the

photospheric vector magnetic field and line-of-sight velocity as well as the continuum intensity

in the visible wavelength range.

• The Solar Orbiter Heliospheric Imager (SoloHI, R.A. Howard, PI, USA) will image both

the quasi-steady flow and transient disturbances in the solar wind over a wide field-of-view by

observing visible sunlight scattered by solar wind electrons.

• A European-lead extreme ultraviolet imaging spectrograph Spectral Imaging of the

Coronal Environment (SPICE) with contributions from ESA member states and ESA. This

instrument will remotely characterize plasma properties of regions at and near the Sun.

• The Spectrometer/Telescope for Imaging X-rays (STIX) (S. Krucker, PI, Switzerland)

provides imaging spectroscopy of solar thermal and non-thermal X-ray emission from ∼4 – 150

keV”.

Detailed descriptions of the payload elements, as well as traceability matrices of the

science goals are given in [Marsden (2011)].”

Figure 1 Payload accommodation onboard Solar Orbiter. (Adapted from [Müller (2013)])

1.2 The PHI instrument

 5

 The PHI instrument 1.2

The Polarimetric and Helioseismic Imager (SO/PHI or simply PHI) instrument will provide

high-resolution and full-disk measurements of the photospheric vector magnetic field and line-

of-sight (LOS) velocity as well as the continuum intensity in the visible wavelength range. The

measurement principle of SO/PHI is based on imaging spectropolarimetric observations of a

photospheric absorption line in the solar visible-light spectrum. More details can be found in

[Solanki (2015)].

The instrument is made up of two main units, namely, an Optics Unit and an Electronics

Unit (E-Unit). Figure 2 illustrates the conceptual design.

The Optics Unit contains several subsystems: two telescopes, a tunable filtergraph, two

polarimetric packages, an image stabilization system, and the focal plane assembly. The, so-

called High Resolution Telescope (HRT) is an off-axis Ritchey-Chrétien that will image a

fraction of the solar disk at a resolution of 150 km over the solar surface at perihelion (the same

resolution as the Extreme Ultraviolet Imager’s high resolution channel). The refractor, Full Disk

Telescope (FDT), will be able to image the full solar disk at all phases of the orbit. Each

telescope has its own Polarization Modulation Package (PMP) located early in the optical path

in order to minimize crosstalk effects among the four Stokes parameters. Polarimetry with a

signal-to-noise ratio of 103 is baselined for SO/PHI. HRT or FDT will sequentially send light to

a Fabry-Perot filtergraph system (100mÅ spectral resolution) and on one 2048×2048 pixels

CMOS sensor. The Image Stabilization System (ISS) will compensate spacecraft jitter or other

disturbances. This system is composed of a correlation tracker and a rapid tip-tilt mirror for the

HRT [Hirzberger (2012)]]. Although the Heat Rejecting Entrance Window (HREW) is not

visible in Figure 1, it contains the two openings for both telescopes that Figure 2 shows.

6

Chapter 1. Introduction

Figure 2 PHI Functional Diagram. (Adapted from [Meller (2013)])

1.2 The PHI instrument

 7

The E-Unit is the main electronics system and is in charge of controlling the whole

instrument. It is based on a modular system with individual boards (subsystems) interconnected

with an external motherboard called EDS (Electrical Distribution System). It consists of five

subsystems: the DPU (Digital Processing Unit for image accumulation, preprocessing, Stokes

inversion of physical magnitudes, data compression, control of the instrument and of the

interfaces with the spacecraft; the PCM (main and redundant Power Converter Module for

providing the corresponding power supply to the subsystems); the AMHD (for housekeeping

parameter acquisition, motors controller, and heater drivers) board; the TTC (Tip-Tilt

Controller); and the HVPS (High Voltage Power supply for the filtergraph).

SO/PHI will observe intensively during the Science Operations Windows of each orbit.

During other phases of the orbit it will continue to provide, as necessary, synoptic and context

observations of the magnetic field at a considerably lower cadence. It will also provide

helioseismic data at the full cadence but at a vastly reduced spatial resolution [Hirzberger

(2012)]]. Specific operational modes have been defined to meet the scientific objectives during

all mission phases within the allocated telemetry resources.

Severe threats have to be dealt in the SO/PHI instrument as a good power management or

heat dissipation, all of them, with a mass limitation of 31 Kg for the entire instrument. The total

power consumption limitation for the instrument is around 45 W during the science operation in

the nominal orbit (0.28 AU). There is a great radial temperature in the nominal orbit that

supposes a great challenge for the thermal engineers. This issue could affect the optical

performance and the entire instrument.

A big technical challenge is the data transmission of the scientific data to ground since the

available telemetry for SO/PHI is in average 20kbps, or 211 MB/day. To reduce the telemetry

needed by SO/PHI, an initial reduction and the scientific analysis of the data will be carried out

already onboard the spacecraft using a Milne-Eddington inversion (or RTE inversion) of the

recorded data prior to their transmission to ground [Hirzberger (2012)]]. This analysis is highly

computing demanding: in fact, when this type of observations is analyzed post facto on Earth,

typical PCs spend almost two and a half hours [Borrero (2010)].

That is precisely one of the features that stand out among all the instrumentation in the

Solar Orbiter mission, and maybe among all the space instruments of all times. Such an

exhaustive scientific analysis has never been carried out aboard any space instrument.

Specifically, the challenge of carrying out this scientific analysis on flight is the origin and

motivation of this thesis.

8

Chapter 1. Introduction

 SO/PHI Measurement principles 1.3

The primary goal of SO/PHI is to map the vector magnetic field of the Sun (magnetography)

and the velocity of the solar plasma along the line of sight (tachography). Therefore, both

polarimetric and spectroscopic measurements are needed. Magnetography is made through

using liquid crystal variable retarders (LCVRs) as polarization modulators and a linear polarizer

as the analyzer. With them, all four Stokes parameters of light, namely, I, Q, U, and V are

measured. Stokes I gives the intensity of the light beam; Stokes Q and U give the linear

polarization; and Stokes V speaks about the circular polarization. Spectroscopy is made by

scanning a solar photospheric absorption line at a few wavelengths with a tunable, narrow band

Filtergraph (FG), which is made up of a broader band pre-filter and a narrow band LiNbO3,

solid Fabry-Perot etalon. With SO/PHI, thus, the spectral line profile at each point over the solar

surface and in all four Stokes parameters is obtained: the so-called Stokes profiles of the

spectral line are sampled at several wavelengths. The sought-for solar information is encoded in

these Stokes profile samples.

The Fe I line at 617.3 nm was chosen as the SO/PHI science target after a careful

comparison with a number of other widely used Zeeman-sensitive lines due to its ideal

combination of properties allowing both vector magnetic field and helioseismic observations

[Hirzberger (2012)]. The polarization properties of this spectral line depend on the magnetic

field structure in the line-forming regions of the solar atmosphere through the Zeeman effect. In

addition, the exact wavelength position of the spectral line depends on the relative velocity

between the observing solar point and the spacecraft through the Doppler effect.

Figure 3 illustrates the measurement principle. The intensity solar spectrum around 617 nm

is shown in panel a (red solid line) along with the pre-filter (orange solid line) and the etalon

transmission profiles (blue solid line). The vertical dotted lines mark the central wavelength

position of the various transmission peaks of the etalon. Their full width at half maximum

(FWHM) is denoted by ∆λFWHM, their separation is the so-called free spectral range (FSR), and

the FWHM of the pre-filter is ∆λOSPF. The FG spectral transmission is given by the product of

the pre-filter and etalon transmission profiles, so that the side peaks of the FG are almost

suppressed to zero. Panels b through e display the four Stokes profiles of the Fe I line as

resulting from a simulation. The original profiles are plotted in red, the same profiles after

convolution with the FG transmission profile are plotted in light blue; the asterisks mark the

instrument wavelength samples.

As commented above, the information about the solar magnetic field and plasma velocity is

encoded in the spectrum of these Stokes profiles. The SO/PHI data products, then, will be

1.4 The SO/PHI data processing pipeline

 9

extracted from the primary observables by onboard processing. Without going into details, we

can say that the process of getting the solar atmospheric parameters from the Stokes parameters

is known as the inversion of the Radiative Transfer Equation (RTE) [del Toro (2003)]. This

process will be detailed in Chapter 2.

Figure 3 Measurement principle of SO/PHI. (Image adapted from [Hirzberger (2015)]).

 The SO/PHI data processing pipeline 1.4

The conceptual light path is depicted in Figure 2 with brown dotted lines. The light is recorded

by the CMOS sensor after a polarization analysis by the polarization modulation package and a

selection of wavelength within the spectral line by the filtergraph. Raw data, as they will be

10

Chapter 1. Introduction

produced by the SO/PHI science detector within the focal plane assembly (FPA), are built up of

narrow band filtergrams (images) obtained in the spectral region around the Fe I absorption line

at 617.3 nm (the light level will be modulated by the PMPs).

Several operation principles can be tuned for acquisition of data. The science observing

modes define the telescope to use (HRT or FDT), the number (and wavelengths) of the spectral

scan positions (6 as a baseline) the number of polarization states at each spectral position (4

baselined for I, Q, U, and V), and the number of images to be accumulated at each polarization

state and spectral position.

A conceptual overview of the data pipeline is shown in Figure 4 with a block diagram.

Solid black lines denote the baseline data processing pipeline; dashed red lines represent

additional/alternative processing modules, and denote the possibility to store and downlink raw

and partially processed data. We refer the interested reader to [Hirzberger (2012)] for details.

In order to achieve a signal-to-noise ratio (SNR) of 103, several images (separately for each

polarization sate) have to be accumulated. An exposure time of the order of 1 s per polarization

state is required to obtain the required SNR. This means that around 22 images have to be

accumulated. The size of the frames is 2048x2048 pixels. However, the number of rows can be

specified in the science operation mode (0−2047). At every spectral position and polarimetric

state a number of frames will be accumulated in real time. Single frames have a digital depth of

14 bits and accumulated images have 32 bits digital depth. A frame rate of 10 s−1 corresponds to

a read-out rate of 560 Mbits/s.

For each single science data set (one scan across the Fe I line at 617.3 nm), 24 accumulated

images (6 spectral scan positions and 4 polarization states) are acquired, accounting for a raw

data size of 3.2Gbit (for a frame size of 2048 × 2048 pixels).

After data accumulation, several basic data calibration procedures have to be applied, so

dark current and flat field calibrations are carried out. The polarization of the incoming light is

modulated and analyzed by the PMPs. This means that that the fraction of light with a certain

polarization state is transformed into a given intensity level, which is a linear combination of the

four Stokes parameters. The process of recovering the Stokes parameters from those

combinations is known as demodulation. That polarization demodulation does not affect to the

size of a raw data set: 3.2 Gbit.

Through the study of the polarization state of the specific spectral line, we can infer the

magnetic field vector and other quantities that define the physical state of the solar photosphere

as the continuum intensity and the velocity of the solar plasma in the light-of-sight [del Toro

(2003)]. Technically speaking, the inference of the solar physical quantities from the

spectropolarimetric observations is based on the RTE inversion.

1.4 The SO/PHI data processing pipeline

 11

Figure 4 On-board data processing pipeline.

12

Chapter 1. Introduction

Thanks to the RTE inversion the raw data set can be reduced from 24 images to only 4

images: the line-of-sight (LOS) flow velocity and the strength, inclination, and azimuth of the

magnetic field vector. The continuum intensity, which is not an output from the inversion

procedure, is also a valuable fifth image. The inversion results enable the representation of the

physical quantities with a shorter fixed point precision than the raw polarized images.

Therefore, these quantities are candidates of a bit truncation.

The last step in the data processing pipeline is a lossless compression procedure. The RTE

inversion results also help in increasing the effective data compression. As illustrated in Figure

4, data after the RTE inversion are truncated and compressed. Hence, the amount of data is

reduced to only 92 Mbit per individual set. In short, we can say that the SO/PHI data processing

pipeline, using the on-board scientific analysis, reduces the data to be transferred from the

spacecraft to ground in a factor higher than 33.

During normal science operation, only fully-processed and compressed data are expected to

be downlinked. During commissioning and check-out phases it is, however, planned to

downlink raw and/or partly processed data, as is illustrated with dashed red lines in Figure 4.

In summary, the RTE inversion on board implies to do the scientific analysis of 24 images

of 2048x2048 pixels, which makes it easy a final compression factor of around 33. In this thesis

we study the RTE inversion algorithm and we will propose two computational architectures for

that task not to be a bottle neck in the instrument regular pipeline.

 The Data Processing Unit in SO/PHI 1.5

The complexities of the acquisition tasks and of the data processing pipeline imply that steps

like scientific data extraction and data evaluation have to be conducted within an instrument

Data Processing Unit (DPU), which is otherwise responsible of the overall behavior of the

whole instrument.

The basic structure proposed for the PHI DPU design is based on the results of the ESA

study for a Dynamically Reconfigurable Processing Module (DRPM) [Bubenhagen (2010);

Fossati (2011)]. This design utilizes a combination of a processor ASIC (GR712C from

Aeroflex-Gaisler), containing a LEON-3FT-based main processor system, together with a fixed,

radiation hardened and TMR by design, one-time programmable Microsemi RTAX FPGA as

system supervisor plus a set of dedicated, real-time function cores implemented within in-flight

reconfigurable Xilinx Virtex-4 FPGAs (XQR4VSX55) [Fiethe (2012)]. A DPU schematics is

shown in Figure 5. Other alternatives of DPU architectures were rejected due to availability and

performance because of power consumption reasons, as demonstrated in [Bubenhagen (2013)].

1.5 The Data Processing Unit in SO/PHI

 13

A combination of a small amount of volatile (e.g. 8 Gbit SDRAM) and large capacity of

non-volatile (e.g. 4 Tbit NAND Flash) image memory provides significant storage capacity,

which fulfills all needs of intermediate data storage at very low resources [Fiethe (2012)]. The

design of the NAND-Flash-based system has complete error correction, taking into account the

Flash handling. NAND-Flash-based mass storages for space have been intensively studied by

Institute of Computer and Communication Engineering (IDA) in the Safe Guard Data Recorder

(SGDR) study for ESA and have already been implemented for the Sentinel-2 SSMM [Cassel

(2011)].

It is important to remark that the 4 Tbit non-volatile NAND flash memory allows storing

data in order to schedule and postpone the data processing. In the nominal science observing

mode, one full set of observables will be obtained within 60s. This time range includes frame

exposure and data accumulation. The high cadence of data acquisition in most operation modes

and/or the lack of DPU processing capacity for carrying out all necessary tasks in due time

implies for the pipeline to have an option for storing raw or partially calibrated data in an image

storage. The full data processing pipeline will thus be executed during periods where no

observations are carried out. This idea of postponed processing is described in Figure 5, and

detailed in [Fiethe (2012)].

Thanks to the sufficient flash memory storage available, and to the Time-Space

Partitioning (TSP) proposed by IDA [Fiethe (2012)], the entire advanced data processing

pipeline is done only with the two radiation-tolerant in-flight reconfigurable Xilinx Virtex-4

FPGAs. For the PHI DPU, the seamless reconfigurability of these FPGAs enables multiple uses

during different modes of operation:

- the first configuration uses the two FPGAs for image acquisition; it is remarked in Figure 5

using red blocks:

• image stabilization system (ISS) in FPGA #1

• data accumulation in FPGA #2

- a second, different configuration for the subsequent data processing is depicted in Figure 5

using yellow and blue remarks:

• RTE inversion in FPGA #1

• data pre-processing and compression in FPGA #2

14

Chapter 1. Introduction

Figure 5 PHI basic data flow (up) and DPU architecture block diagram with FPGA time
sharing (down). Adapted from [Bubenhagen (2013)].

In short, to allow the DPU to work with only two Virtex-4 FPGAs, and make it feasible the

Time-Space Partitioning within the SO/PHI instrument, the RTE inversion must be carried out

using one of the two Virtex-4 FPGAs embedded in the PHI DPU. That is the same that is used

to perform the Image Stabilization System (ISS) during the data acquisition phase. In the

context of the SO/PHI instrument, the subsystem for carrying out the RTE inversion is also

called RTE inverter and will also be referred to so along this work.

In early stages of the PHI DPU design, the use of the space-qualified Virtex-5 QRFX130T

FPGA was considered. Unfortunately, this part is not yet qualified by ESA, mainly for

packaging and soldering issues and, finally, the Virtex-4 XQR4VSX55 was the accepted device

by ESA. Nevertheless, a specific qualification process about the assembly of the Virtex-4

XQR4VSX55 package (CF1140 package) had to be carried out by the SO/PHI team [Fiethe

(2014)]. This mission-specific qualification was needed since no qualified process manufacturer

for such a ceramic flip-chip column grid array package assembly is currently available in

Europe.

The first DPU design, using Virtex-5, did not count with the enormous massive memory,

and the first attempt was to process the raw data at the same time they were taken (online), in a

minute. In the final DPU design using two Virtex-4 FPGA, thanks to the instrument internal

memory, which allows storing up to one observation cycle (about 9 hours) [Hirzberger (2013-

1.5 The Data Processing Unit in SO/PHI

 15

B)], approximately 15 minutes are available to the system to perform the inversion of the RTE

for each single observational data set (obtained in one minute).

The Virtex-5 device was the baseline for the DPU design (and so for RTE inverter) during

more than two years. We designed and developed a first prototype for that device. Finally, after

the ESA decision, we had to redesign all the system for arranging the inversion to the Virtex-4

device. As Table 1 shows, both devices are very different, not only in number and size of

available resources but also in the technology of these resources. Virtex-5 Configurable Logic

Block slice contains four LUTs and four flip-flops (in Virtex 4 they have two LUTs and two

flip-flops). In addition, each DSP48E slice of Virtex-5 contains 25 x 18 multipliers, meanwhile

each DSP slice in Virtex-4 contains 18 x 18 ones. A study about the feasibility of using other

space-qualified devices is given in [Cobos (2011)], where higher members on the qualified

Virtex-4 family had to be discarded due to power consumption issues.

The Virtex-4 is based on 90 nm copper CMOS Process and it uses a 1.2 V Core Voltage.

On the other hand, Virtex-5 is based on a 65 nm copper CMOS process technology, and it uses

a 1.0 V core voltage. That means that Virtex-5 is a better, faster device and more efficient in

power consumption. However the final system will use the Virtex-4, emphasizing even more the

processing challenge in the space.

The device change in the DPU design is the reason why in this thesis two processing

architectures are proposed, one for each DPU design, and both are original architectures.

 Devices

Resource Virtex 4 XQR4VSX55 Virtex 5 XQR5VFX130

Slices 24,576 20,480

Block Ram 320 (18 Kb) 596 (18 Kb)

Math Blocks
512
(400 MHz 18 bit x 18 bit)

320
(360 MHz 25 bit x 18 bit)

CMOS Tech. 90 nm 65 nm

Core Voltage 1.2 V 1 V

Table 1 Elements that compose the Virtex-4 and Virtex-5 FPGAs

Regarding the engineering requirements, it is important to remark that the whole DPU has

to operate with a maximum of 35 watts, and the assignation for the FPGA when the RTE

inversion is running is only 7 watts for the Virtex-5 device and 5 watts for the Virtex-4 one.

16

Chapter 1. Introduction

 The PHI Team 1.6

To build such a complex, challenging, and novel instrument is an enormous task that would not

be possible without a big consortium. However, its core elements either have space heritage or

are based on technologies already developed by the SO/PHI team for the successful balloon-

borne Sunrise mission. The PHI consortium has a long-standing expertise in designing and

building scientific instruments for space missions and their scientific exploitation. The PHI

instrument is being developed with major contributions from institutes in Germany, Spain and

France, and with smaller contributions from Sweden, and Norway.

The hardware and/or software contributing institutes are (in alphabetical order):

• Grupo de Astronomía y Ciencias del Espacio (GACE), Universidad de Valencia, Spain

• Institute of Computer and Communication Engineering (IDA), Braunschweig, Germany

• Institut d'Astrophysique Spatiale (IAS), Paris, France

• Instituto de Astrofísica de Andalucía (IAA), Granada, Spain

• Instituto de Astrofísica de Canarias (IAC), Tenerife, Spain

• Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain

• Instituto Universitario de Microgravedad ''Ignacio Da Riva'' (IDR), Universidad

Politécnica de Madrid, Spain

• Institutt for Teoretisk Astrofysikk (ITA), Oslo, Norway

• Kiepenheuer-Institut für Sonnenphysik (KIS), Freiburg, Germany

• Max-Planck-Institut für Sonnensystemforschung (MPS), Göttingen, Germany

• Universidad de Barcelona (UB), Spain

The PHI consortium is represented by the Principal Investigator Prof. S. K. Solanki (MPS)

and the Co- Principal Investigator Dr. Jose Carlos del Toro Iniesta (IAA).

The IAA has an important role in SO/PHI which includes the Co-Principal Investigator as

well as the coordination of the Spanish consortium which is formed by the following

institutions: INTA, GACE, IDR-UPM, UB and IAC. The level of participation of the Spanish

consortium in the PHI instrument is slightly above 40%, including responsibilities at system

level which are performed at IAA.

The IAA, as the coordinating institute, acts as a contact point with the PI project office at

the MPS in Göttingen (Germany), which guarantees a high visibility of the contribution. Apart

from an important contribution to the scientific side, the IAA has also a relevant contribution to

the technical team.

1.7 Objectives of this thesis

 17

In addition to these high level tasks, the IAA is also responsible for two of the three

SO/PHI instrument’s Units: the Electronics Unit and the Harness as well as several important

work packages at lower level as are the Electrical Distribution System (EDS), the Analog and

Mechanisms Driver control board (AMHD) and the inversion of the Radiative Transfer

Equation (RTE), all of them included in the E-Unit.

The EDS is an electronic board in which the distribution of the signals between the E-Unit

subsystems is implemented. The AMHD is another board included in the E-Unit which is in

charge of performing the PHI instrument motor and heaters control as well as the housekeeping

acquisition. Finally, the RTE is the core of the on-board scientific analysis and, probably, one of

the most innovative parts of the instrument. It consists on a device specifically designed to

invert the Radiative Transfer Equation that will be on board Solar Orbiter. That denotes the

importance of this thesis work within the SO/PHI instrument.

The responsibility of the IAA about the E-Unit as a whole implies the coordination of the

several institutions that contribute to this unit; these are IDA (at the TU Braunschweig), which

develops the Digital Processing unit (DPU); IAS (at the University of Paris-Sud), which

contributes the High Voltage Power Supply (HVPS); Universitat de Barcelona (UB), which is

responsible for the image stabilization system electronics (Tip Tilt Controller TTC); and GACE

(at University of Valencia), which develops the Power Converter Module (PCM) of PHI.

As the E-Unit responsible, the IAA is in charge of supervising the development of all E-

Unit subsystems from management and quality assurance points of view, controlling the

schedule and leading the integration and verifications campaigns of the different E-Unit models.

 Objectives of this thesis 1.7

In the last years, in the high-performance computing realm, the trend is to use multi-core

architectures for accelerating scientific applications. However, in an extreme environment like

the outer space, we cannot use the common devices like clusters of PCs or General Purpose

Graphics Processing Unit devices (GPGPU) due to radiation problems and to power limitations.

The hypothesis of this thesis is to demonstrate that a space-qualified FPGA device can be

used as a high-performance computing element and which will be able of carrying out the RTE

inversion aboard the SO/PHI instrument. As we mentioned above, this will be the first time that

such a computing demanding process is performed aboard a spacecraft. The final FPGA system

can be considered the heart of the entire instrument data pipeline.

Therefore, the main aim of this thesis is to design and develop embedded architectures

using the current high-performance computing techniques like multi-core architectures, code

18

Chapter 1. Introduction

optimization, or specific-domain efficient processors, which would be able of reaching high-

performance computing on an FPGA. In addition, the final design must satisfy the scientific

requirement of computing precision and the engineering requirements of computing time and

power consumption, all of that, without forgetting the final space environment for which the

system is envisaged.

The proposed computing architectures, despite of focusing in the RTE inversion, shall be

enough versatile for arranging to future changes in the scientific requirements, as spectral line,

number of wavelengths, etc. That will lead to architectures with some capacity of configuration.

Therefore, a secondary objective will be to provide the architectures with software tools that

facilitate their configuration.

This thesis in computer science is aimed to further the research in high-performance

computing and to propose innovative architectures for embedded computing. It is not an

objective of this thesis to generate a detailed engineering document, or manual, with all the

features and requirements of the proposed architectures focused in the space mission. For that, a

great amount of technical notes and documentation has been generated within the framework of

the SO/PHI international project, which will be referred to along this work. These documents

are available upon request to the SO/PHI team. The requests will be examined on a case by case

basis. However, we have tried to give a self-consistent document with all the necessary details,

as well as, a summary of several technical notes in the appendices. Therefore, this thesis will

mainly focus in explaining new computation strategies and how they are implemented using

FPGA devices for carrying out scientific algorithms.

 Methodology and thesis structure 1.8

The development of this thesis is bounded to the development of the SO/PHI instrument. So the

confirmation of the initial hypothesis is conditioned to the success of SO/PHI and of the RTE

inverter subsystem. Since the space instrumentation context imposes a rigorous methodology

based on the ESA standard for ASIC and FPGA Development [ESA (2008)] the RTE inverter

development shall follow this standard.

The methodology for designing and developing the RTE inverter is detailed in the RTE

inverter FPGA Development Plan [Aparicio (2013)]. There, all the generated engineering

documentation is detailed, and the entire followed design flow, for the RTE inverter within the

space instrument context. The RTE inverter FPGA development shall follow the life cycle

shown in the Figure 6, where once the specifications and requirements are established, a

detailed design will be developed. This design will be simulated at a block level, and the

1.8 Methodology and thesis structure

 19

different blocks will also be tested on the FPGA. That is, the FPGA will be programmed with

the different blocks and they will later be tested. Furthermore, this process will be repeated at

top level. This is reflected in the figure as RTE simulations and RTE post programming test.

Then, the RTE functional test will be done. All these tests will be carried out using the

commercial FPGA version of our space-qualified Virtex-4. Finally, the electrical tests and

functional test will be carried out over the flight FPGA, once integrated in the DPU board. All

these steps will generate all the associated documentation appearing in Figure 6.

Figure 6 RTE inverter FPGA design flow

As Figure 6 explains, the first activity is to define the RTE requirements, including both

scientific and technical. These requirements shall be documented within the RTE inverter FPGA

Define

Requirements

Implement "C"

Code

Define Block

Architecture

Detailed design

Test Procedures

Block Level &

RTE Simulations

Block Level &

RTE Post

program . Tests

RTE Functional

tests

DPU Board RTE

ElectricalTests

Design

completed

FPGA requirements

FPGA Development

Plan

FPGA Architecture

Design

FPGA Verification Plan

Functional Tests

reports

Test Report

Electrical Tests

reports

DocumentationDesign Flow

Test Procedures

Verification Report

FPGA Detailed design

DPU Board RTE

Functional Tests

Final Functional Tests

reports

Syntesis and Place & Route

FPGA Programming

FPGA Programming

FPGA Programming

Final FPGA Programming

Require
ments
and

design
phase

Verificati
on and

test
phase

20

Chapter 1. Introduction

requirement specification [Aparicio (2014)]. This document shall include a minimum set of

items according to the ESA standard [ESA (2008)], so it specifies the electrical, operational,

functional, and science requirements of the RTE inverter with high grade of detail. Every

requirement shall have its corresponding verification procedure and test reports. The main

requirements for understanding the work in this thesis are outlined in Table 2.

IDENTIFIER Requirement Definition
RTE-R-0010 RTE shall produce maps of :

• i.- the photospheric line-of-sight (LOS) flow velocity (vLOS),
obtained from the polarized profiles of that line,

• ii.- the photospheric magnetic field strength (BLOS), obtained
from the polarized profiles of the line,

• iii.- the photospheric magnetic field inclination (γ) with
respect to the LOS, obtained from the polarized profiles of the
line, and,

• iv.- the photospheric magnetic field azimuth (φ) in a plane
perpendicular to the LOS, obtained from the polarized profiles
of the above mentioned line.

RTE-R-0020 The RTE inverter FPGA maximum power dissipation shall be 7 W for
the Virtex-5 and 5 W for the Virtex-4

RTE-R-0030 The RTE inverter shall process a full set of images of each observation
in 1 minute using the Virtex-5 device and less than 15 minutes using
the Virtex-4 device

Table 2 Outline of the main RTE inverter requirement specifications

After this phase, a C code shall be implemented with the RTE operations. This way is

easier and faster to make a first approach of RTE functionality. Then the block architecture shall

be defined. This phase will be documented with the FPGA architecture design, and shall have a

verification plan associated, explaining the procedures and test to verify the requirements. In

[Cobos (2013)] is presented the RTE inverter FPGA validation and verification plan to follow

in the RTE inverter development. It explains the needs for demonstrating whether the functional

and non-functional requirements stated in the definition phase documentation are accomplished

at all levels of modeling, starting from the behavioral level down to the RTL level.

It is important to remark that the Project Manager and the Assistant Manager supervise the

validation and implementation tasks according to ESA standards for FPGA/ASIC

developments, under the leadership and scientific assessment of the SO/PHI co-PI. Finally, an

external company, SENER, with a long tradition in space missions, supervises and certificates

all the development process and the documentation.

Thus, beginning from the state of the art in the field of high-performance computing

embedded on FPGA, innovative architecture proposals will be generated that tackle the RTE

1.8 Methodology and thesis structure

 21

inversion on FPGA. These architectures will be compared with the current ones. The final

validation of the architecture proposals will be mainly based on the execution of the RTE

inversion algorithm and on the requirements verification. If that validation is satisfactory the

initial hypothesis will be corroborated. Anyway, the SO/PHI documentation will be constantly

referred to as the powerful complement that it represents.

This document is structured in 9 main chapters. The next one deeply studies the RTE

inversion algorithm from a point of view of computation, although some scientific concepts

have to be introduced in order to clarify the most important issues. This study is necessary in

order to know all the parallelization and optimization possibilities that the code intrinsically

possesses. In addition, we will show the necessity of developing a core for the Singular Value

Decomposition of a correlation matrix.

The third chapter presents the most relevant trends and works in the high-performance

computing on the FPGA field. Based on it, two architectures, conceptually different, are

proposed, but both aimed to the RTE inversion problem, and focused in obtaining high-

performance computing. Each architecture is devised to one specific family of FPGAs

considered in the DPU design. The fourth chapter details the design for the Virtex-5 FPGA, and

the fifth one does the same for the Virtex-4 FPGA version. Since, the version for the Virtex-4 is

the finally accepted by the ESA, the architecture is described with more detail.

In chapter number six, a software tool that allows the configuration and modification of the

computing architectures is presented. This tool supplies a compiler that facilitates the

programming tasks, and also the migration of the RTE inversion algorithm from a high-level

programming language to the embedded architecture level. The tool counts with two different

versions, one for each possible architecture and device.

The seventh chapter shows the design for the mathematical operation of Singular Value

Decomposition of a correlation matrix.

In the eighth chapter some aspects related to the final RTE inverter systems like fault

mitigation, algorithm scheduling, and configuration and use from an instrument point of view

are explained.

Chapter nine shows how the RTE inversion algorithm is executed within the proposed

architectures. Tests using artificial and real images are presented. A comparative with other

RTE inversion approaches is done.

The tenth chapter concludes with comments and remarks about the most important

innovations of the proposed solutions in this thesis.

23

________________________________ 2 ________________________________

2 The Radiative Transfer Equation inversion

he limited telemetry rate combined with the large amount of scientific information

retrieved from the SO/PHI instrument demand a sophisticated on-board data reduction and

analysis. As pointed out in the introduction, the RTE inversion is the heart of that analysis. In

this chapter, we describe the RTE inversion basics, the process, and its algorithmic

implementation.

 The RTE inversion in SO/PHI 2.1

Through a spectropolarimetric study of a particular spectral line formed in the photosphere we

can infer the magnetic field and other quantities that define the physical state of the solar

atmosphere [del Toro]. Spectropolarimetry is a spectroscopic analysis of light whose

polarization state has been previously analyzed. As a result of this analysis, quasi-

monochromatic images of the Stokes parameters (I, Q, U, V) are obtained at different

wavelengths across the line and its nearby continuum -six wavelength in the SO/PHI case. The

information about the solar magnetic field and plasma velocity is encoded in the spectrum of the

Stokes parameters. Without going into details, we can say that the process of getting the solar

atmospheric parameters from the Stokes parameters is known as the inversion of the Radiative

Transfer Equation (RTE) [del Toro (2003)].

T

24

Chapter 2. The Radiative Transfer Equation inversion

Figure 7 Illustration of the wavelength sampling

Specifically, we shall employ an inversion method based on the Milne-Eddington (ME)

solution of the RTE. In it, the atmospheric parameters are assumed to be constant with depth.

This approximation assumes a linear dependence of the source function on the optical depth and

that several physical quantities like the magnetic field strength, the flow velocity, the

microturbulence, etc. do not change with height. No macro- or microturbulent velocities will be

assumed throughout this study. The ME approximation reduces significantly the computation

time. However, the fit quality deteriorates for asymmetric Stokes profiles, where vertical

gradients of the physical quantities are present in the solar photosphere.

In a Milne-Eddington atmosphere model, besides the so-called thermodynamic parameters

(the line-to-continuum absorption coefficient ratio, η0, the Doppler width of the line, ∆λD, the

damping parameter, a, and the two coefficients defining the source function, S0 andS1) that

govern the shape of the Stokes spectrum, the line-of-sight (LOS) velocity (vLOS), and the

strength (B), inclination (γ), and azimuth (φ) of the vector magnetic field fully describe the

atmosphere.

 A single broadening, corresponding to the instrumental point-spread-function will be

considered in the development. Since it is likely very wide (approximately 10-1 Å), its effect on

the profiles overrides other possible broadenings.

In Figure 8, a sketch is presented about how the Stokes profiles are obtained from the

initial polarized images for each spatial pixel. For each point on the solar surface, codified in

one spatial pixel, we have four Stokes "profiles" of six elements each (the Stokes parameters

depend on wavelength). Thus, for each point (i, j) on the surface of the Sun, we have an Stokes

profile with the shape of I={I(i, j, λ0..5), Q(i, j, λ0..5), U(i, j, λ0..5), V(i, j, λ0..5)}. The lower panels

2.1 The RTE inversion in SO/PHI

 25

of Figure 8 show an example of a sampled Stokes profile Note that the sixth wavelength sample

is not taken within the spectral line but on its nearby continuum. The image composed by I(i, j,

λ0..5) is also called continuum intensity image, or simply Ic.

Figure 8 Diagram about how Stokes profiles are obtained from the initial images (UP).
Example of a sampled Stokes profile (red dots) of the SO/PHI spectral line (blue line).

Such data set consists, then, of 24 images of 2048x2048 pixels, corresponding to the four

Stokes parameters recorded at six wavelengths. From each one of these 222 sets of four Stokes

profiles we will extract the relevant solar information, since each of them can be represented

using a ME atmosphere model. For each Stoke profile the RTE inversion has to be carried out.

Figure 9 shows a simplified RTE inversion block diagram, where the iterative character of the

algorithm is apparent. Indeed, it is a non-linear least-squares procedure through which synthetic

Images:

Profile(i,j):

6172.8 6173 6173.2 6173.4 6173.6 6173.8 6174 6174.2

0.4

0.5

0.6

0.7

0.8

0.9

1

wavelength

I

c

fpga

6172.8 6173 6173.2 6173.4 6173.6 6173.8 6174 6174.2
-2

-1

0

1

2

3

4
x 10

-4

wavelength

Q

c

fpga

6172.8 6173 6173.2 6173.4 6173.6 6173.8 6174 6174.2
-2

0

2

4

6

8
x 10

-4

wavelength

U

c

fpga

6172.8 6173 6173.2 6173.4 6173.6 6173.8 6174 6174.2
-0.05

0

0.05

wavelength

V

c

fpga

26

Chapter 2. The Radiative Transfer Equation inversion

Stokes profiles are iteratively fit to the observed ones. The inversion procedure starts with an

initial guess of the physical parameters. Then a synthesis of the corresponding Stokes spectrum

by numerically solving the RTE is carried out. By iteratively changing the initial guess for the

parameters in a closed feedback loop, the differences between synthetic and observed Stokes

profiles are minimized and, thus, the desired parameters are obtained. Such a process is known

as the inversion method of the Radiative Transfer Equation, or simply, RTE inversion and is

illustrated in Figure 9.

Figure 9 RTE inversion process block diagram

As a result of inverting the 222 Stokes profiles, instead of the original 24 images, only 4 will

remain corresponding to vLOS, BLOS, γ, and φ (as summarized in Table 2), hence reducing the

amount of data by a factor almost 6. Subsequent truncation and conventional compression tasks

will help to reach a final reduction factor higher than 30, as detailed section 1.3.

Figure 10 shows an RTE inversion result. The original Q, U, and V images are not shown

for simplicity. Only the continuum intensity is shown. These original images correspond to the

largest active region of the current solar cycle. They were taken on the 25th of October, 2014

using the spectropolarimeter aboard the Hinode spacecraft [Kosugi (2007)] in the Fe I spectral

line at 630.2 nm.

2.2 The RTE inversion algorithm

 27

Figure 10 Example of an RTE inversion of Hinode images. Continuum intensity, magnetic
field strength (Gauss), field inclination (degree), and LOS velocity (km*s-1) are shown clockwise
from top left.

 The RTE inversion algorithm 2.2

The RTE inversion process used in this work is thoroughly described in [Orozco (2007,

2008)], where the MILne-Eddington inversion of pOlarized Spectra (MILOS) code was

presented. This inversion code, written in IDL language, uses a Levenberg-Marquardt iterative

scheme based on the minimization of a merit function.

Figure 11 details the steps (or tasks) included in every single turn of the RTE iterative loop.

Those tasks are:

- Stokes spectral Synthesis from a model atmosphere, Modeli (hereafter referred to as

SYNTHESIS),

- calculation of the Response Functions (RFs). They provide the sensitivity of Stokes

profiles to the model free parameters. Hence, there are nine RFs per Stokes profile,

- convolution of the synthesized spectrum and the RFs with the filter transmission curve ̶

the instrumental profile, which represents the broadening distortion produced by the

instrument (CONV),

- estimation of the fit quality by means of the root mean square difference (χ2) between

the observed and synthetic Stokes profiles (CHISQR) for the current model,

28

Chapter 2. The Radiative Transfer Equation inversion

- calculation of the correlation matrix between the observed and synthetic profiles

(COVARM),

- Singular Value Decomposition (SVD) of the correlation matrix in order to modify the

initial model,

- modification of model atmospheric free parameters using eigenvalues and eigenvectors

(MODPAR).

If χ2 is larger for Modeli than for Modeli-1 in CHISQR, then the latter is recovered as the current

one. In addition, the iterative process can be stopped when χ2 reaches a value below a given

threshold, in order to reduce the final number of iterations. This possibility is not shown in

Figure 11 for simplicity

An out-of-the-loop block that obtains classical estimations of the physical parameters to

initialize the model atmosphere is also shown in Figure 11. Those estimations also provide

quick approximations to the parameters. This block is not in the original MILOS code, but it has

been introduced later as result of this work. Thanks to the use of this block, the number of

iterations to reach convergence is lower than using a previously fixed, or random, initial model.

The typical number of iterations to achieve convergence is around 15. This number can even be

reduced through the use of classical estimations, as shown in Section 2.4. The classical estimate

formulation is presented in [del Toro (2011)].

In addition, the classical estimation task will be an excellent backup solution to the

inversion, just in case the challenging goal of inverting the Stokes profiles has not enough

allocated time for some specific operational modes. In fact, one of them is already prepared for

having just classical estimations as output.

Figure 11 RTE inversion loop task block diagram

2.3 Computational cost of the RTE inversion code

 29

 Computational cost of the RTE inversion code 2.3

In order to develop the inversion code, the MILOS code (the IDL version) was re-written in C.

Its reliability is discussed in next sub-section. It has been called C-MILOS [Cobos (2010-A)].

Since C-MILOS is lower level and faster than MILOS, it was chosen for doing the

computational cost study which was presented in [Cobos (2010-B)]. In Table 3, we show the

number of operations per type and for the various parts of the inversion code, where:

- N is the used number of wavelength samples in the spectral line,

- NTERM is the number of free parameters of the Milne-Eddington model atmosphere1,

- N_SIG is the number of sigma red (or blue) Zeeman components of the line,2

- N_PI is the number of pi Zeeman components of the line.

 MULTIPLICATION DIVISION ADDITION , SUBTRACTION N_FVOIGT

RF

14*N*(N_PI+2*N_SIG)
+511*N+16+
2*N_SIG+N_PI

2*N*
(2*N_SIG+N_PI)
+18*N+7

11*N*(2*N_SIG+N_PI)
+371*N

SYNTHESIS
4*N*(2*N_SIG+N_PI)
+45*N+16

3*N+2 3*N*(2*N_SIG+N_PI)
+37*N

2*N_SIG
+N_PI

FVOIGT 50*N 2*N 36*N

COVARM

4*N*(NTERM*NTERM
+2*NTERM+1)

4*NTERM 4*N*
(NTERM*NTERM+NTERM+1)
+4*NTERM+4*NTERM*NTERM

CHISQR 4*N+4 5 8*N+4

MODPAR
2*NTERM*NTERM
+NTERM

NTERM 2*NTERM*NTERM

Table 3 Number of operations for each inversion block.

The SO/PHI spectral line at 617.3 nm is a pure Zeeman triplet so that N_PI and N_SIG are

equal to one. The number of samples in the spectral line will be six. And the free parameters in

the model atmosphere, NTERMS, will be 9, as commented in section 2.1. In order to perform

the SYNTHESIS, four more trigonometric operations are needed, that are not shown in Table 3

for simplicity.

Besides the inversion tasks previously cited, the Voigt function calculation, widely used in

spectroscopy (FVOIGT in Table 3), is specified. This function is only used in the SYNTHESIS

1 Although the nominal number of free parameters is nine, some of them can be chosen to be fixed

so that the number of free parameters can be modified.
2 As mentioned in the Introduction, the interpretation of the Stokes spectrum in terms of the solar

physical parameters is through the Zeeman and Doppler effects. Discussing the physics of these effects is
certainly far from the scope of this thesis. We refer the interested reader, e.g., to [del Toro (2003)] and
references therein.

30

Chapter 2. The Radiative Transfer Equation inversion

task but it is regarded as one of the most computationally expensive blocks in the whole code.

Its total computational cost depends on the Zeeman pattern of the line that governs the number

of executions, N_FVOIGT.

There are some methods that reduce the number of operations in the Voigt function

evaluation, as those proposed in [Borrero (2010)], where a Taylor expansion is used to

approximate the Voigt function with enough accuracy. However, we will take the original

function for computing the spectral synthesis with full precision.

The SVD block is not reflected in Table 3 because the chosen algorithm does not count

with a fixed number of operations. It usually depends on the initial matrix. To perform the SVD

there are several methods but here we study the two most frequently used and referenced

methods. These two methods are explained in [Press (1992)]. Following [Press (1992)], we will

call SVDCMP (Singular Value DeCoMPosition) the first one, and TRED+TQLI (Householder

maTrix REDuction + Tridiagonal QL Implicit) the second one.

SVDCMP is based on the works by [Golub (1974); Forsythe (1977)] where the authors

developed the Jacobi iterative method [Jacobi (1846)] which performs the singular value

decomposition on an arbitrary matrix, giving back its eigenvalues and its eigenvectors. An

optimum strategy for finding eigenvalues and eigenvectors is, first, to reduce the matrix to a

simple form, and then begin an iterative process.

SVDCMP starts from an original matrix and performs the next tasks: a Householder

reduction to bidiagonal form [Householder (1970)], accumulation of right-hand and left-hand

transformations, and finally a diagonalization of the bidiagonal form. It is important to point out

that the last step consists in a loop over singular values to convergence; therefore, SCDCMP is

indeed an iterative method on its own. Usually, a maximum number of iterations is established

although the method is very robust and that maximum may not be needed for convergence

[Press (1992)]. In fact, this method is very stable and that it is very unusual that SVDCMP

misbehaves.

 SVDCMP TRED+TQLI
Addition/Subst. 6358 5625
Multiplication 4372 2830
Division 467 360
Square root 10 7
Total ~11.200 ~8.820

Table 4 Average number of operations for 15.000 SVDs performed

On the other hand, the TRED+TQLI method is the fastest known computing technique for

finding all the eigenvalues and eigenvectors (or just all the eigenvalues) of a real, symmetric

2.3 Computational cost of the RTE inversion code

 31

matrix as is pointed out by [Press (1992)]. Since in our case the initial matrix is a correlation

matrix, hence a symmetric matrix, we have to study this method.

Instead of trying to reduce the matrix to a diagonal form, for symmetric matrices the

preferred simple form is tridiagonal. This allows the procedure to be carried out in a finite

number of steps, unlike the Jacobi method, which requires iteration to convergence. Therefore

TRED+TQLI firstly reduces the matrix to tridiagonal form and then performs a QL matrix

decomposition that consists of a sequence of orthogonal transformations.

As explained before, the initial matrix is the correlation matrix between the observed and

synthetic profiles; therefore the SVD computational cost does not depend on the spectral line.

However, it depends on the number of free parameters of the Milne-Eddington atmosphere

model (NTERM), because the correlation matrix has a size of NTERM rows and NTERM

columns. Table 4 gives an estimation of the computational cost of the SVD using both methods.

This estimation has been obtained as the average cost of 15,000 SVD executions in a real RTE

inversion. It can be seen that the TRED+TQLI method is computationally lighter than the

SVDCMP method. Therefore, we take the TRED+TQLI method to carry out the RTE inversion

within C-MILOS. In any case, the importance of this mathematical operation has been

evidenced.

As mentioned in Section 2.2, the convolution of the synthesized Stokes profiles (IQUV)

and its response functions with the filter transmission curve, or simply the instrumental profile,

is carried out. Regarding the convolution computational cost, it obviously depends on the

number of convolutions to perform. A specific study of the computational cost of convolution

for our problem was carried out in [Cobos (2010-B)]. Such a cost does not depend on the

spectral line either, but it does on the number of wavelength samples for the spectral line, N,

and those for the instrumental profile, M. Since both N and M are small in our case, direct

convolution in the measurement domain (as opposed to the Fourier domain) is chosen.

Taking into account the expressions in Table 3 detailing every part of the algorithm, the

number of operations for the inversion in SO/PHI is calculated in Table 5. We have assumed

that the number of inversion iterations is 15. Also, we have assumed 10 samples for the

instrumental profile.

The SVD task represents around a third part of the whole algorithm. Moreover, this is a

complex algorithm with a lot of branches and loops. These are the reasons why this block is

usually a specific block in other problems and why we have decided to design a specific core on

the FPGA for performing and accelerating the SVD. This design is presented in Chapter 7.

As mentioned in the Introduction, the engineering requirement for the RTE inversion

computation time was 1 minute for the first DPU design and 15 minutes for the second one.

32

Chapter 2. The Radiative Transfer Equation inversion

This means that the RTE inverter needs a real performance of almost 27 GFLOPS in the first

scenario, or 1.8 GFLOPS in the second one for inverting the 2048x2048 profiles. It is important

to remark that this is a real performance requirement –not a theoretical peak–, which is

tremendously complex to reach by the current computing devices. In fact, the same inversion

problem on ground would need a set of almost 50 CPUs [Borrero (2010)], and a last generation

PC (Intel Xeon at 3.4 GHz) needs around 2.5 hours for completing the task [Borrero (2010)].

 Mult Div Add,Sub Sin,Cos Sqrt Total %
SVD 2830 360 5625 0 7 8815 32.09
SYNTHESIS 1258 56 924 4 0 2238 8.15
CHISQR 28 5 52 0 0 85 0.31
MODPAR 171 9 162 0 0 342 1.25
RF 3469 187 3072 0 0 6728 24.49
COVARM 2400 36 2544 0 0 4980 18.13
CONV 2160 0 2120 0 0 4280 15.58
TOTAL/
iteration 12316 653 14499

4 7
27468 100.00

Total
Inversion 184740 9795 217485

60 105 384552

Table 5 Computational cost (number of operations) for the RTE inversion in SO/PHI

 Reliability and robustness of C-MILOS 2.4

Since our reference, IDL MILOS code [Orozco (2008)], for the inversion algorithm has already

been checked in practice, here we only have to test C-MILOS as compared to it.

To do that, we have generated a reference basis of Milne-Eddington Stokes profiles for the

Fe I 617.3 nm line using the IDL code. This set of profiles has been obtained from 10,000 ME

model atmospheres with a uniform random distribution of vector magnetic fields (B from 0 to

1500 G, inclination and azimuth from 0 to 180º) and LOS velocities (between -2 and 2 km s-1),

and without macroturbulence. The wavelength sampling has been 0.5 pm, with a total of 150

samples across the spectral line. We have added noise to the profiles at the level of 10-3 Ic.

Figure 12 shows the difference between the results of the inversion carried out with the

IDL and the C versions for the magnetic field strength, field inclination and LOS velocity (left

column and top to down).

A second test uses the MELANIE code by [Socas-Navarro (2001)] for generating a profile

set with the same characteristics of the former. The MELANIE code is an independent ME code

which uses a different inversion method.

Figure 12 also shows the difference between the results obtained with both versions for

these MELANIE profiles (right column). In this case, the similarity between the C code and

2.4 Reliability and robustness of C-MILOS

 33

IDL code results are as good as before. These differences are totally negligible and can be

attributed to different rounding errors between the two programming languages.

These tests demonstrate that C-MILOS and MILOS are totally equivalent for doing the

RTE inversion; therefore we can assume that C-MILOS is as reliable and robust as MILOS as

far as synthetic profiles are concerned.

Differences for MILOS profiles Differences for MELANIE profiles

Figure 12 Difference between the inversions carried out with the IDL and the C versions for
the magnetic field strength, field inclination and LOS velocity. Stokes profiles with added noise of
10-3 Ic generated by MILOS (left column) and by MELANIE (right column).

-0.2 -0.1 0 0.1 0.2
0

0.05

0.1

0.15

0.2

Field strength difference [G]

Field strength difference normalized histogram

-0.2 -0.1 0 0.1 0.2
0

0.05

0.1

0.15

0.2

Field strength difference [G]

Field strength difference normalized histogram

-0.1 -0.05 0 0.05 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Field inclination difference [deg]

Field inclination difference normalized histogram

-0.02 -0.01 0 0.01 0.02
0

0.05

0.1

0.15

Field inclination difference [deg]

Field inclination difference normalized histogram

-0.05 0 0.05
0

0.05

0.1

0.15

0.2

LOS velocity difference [m/s]

LOS velocity difference normalized histogram

-0.1 -0.05 0 0.05 0.1
0

0.05

0.1

0.15

0.2

LOS velocity difference [m/s]

LOS velocity difference normalized histogram

34

Chapter 2. The Radiative Transfer Equation inversion

 Precision of the calculations in C-MILOS 2.5

The previous versions of MILOS are developed with floating-point, double-precision

calculations. However, C-MILOS can work as well in single precision. As can be seen in Figure

13, working in single precision C-MILOS produce as small errors as with double precision C-

MILOS. The Stokes profiles were generated by MELANIE as in the previous section with

added noise. The root mean square difference (RMS) between the MILOS and C-MILOS

inversions run with MELANIE synthetic Stokes profiles is given in Table 6. Double and single

precision results are compared.

In short, in this section the feasibility of carrying out the RTE inversion using single

floating point precision has been shown because the achieved differences using the latter are

comparable to those achieved using the former. All results together demonstrate the reliability

of the C inversion code. Besides, single floating-point precision can now be accepted for the

RTE inversion.

Nevertheless, taking into account that the final device that will execute this algorithm is an

FPGA, we have studied the possibility of using fixed-point precision. As is common

knowledge, fixed-point implementations tend to spend less resources that floating-point

precision ones. However, we soon understood that due to the huge amount of operations for

executing the RTE algorithm it is necessary to re-use most individual computation units on the

FPGA along the entire data path. That implies that each computation unit has to be precise

enough for every task it is involved on. Several parts in the algorithm need a huge range in its

execution that imposes a big range in the fixed-point format to use.

For instance, in Appendix I we show the precision study that we performed about the Voigt

function code. That function is computed for complex numbers, but in the diagram is already

shown in a real number decomposition. In this study, we show the necessary fixed-point format

along the data path for getting a precision similar to the floating point precision: 10-6. This study

clearly denotes the huge range that this function needs. A final decision for working in floating

point was made. The reason is twofold: first, fixed-point calculations needed too many bits for

the required precision; second, DSP blocks in our FPGA are optimized for implementing

floating-point operation cores.

 Double-floating point precision Single-floating point precision
RMS RMS

Field strength (G) 2.6908 3.5537
Inclination (º) 4.2260 4.1999
Velocity (ms-1) 0.6152 1.4846

Table 6 RMSE for inversions carried out with double precision and single precision.
MELANIE profiles with added noise at 10-3 Ic.

2.6 Improving the RTE inversion code

 35

RTE inversion using double precision RTE inversion using single precision

Figure 13 Errors produced by the inversions carried out with the C version for the magnetic
field strength, field inclination and LOS velocity. Stokes profiles generated by MELANIE with
noise at level 10-3

Ic. Double-precision floating point (left column) and single-precision floating point
calculations (right column).

 Improving the RTE inversion code 2.6

Taking the initial number of operations as a reference, and without forgetting that the final

RTE inverter device is a FPGA, it is necessary to go into details for trying to reduce the number

of operations. After studying the RTE inversion code, some modifications have been proposed

in order to make its computation easier. Already during the development of the C-MILOS

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

Field strength error [G]

Field strength error normalized histogram

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

Field strength error [G]

Field strength error normalized histogram

-0.2 -0.1 0 0.1 0.2
0

0.05

0.1

0.15

Field inclination error [deg]

Field inclination error normalized histogram

-0.2 -0.1 0 0.1 0.2
0

0.05

0.1

0.15

Field inclination error [deg]

Field inclination error normalized histogram

-1 -0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

LOS velocity error [m/s]

LOS velocity error normalized histogram

-1 -0.5 0 0.5 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

LOS velocity error [m/s]

LOS velocity error normalized histogram

36

Chapter 2. The Radiative Transfer Equation inversion

inversion code version, some improvements were introduced. For instance, sharing those

operations previously computed in different blocks is enabled. Division is costly in

computation. Therefore, as many division operations as possible have been eliminated through

refactoring of the mathematical expressions (using the common factor). Also, division by

constants was replaced for multiplication by its inverses.

The first modification about using single floating point precision is very important since it

means to use roughly half of the hardware resources.

Since the most consuming block in the inversion is the SVD block, then we consider

necessary to study existing alternatives for carrying it out on an FPGA. Specific SVD blocks

has been proposed by [Brent et al. (1983)] and [Bravo et al. (2006)] in order to accelerate the

SVD computation and save as many hardware resources as possible. This theme is dealt deeply

in Chapter 7.

Figure 14 Operation distribution of tasks in the RTE inversion code after the C-MILOS
improvements.

2.6 Improving the RTE inversion code

 37

The calculation of the correlation matrix between the observed and synthetic profiles is

improved by taking into account that is symmetric. Thus, only a triangular matrix has to be

evaluated Besides, the SVD block works more efficiently using triangular matrices. The almost

5,000 operations that a full correlation matrix needs to be calculated are reduced to a little more

than 3,000 operations.

The convolution computation is made using a direct convolution instead of the Fourier

transform because of the small number of wavelength samples.

The final amount of operations, and its distribution in the different tasks, is shown in

Figure 14.

Figure 15 Convergence rate (χ2 evolution) as a function of the number of iterations

Initialization is always an issue in any inversion procedure. Some initial models may lead

to too slow convergence because the guess parameters are too far away to the searched-for ones.

In ground applications where no requirements in operation time or in the use of hardware

resources apply, this problem may not be as big as for a space application as ours. Since we

have to establish a fixed number of iteration cycles, we cannot afford such long searches when

departing from wrong guesses. As barely commented in Section 2.2, we have decided to use

classical estimations of the free parameters that are obtained from simple calculations using

direct operations. A demonstration of the improvement in convergence of the iterative process

when using classical estimations for initialization is shown in Figure 15. χ2 is plotted as a

function of the number of iterations. The graph shows the mean value of the obtained χ2 after

inverting a thousand ME profiles with different iterations. The synthetic profiles have been

generated with MELANIE. They have later been convoluted with a theoretical instrumental

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-3

Iterations

χχχχ
2

Evolution of χ2 vs iterations

Fixed Initialization

CE Initialization

38

Chapter 2. The Radiative Transfer Equation inversion

profile (a Gaussian of 10-1 pm); noise has been added at a level of 10-3 Ic. As can be seen,

convergence is much faster and even reaches better final value when classical estimations

(green line) are used.

Although this empirical result is very promising, we have to acknowledge that it is only

based on synthetic ME profiles. When real, asymmetric Stokes profiles are analyzed, the results

could be different. Therefore, as a precautionary measure, we will continue assuming around

12-15 iterations for the RTE inversion. The final decision will be made when more tests with

real images are done.

 C-MILOS inversion time 2.7

Obviously, since IDL is higher level than C, its computational time is bigger. Besides, C-

MILOS has been developed thinking on achieving the minimum computational time. We have

chosen the best case of testing with several compiler optimizations like SSE-MMX3 extensions,

different loop-unrolling methods, etc. C-MILOS avoids unnecessary calculations, re-uses some

calculations, simplifies, and orders mathematical operations, and uses tricks of low-level

programming for improving the computational time. In addition, we do not lose accuracy in the

results, as we have seen before.

In Table 7, we can see a comparison of computational time with both code versions. We

have inverted a reference basis of 1000 profiles generated with MELANIE in a similar way as in

Section 2.5, with 150 wavelength samples.

In both cases, we have used the same initialization and the same 'stop conditions'. In this

test, the classical estimate initialization is disabled in C-MILOS. This proves that C-MILOS is

faster than IDL-MILOS more than around 16 times. The used CPU is a Pentium 4 running at

3.4GHz.

 IDL-MILOS C-MILOS
Double
precision

1000 profiles 329.76 s 20.41 s

1000 profiles with noise 277.13 s 18.30 s
Single
precision

1000 profiles - 15.85 s

1000 profiles with noise - 15.74 s

Table 7 Computational times for inverting RTE using IDL-MILOS and C-MILOS

3 The Streaming SIMD Extensions (SSE) was introduced in the original SIMD multimedia extension

instruction set (MMX) by Intel in 1997.

39

________________________________ 3 ________________________________

3 High performance scientific computing on FPGA

s defined in [Sravanthi (2014)]:

“High Performance Computing (HPC) most generally refers to the practice of

aggregating computing power in a way that delivers much higher performance than one

could get out of a typical desktop computer or workstation in order to solve large problems

in science, engineering, or business”

 Introduction 3.1

The RTE inversion has to be carried out aboard the space-borne SO/PHI instrument. The

corresponding mathematical algorithm is an iterative, non-linear, least-squares process. In this

work, we start from a C-programed version of the code, where more than 17,000 operations per

iteration and around 15 iterations per inversion for each of 2,048 x 2,048 spatial pixels are

necessary. In addition, the singular value decomposition of a covariance matrix is included in

the algorithm, which increases the high computational demand still further. The required

operation accuracy, the data range involved, and the iterative method for convergence make us

to work in simple precision floating point.

No qualified for space processor, or DSPs, are available that fulfills the stringent

computational requirements with the limited room and power consumption allocated within the

instrument. As explained in [Fiethe (2012)], the only alternative is to use a space-qualified

FPGA and develop a tailored design for it. Along the course of the SO/PHI project, two

A

40

Chapter 3. High performance scientific computing on FPGA

versions of DPU have been proposed. The first one used the Virtex-5 FPGA for a real-time RTE

inversion. The ideal scientific goal was to invert the 222 profiles in a minute, the typical shortest

time foreseen for recording the data. The second DPU employed a Virtex-4 XQR4VSX55 and

was accepted by ESA. In this second version, massive flash memory was included that is able of

storing up to 9 hours of observations. That permits the RTE inversion to take 15 minutes for the

process. Thus, the computing power that those FPGA devices have to reach is 27 GFLOPS or

1.8 GFLOPS, respectively.

Bearing in mind that the RTE inversion is currently carried out using cluster of PCs

because of the required computing power, we can advance that our RTE inverter has to be a

High-Performance Computing system. As such, HPC is the field to propose valid solutions to

the inversion problem aboard SO/PHI. Specifically, HPC embedded systems on FPGA will be

taken as reference in our proposals.

Such demanding computing tasks are not usually performed aboard space instruments.

Therefore, there is no useful reference. However, we can find several works where FPGAs are

used for accelerating calculus in ground systems [Altera (2007)]. FPGAs are usually employed

as custom machines or as specific-domain processors. In the current multi-core era [Borkar

(2010)], the trend is to use several computation cores. A similar perspective is also applied in

the embedded computing realm, where several works attempt to use multi-core architectures in

FPGAs.

In this chapter we discuss the possibility of using a customized design in FPGA for the

RTE inversion. We start by giving an outline of the state of the art in HPC for settling the

background upon which our architectures have been devised. We also glance at some works

about multi-processors on FPGA that explain, and condition, several design decisions we made

in this dissertation.

 Custom architectures on FPGA 3.2

FPGAs have become very good devices in recent years for improving computing performance

and, overall, for getting power-efficient computing. Good examples of practical experience with

FPGA-based co-processors are shown in [Altera (2007)]. Compared with usual processors, as

Pentium 4 or Opteron with clock frequencies of several GHz, acceleration factors from 10

(Monte Carlo simulations) up to 370 (Inverse Hough processing) are reached.

The complexity of the RTE algorithm drives our design to a great extent A custom

architecture would imply re-using most individual computation units on the FPGA along the

entire data path, since the RTE inversion is a complex iterative algorithm. To illustrate the large

3.2 Custom architectures on FPGA

 41

amount of operations in the RTE inversion, Appendix I shows how the Voigt function (see

Sections 2.3 and 2.5) would be extremely unfolded in a custom architecture. Therefore, a

control unit for a large custom architecture would be as complex, or even more, as a control unit

for usual processors. On the other hand, the RTE algorithm has many configurable elements.

Among them we can find the number of free parameters in the iterative least-squares process;

the number of wavelengths in the input; specific spectral line parameters; and other scientific

approximations whose treatment in depth is out of the scope of this thesis. Let us mention,

however, that the Zeeman pattern of the spectral can increase significantly the number of final

operations [del Toro (2003)].

At the beginning of studying our problem, we attempted to design a custom architecture for

the RTE inverter. We used a High-Level Synthesis language (HLS) -System Generator [Xilinx]-

for rapid prototyping, but the first results were discouraging since the high number of operations

could not be included on the FPGA. As an illustration, we show the top scheme for the Spectral

Synthesis block generated in System Generator in Appendix II. This block has to be executed as

many times as the number of wavelengths. In this scheme, inside the fcomponent block, is

computed the Voigt function using the implementation shown in Appendix I.

Another example of the difficulties in customizing our algorithm can be found in the

Classical Estimates block (see Figure 11). This block was also implemented by [Torné (2012)]

using System Generator. Only that implementation occupied around a 9% of Flip-Flop slices

and an 18% of LUT slices of a Virtex-5 FX130T FPGA (commercial version of the radiation-

hardened one). As commented in Section 1.5, this FPGA logic cells are in equivalence around 4

times larger than those in the Virtex-4.

These are nothing but two small examples of how the extremely high computing

demanding algorithm hampers the development of a custom architecture. It would simply be too

expensive.

For all these reasons we propose a computing architecture based in a multi-core approach

rather than a custom one. This design, apart from allowing a simplified control unit, enables the

dynamical introduction of modifications in the RTE inversion code. In this way, the

development of the RTE inversion architecture can be carried out at the same time that the final

scientific algorithm is fully defined, or validated. In addition, the RTE inversion architecture

could easily be adapted to other future instruments with particular necessities, or even for other

applications. In fact, the multicore architecture proposed in Chapter 5 is now being arranged for

compressing images on FPGA [Hernandez (2015)].

42

Chapter 3. High performance scientific computing on FPGA

 Parallel computing using multi-processor architectures 3.3

To find parallelism in a single instruction stream is based on improving the Instruction-Level

Parallelism (ILP) in order to reach high performance in a processor. During years, Moore’s Law

made it possible to increase the Instruction-Level Parallelism in the pipelined, von Neumann

processor simply by increasing its frequency. Costs reasons and technical issues made that this

progress did not continue, because the practical power limit was reached (high power

consumptions and notable heat dissipation). In addition, the memory technology had not

followed the same processor frequency growth. Thus, latencies between processors and

memories are higher and higher [Patterson (2000)].

Processors were provided with very complex mechanisms for dynamically discovering and

exploit ILP like re-order buffers, branch prediction, superscalar pipelines, etc. Static approaches

were also developed where the task of exploiting parallelism relies on the compiler, although

these are the minority of cases. In addition, the multithread execution was introduced for

improving the processor efficiency, and not wasting empty processor cycles.

To reach HPC, supercomputers have traditionally been organized in architectures with

several processors working together: clusters, Massively Parallel Processing (MPP), Symmetric

multiprocessing (SMP), etc. These arrangements are characterized by the type of network

among processors, memory distribution, etc., but they are out of the scope of this thesis. We

only want to remark that, taking the list of 500 best supercomputers in the world that TOP500

publishes [TOP500] as a reference, we have to go back to 1996 for finding an single-processor

supercomputer architecture in that list. Today, the majority of them are based on clusters or

MPPs.

However, the definitive solution for continuing increasing the performance of one

processor was the use of several cores in a chip, or multi-core architectures. The birth of this

new technology was decisive. In fact, the first supercomputers with more than a processor per

chip appeared in the TOP500 list in 2002. Already in 2007, the 87% of supercomputers had

more than one processor per chip. Today all supercomputers use multi-core processors.

In short, multicore architectures provide a good tool for parallelizing algorithms and have

been used for long in computer engineering [Flyn (1966), Zima (1988)]. They have now

become the most useful tool for improving modern supercomputers [Elliot (1988)].

Thus, multi-core architectures were chosen for carrying out the RTE inversion. Along this

dissertation, we explain how they can be used. The difficulties they present when an algorithm

has to be executed in them are also pointed out, since the software crisis [Dijkstra (1972)]

highlighted the difficulties of getting all the benefit that multicore system can provide. This

3.3 Parallel computing using multi-processor architectures

 43

means that we should also pay attention to the RTE inversion software development for

achieving HPC.

Sidelining the difficulties of getting optimal programs, Amdahl’s law remembers us that

the reachable speedups are limited by the non-parallelizable piece of the algorithm [Amdahl

(1967)], and this will be taken into account in our proposals.

When implementing a time-critical algorithm in a multi-core system, it is essential to take

advantage of the intrinsic parallelism of the algorithm [Amdahl (1967)]. The Flynn's taxonomy

[Flyn (1966)] shows that multi-core can be used to achieve data and functional parallelism of

the algorithm to run. The four classifications defined by Flynn are based upon the number of

concurrent instruction (or control) streams and data streams available in the architecture. There

are four possibilities that we outline below, and some examples for each type are given. A more

extended description can be found in [Patterson (2000)].

• SISD: Single Instruction stream, Single Data stream. The standard von Neumann

model.

• SIMD: Single Instruction stream, Multiple Data stream. The original systems from

Thinking Machines or MasPar, and GPGPUs.

• MISD: Multiple Instruction stream, Single Data stream: No well-known systems fit this

designation.

• MIMD: Multiple Instruction stream, Multiple Data stream: MPPs, workstation clusters,

shared-memory SMPs.

Thus, the parallel multi-core systems are roughly divided in SIMD and MIMD parallel

computers.

Firstly, a MIMD parallel architecture is a set of processors that execute multiple instruction

sequences (MI) that taken altogether constitute a single stream of instructions. Each individual

process corresponds to a single instruction sequence that is applied to a given set of data on an

individual computer. Therefore, there are multiple streams of data (MD) that are processed at

the same time. Hence, to exploit the data parallelism of a given algorithm, the MIMD

architecture should be fed with instruction sequences that belong to this algorithm. As

mentioned above, this is the current trend in supercomputers, where multiple multi-core

processors that work on different parts of the program are coordinated. Each processor uses its

own operating system and memory. Typically, processors communicate using some messaging

interface.

On the other hand, the SIMD architectures (Single instruction stream, multiple data

streams) were proposed in the dawn of the computer era aimed at exploiting the data-level

44

Chapter 3. High performance scientific computing on FPGA

parallelism. The underlying idea is to apply the same operations to multiple items of data in

parallel.

Taking again the TOP500 list as a good reference for understanding the state of the art in

computer architecture, we can see that the last supercomputer with SIMD architecture was in

the list in 1997. However, last years these architectures are still very alive, as General Purpose

Graphics Processing Units (GPGPU, or simply GPU) have demonstrated. Now these devices are

used for accelerating specific high-parallelizable problems in a SIMD way. Specifically, this

fact marks the new computation trend that has been called heterogeneous computing, where

different architectures work together for improving the computing capabilities of a system.

Usually, these architectures are placed as co-processors. Again, the TOP500 list reflects this

fact. In its last issue of June of 2015, 20% of supercomputers use co-processors based on GPU

architectures, while in 2007 there was no one. It is remarkable that these new incorporations are

directly to the high part of the list. In fact, the first position in June of 2015 is co-processor

accelerated. Intel and Nvidia provide most of GPU-like accelerators, with Intel Xeon Phi [Intel]

or Kepler [Nvidia] as the more indicative families respectively.

GPUs supply such high performance due to its novel model of execution based on a fusion

between the SIMD models and multithread execution models. GPUs are composed of hundreds

of computation cores with cooperative sharing control units (instruction fetch, decode, and

memory manage units) and with a huge number of threads, contrary to multithread processors

which replicate all the hardware for each thread. This model has been called SIMT (Single

Instruction stream, Multiple Threads), where threads are executed in a SIMD way for an

instruction stream, but the flow control is maintained for each thread.

A high ILP is reached through an intensive switching between threads for avoiding empty

cycles in the computation cores. Threads are organized in groups, or warps in the Nvidia

nomenclature. All threads in a warp execute together using a common program counter, and

sharing the control units, and all of them inside a warp are conditioned by their conditional

branches.

To conclude this section, we remark that we have taken well established, state-of-the-art,

computing models like MIMD and SIMD in this thesis. Besides, we have applied novel ideas on

them for getting their computing capabilities enhanced. In the next two chapters we present in

depth the designed solutions for dealing with the RTE inversion from both approaches, MIMD

and SIMD. Along each architecture description, multiple works will be referred to either as an

inspiration or as a reference. In Chapter 4, we propose an MIMD execution scheme where we

have introduced a novel operation distribution in a full-fine-grain way and where we have

augmented extremely the ILP. As mentioned above, the enormous data-parallelism in our RTE

3.4 Multi-processors architecture in FPGAs

 45

inversion problem makes the SIMD model very suitable to deal with it. In Chapter 5 we propose

a SIMD-flavor architecture, which is not a classical SIMD vector unit but follows the SIMT

fashion of the GPUs. Our proposal presents several novel ideas that modify this model for

adapting it to the RTE problem.

 Multi-processors architecture in FPGAs 3.4

There are several works focused in parallel multi-core architectures for embedded systems in

FPGAs [Baklouti (2010); Stanley (2003); Tong (2006); [25] Yiannacouras (2012)]. However,

none is suitable for the RTE inversion either because they only use fixed point precision, or

because they employ commercial processors which are not able of tackling the RTE inversion.

We have already argued that the use of floating point precision is necessary to our

purposes. Hence, we need to gauge the use of existing processors with floating point

capabilities. In [Learn (2011)], the floating-point computing performance of the Leon 3, the

Power PC 440, and the MicroBlaze embedded processors on a Virtex-5 FX-70T FPGA are

studied. Using the Whetstone benchmarks [Randell (1964)], they concluded that the Leon 3 has

the best floating-point performance of all of them.

According to that study, the Leon 3 processor is able of executing around 57 WMIPS

(Whetstone Million Instruction Per Second). The NIOS II processor can overtake the Leon 3

processor in floating point computation performance (see [Tong (2006)]). On the other hand, we

know that a usual desktop processor, of the Intel Xeon family, needs more the two hours and

half for doing the RTE inversion problem. This processor usually reaches, or even exceeds, the

mark of 1000 WMIPS.

Hence, a network of commercial embedded processors as LEON, NIOS, ARM or Power

PC cannot be used, because several tens of them would be needed to carry out the RTE

inversion in the less stringent scenario, 15 minutes. Such number of processors cannot be

allocated in the proposed FPGA device. As is shown in [Learn (2011); Tong (2006)], less than a

dozen could be allocated in the qualified Virtex-5 device and even less in the Virtex-4. In any

case, none of those processors reach its theoretical computation peak

Since we are looking for a design with a maximum productivity of its floating-point units

and with a minimum use of resources and power, we conclude that the existing processors

cannot be used in FPGA for SO/PHI. Thus, we have to design new processor architectures for

adapting the parallel computing paradigms to the RTE inversion problem. FPGAs offer a lot of

possibilities for reaching these objectives. For instance, floating-point capabilities are an

excellent feature of the Virtex family FPGA ([floating point FPGA]). FPGAs also allow

46

Chapter 3. High performance scientific computing on FPGA

customizing the processors architectures to include only the necessary instructions that an

specific algorithm uses.

47

________________________________ 4 ________________________________

4 A MIMD architecture

 MIMD parallel computing architecture is proposed in this chapter. It is aimed at being

implemented in a space-qualified Virtex-5 FPGA, the first DPU design considered, as

commented in Section 1.5. The main objective of this version is the real-time processing of the

RTE inversion, that is, 222 profiles in a minute.

Since the SVD has been proposed to be implemented in an independent core, in this

chapter we only address the calculation of the main block Spectral Synthesis and Response

Functions, abbreviated SSRF for simplicity.

 The multicore MIMD architecture 4.1

MIMD multi-computers are an excellent option for being implemented on FPGA due to the

fine-parallelism grain that they provide. Specifically, a distributed memory MIMD system is

proposed as shown in Figure 16. Each processor (pPi) executes a subset of instructions of the

original algorithm. Therefore each one has its own control unit and operates with different data

(which come through its corresponding Memoryi). Besides, they can be versatile since the

SIMD architecture (single instruction stream, multiple data) can be virtualized in a MIMD

architecture.

A

48

Chapter 4. A MIMD architecture

Figure 16 Distributed memory MIMD multiprocessor

Each simple processor is called a picoprocessor (pProcessor) (see Figure 17). The

pProcessor calculation core is a floating-point operation core of a single type. This minimizes

the latency penalty associated with the operation to be performed. To supply each calculation

unit with its two operands, the data memory is unfolded in two parts. Therefore, both operands

can be obtained at the same time. The motivation for distributing the memory among

pProcessors is to minimize the access latency, placing the data needed to operate in each

pProcessor.

In a multi-core system, where different processors cooperate in the execution of an

application and where each memory is not accessible by other processors, it is necessary to

establish a data communication network. In the proposed architecture the data produced in a

pProcessor are directly sent to other pProcessors where they are used. This procedure is a

simplified, passing message method [Patterson (2000)]. Data are sent through the output ports

and through the specific links for each pair of output/input ports. Note that an output port of a

pProcessor can be connected in a loop to an input port of the same pProcessor. The instruction

memory (Instructions ROM in Figure 17) defines the data used by each pProcessor. Within the

instruction memory there is a fixed subset of operations properly assigned, as discussed below.

The distribution of operations in different pProcessors highlights the need for cooperating

among them. In fact, in order to solve the problem, pProcessors must communicate (pass on

data to each other) and must be synchronized (wait for data from the others before continuing

with the execution). These tasks are performed through a specific communications network,

where the pProcessors only have direct communication with others if they need to exchange

results. The pProcessor input and output ports are the links to other pProcessors, and the whole

link set establishes the communication network. Moreover, to achieve the dataflow that the

algorithm dictates, a communication network between processors must be established.

In order to allow easy reading of this thesis, tedious details about instruction codification

have not been introduced here and can be found in Appendix III.

4.1 The multicore MIMD architecture

 49

Figure 17 pProcessor’s architecture

E
x
te
rn
a
l

c
o
u
n
te
r
n

E
x
te
rn
a
l

c
o
u
n
te
r
0
..
.

50

Chapter 4. A MIMD architecture

 A novel MIMD programming model 4.2

Usual programming techniques for MIMD architectures attempt to determine the coarse-grained

–data or instruction– parallelism and to distribute the algorithm tasks in a set of processors. This

process can be done manually or assisted by some libraries [Zima (1988)]. Besides, the pieces

of code in each processor can exploit the Instruction-Level Parallelism (ILP), thanks to

pipelined execution, out-of-order scheduling, etc.

Some programming techniques, as loop-unrolling and software pipelining [Allan (1995);

Lam (1988)], have become popular because of their performance improving, so they are very

used in modern compilers. These techniques take advantage of the ILP for creating

parallelization opportunities thanks to the out-of-order and speculative execution of instructions

in a processor [Lam (1988)]. Beyond of execution scheduling, these techniques have been used

in order to extract parallelism [Ottoni (2005)].

Consider a scientific problem, as the one addressed in this work, with a large data

parallelism at algorithm level. That is, the same operations are executed for different input data.

In our case, the RTE inversion algorithm is executed for each spatial pixel (222 times in total).

For this kind of problems we propose software pipelining and loop-unrolling techniques at the

algorithm level. Traditional software pipelining searches a processing kernel [Allan (1995)] and

generates a processing graph. We, however, propose a new software pipelining method. Our

proposal is actually a hardware-like software pipelining by doing an intensive memory use.

Figure 18 Example of an operation tree

One of the basic ideas in the hardware pipelining is to exploit the implicit parallelism in the

algorithm. In Figure 18, a tree of operations for an illustration algorithm can be seen. If a

suitable number of computing elements is used, all the operations in each stage can be executed

in parallel, hence reducing the total execution time. We define a stage as the set of instructions

that can be executed at the same time because of its data dependence. Therefore, the virtual X

axis corresponds to a discrete time axis in which each instant corresponds to a given stage.

4.2 A novel MIMD programming model

 51

Anyway, in a hardware pipelined model all the stages are executed at the same moment. We

will call that moment a synchronous stage.

In addition, if the algorithm execution is within an iterative process and the number of

times to execute the algorithm is considerable, it is possible to add more computing elements to

pipeline the system. This improves the output ratio of results, since all the stages are executed at

the same time. The improvement depends on the number of times to execute the algorithm.

Pipeline techniques imply an increase in the memory needed to store temporary results, as well

as to synchronize the data flow –generally, through FIFO memories. By doing so, and assuming

the ideal case of having the required number of computing elements (as many elements as

operations), the system with minimum execution time would be achieved.

The number of operations in our SSRF algorithm is larger than the number of computing

elements. Therefore, re-use of the same computing element is necessary to perform various

operations –gather operations in processors. In any case, achieving the system with minimum

execution time is not our target, but satisfying a time requirement: we must invert 222 profiles in

a minute.

Knowing the usual hardware pipelining method, the key idea is to distribute the algorithm

instructions set to the set of processors starting from the hardware pipelining operation tree and

including the necessary FIFO memories.

The result is a set of totally decoupled instructions in each processor, where they can be

executed out of order [Dwyer (1992)] in a synchronous stage, opposite to a scheduled execution

with usual software pipelining method. Like happens with a hardware pipelining method, our

system has a latency time for starting to generate correct results depending on the number of

algorithm stages.

In short, to exploit the parallelism of the algorithm, a MIMD architecture is used where

several arithmetic operations of the same type are clustered in each pProcessor. We also carry

out a hardware-like pipelined execution of the algorithm –all stages are executed simultaneously

in a synchronous way. The intensive-pipelined execution of the algorithm conditions and

simplifies the synchronization in the MIMD architecture. In the pipeline process, buffers are

introduced that allow pProcessors not to have to wait for others before executing their

instructions, since they have the data they need. It is desirable that all pProcessors start and end

their instruction execution in a known time interval. This is achieved by introducing global

synchronization.

Another implication of assigning a set of operations to a particular pProcessor is the need

to set up its memory space. As indicated in Figure 17, the memory space is split into two in

order to be able to obtain two operands at the same time. Therefore each pair of data involved in

52

Chapter 4. A MIMD architecture

an operation has to be assigned to separate memories. Each data occupy several locations in

memory due to the intensive-pipelined execution; when the data go directly from one stage to

another they occupy two positions and more when it is necessary to keep the data for more

stages. The memory consistency [Hennessy (1999)] is guaranteed thanks to the pipelined

execution and introducing a global synchronization signal. This means that all pProcessors see

the same read and write order in positions of data that they share. Thus it is not necessary to use

a message passing communication, which is used in other multi-computer architectures where

shared memory is used [Wilkinson (1999)].

Conceptually, memory consistency is only an emulation of FIFO memories that guarantees

each data will be stored or read in the correct position and will wait for its turn. It is a software

implementation of the traditional hardware pipeline. These FIFO memories are introduced when

pipelining any system to transfer data between stages. But this apparent simplicity hides a

problem. As noted in Section 4.1, each pProcessor encodes the instructions in a ROM, and

therefore the position of each operand is fixed at given time. The “memory consistency” blocks

are introduced to set the positions of the operands and to achieve a FIFO access type at runtime.

Also, an external counter is added to the basic position obtained from the ROM. These global

external counters are increased every synchronization period and there is a counter for every

possible “value of consistency” (FIFO length). The counter to be used for every position is

coded in the instruction ROM. It has to be clarified that the memory consistency model is

applied when reading and writing data in memory. This model of counters has been developed

in opposition to using a module operation in each pProcessor to a universal counter, since the

module operation is very high resources demanding. Appendix III details how the “memory

consistency” block works at a bit level.

Another key aspect of this design is to achieve the maximum performance of the

calculation units. This is reached through a balanced allocation of the operations into

pProcessors. Note that the allocation does not necessarily match with the operation distribution

in stages (any operation can be allocated to any pProcessor). One could pretend to drive all the

operations of a stage to a single pProcessor, but an unbalanced distribution can very likely

occur. The proper distribution of the instructions is a key question to minimize resource

consumption, as this action has a direct impact to the communication network. Tests of

operation distribution starting from the operation tree have been done using complicated

heuristics, which allows detecting a similarity with the typical traveling salesman problem. This

problem does not have an optimal solution. Another solution has been proposed instead: to visit

every operation in order of appearance and stage by stage. Then, each operation is allocated in a

pProcessor of the correct type until the latter is filled up. Apparently this is a random procedure

4.3 The RTE algorithm in the MIMD architecture

 53

but an acceptable communication network is achieved, thanks to the principles of temporal and

spatial locality.

As a consequence, the communications between pProcessors will be conditioned by this

allocation since each pProcessor will need many input and output ports as its instruction set

needs. The pProcessor design has a limitation in the amount of data that can be accepted each

cycle at input ports. This limitation is given by the technological impossibility of writing the

RAM more than once in a cycle. The architecture design, the proposed synchronization method,

the achieved out-of-order execution, and the implementation of the memory consistency model

allow us to freely order the execution of the operations assigned to a pProcessor, since we have

relieved the data dependencies between stages. Acting on the execution order of all instructions

in all pProcessors, we can find situations where collisions disappear at pProcessor input ports.

Following the proposed MIMD design guidelines and programming method we can obtain

the optimal multi-core architecture that satisfies the temporal constraint. Furthermore, the

system scalability supports to sidestep the Amdahl’s law achieving substantial speedups higher

than the theoretical ones. Our scalability is only limited by the technology used and its available

resources. For instance, the Virtex-5 FPGA resources limit the number of pProcessors and the

communication net.

All the tasks of architecture configuration and compilation of the input code are managed

by a specific tool, called TAPAS, which will be presented in the sixth chapter.

 The RTE algorithm in the MIMD architecture 4.3

In this Section we explain the way to implement a pipelined version of the SSRF algorithm

using the MIMD architecture. The algorithm is an iterative process (typically 15 iterations) to be

performed 222 times a minute, as described in Section 2. Therefore, the pipelined system should

give a result every 0.95 microseconds. Assuming a system frequency of 200 MHz, it is

necessary to have a result every 190 clock cycles. That is, the minimum number of pProcessors

will be the one that allows executing all operations of the algorithm in 190 cycles. By extension,

to execute all the operations means to perform all stages. In this calculation, we omit the initial

latency.

The TAPAS software tool generates a tree of operations from the input code with almost

9,500 operations (remember that only SSRF are considered in this section). In this case, the

synchronization signal period is of 190 cycles. The first step is to establish how many

pProcessors are needed.

54

Chapter 4. A MIMD architecture

Table 8 shows the size of the instruction set for each iteration of the SSRF algorithm. Each

pProcessor has 190 cycles to execute its instruction set. Taking into account the initial latency

of the floating-point core and the time needed to communicate the last result, the pProcessor net

will consist of 20 pProcessors for addition and subtraction, 32 for multiplication, and 1 for

division. Each type of pProcessor contains a different number of operations due to the latency.

Also, there are special pProcessors for input/output tasks and other that perform

trigonometric calculations. In average, four input ports, four exit ports and 5 counters are

needed by each pProcessor. About 30 counters are necessary in total.

 + or - * ÷

Operations 3574 5712 117

Latency +
Communic.

10 9 31

Operations / pP 190 - 10 = 180 190 - 9 = 181 190 - 31 = 159

Number of pP 3574/180 < 20 5712/181 < 32 117/159 < 1

Table 8 Number of operations and number of necessary pProcessor

 MIMD architecture in FPGA 4.4

We have shown that it is possible to obtain an MIMD architecture starting with the SSRF

pseudo-code. This MIMD architecture consists of 53 pProcessors. Thanks to it, each pProcessor

is fully configured: memory space (with consistency), instruction order, instruction ROM that

contains the operations to execute, and all control signals to apply.

As discussed previously, the proposed MIMD architecture is implemented in an FPGA,

specifically in the Virtex XC5VFX130T for this test, which is a commercial version of the

radiation-hardened Virtex-5 for space. Each basic unit of the system, i.e., each pProcessor,

makes use of the embedded DSP48E computing units [Learn (2011)] for its assigned floating-

point operation. The number of DSP48Es to use depends on the type of operation. In addition,

both the data RAM and the instruction ROM use Block RAM resources. The MIMD

architecture presented here and implemented in the mentioned FPGA is capable of operating at

200 MHz with a number of pProcessors close to one hundred.

Table 9 shows the resources consumed by the architecture in a Xilinx Virtex

XC5VFX130T FPGA. The system is RTL designed in VHDL and was compiled by the Xilinx

4.4 MIMD architecture in FPGA

 55

ISE 14.1 tool. Computational cores of addition, subtraction and multiplication (in 32-bit floating

point, IEEE 754), are generated by Xilinx Core Generator tool [Xilinx]. They use the embedded

DSP48E, which speeds up operations with minimal consumption of resources and power. More

information about resources occupation can be found in Appendix III.

Running at 200 MHz with the proposed architecture it is possible to obtain a result every

0.95 microseconds, leaving out the initial latency that is lower than 50 microseconds. Thus, the

time requirement for calculating the synthesis and spectral response functions for the 15

iterations of the 222 inversions of Radiative Transfer Equation in a minute is reached. In the

Results chapter we will detail the performed tests and these results.

Resource Occupation %
Occupied Slices 9,639 47%
 Slices LUTs 21,745 26%
 Slices FFs 28,399 34%
BRAM (36kb) 106 36%
DSP48E 136 43%
Maximum Frequency 201 MHz
Power Consumption 5.17 W

Table 9 Virtex-5 resource occupation

Regarding power consumption, all of results achieve the power consumption requirements

since only 5.17 watts are needed (the initial requirements were 7 W, RTE-R-0030 in Table 2).

The power consumption as a function of the pProcessor frequency is detailed in Table 10. The

consumptions are split into quiescent and dynamic power. A graphical representation of these

consumptions is shown in Figure 19. It can be seen how the total power consumption is linear

with the pProcessor frequency. Thus, if adjusting the power consumption were necessary, it

could be done by adjusting the clock frequency. All these simulations about power consumption

are done with the Xilinx X-Power Simulator.

Frequency Dynamic Quiescent Power (W) Total Power (W)
80 1.15 2.31 3.46

100 1.6 2.32 3.92
150 2.17 2.38 4.55
200 2.73 2.44 5.17

Table 10 Details about the power consumption of the MIMD architecture with respect to the
frequency

56

Chapter 4. A MIMD architecture

Figure 19 Representation of the power consumption of the MIMD architecture with respect to
the frequency

0

1

2

3

4

5

6

80 100 150 200

W
a

tt
s

Frecuency (MHz)

Virtex-5 Power Consumption

Dynamic Power

Quiescent Power

Total Power

57

________________________________ 5 ________________________________

5 A SIMD architecture

he change in the DPU design and the mandatory use of the Virtex-4 FPGA, made it

impossible to use the MIMD architecture. This is mainly because there are not enough

logic elements in the Virtex-4 FPGA for allocating the necessary pProcessors. Remember that

the Virtex-4 FPGA is around four times smaller than the Virtex-5 with respect to the

configurable logic block. Besides, and as shown in Table 9, the MIMD architecture occupation

is already around 33% of the Virtex-5 device. In addition, the SVD block is to be added yet to

that occupation.

Hence, another multi-processor architecture is proposed for dealing with the RTE inversion

on the Virtex-4 FPGA. Since this is the final architecture to be embedded in the instrument, its

design state is more advanced than the MIMD architecture; in fact, it has been integrated and

tested within the DPU as shown in Chapter 9.

The RTE inversion problem can be classified as an embarrassingly parallel problem due to

the enormous data parallelism [Moler (1986)]. Our algorithm can indeed be executed in parallel

for each of the 2048x2048 spatial pixels using different processors. These problems are

efficiently dealt with using SIMD architectures where multiple processors work almost

independently. However, no commercial embedded processors can be used, as pointed in

Chapter 3. The scientific requirements for accuracy demand several calculations to be carried

out in floating point and these processors do not provide the necessary performance. In other

T

58

Chapter 5. A SIMD architecture

words, we would need many more such commercial processors than those physically feasible to

allocate within the FPGA.

In the SIMD on-chip design realm there are several works [Baklouti (2010), Stanley

(2003), Stanley (2003), Yiannacouras (2012)] that present a classic approach: they take

advantage from intrinsic data parallelism into the algorithm in a vector level. These works

remind the original supercomputers ILLIAC IV and CRAY flavor or the MMX and SSE

extensions in contemporary processors. They are interesting since they present novel

communication networks between processing nodes that enhance the computing performance.

Nevertheless, in the RTE inversion problem the processors do not need to exchange any data

between them. In this work we present a distributed-memory SIMD architecture which is

optimized for taking advantage from data parallelism where a communication network is not

necessary because there are no dependencies among input data. Thus, the architecture is totally

focused in obtaining the best instruction-per-cycle rate as possible.

Along this chapter, we will describe how this architecture design is inspired on SIMD and

GPU architectures, and how it tailors some aspects to improve the performance for

embarrassingly parallel problems. The architecture is not a classical vector unit but follows the

SIMT fashion of the GPUs. Despite processors have been released from a decode unit, each of

them has the control over the flow of its threads. However, there is only a general program

counter and this means that only a warp (see section 3.3) is in progress at a given time.

The processors are tailored into the architecture for reaching a high rate of executed

instructions, trying to execute one instruction per clock cycle, or in other words, for getting a

high ILP. In this way, the lack of several warps is compensated. The memory address space of

every processor is much reduced. It works as if it was a cache and statically scheduled by the

compiler. In short, to save hardware resources the usual GPU architecture has been modified for

improving performance. Other important contributions of this work are the ability of saving

resources allocating operation cores in a shared operation block which is accessed by every

processor. This is simply the introduction of the new computation trend, heterogeneous

computing, to the embedded in GPU-like architectures.

In next subsections we present the SIMD proposal, detail the different blocks that compose

the architecture, and how the RTE inversion is implemented. Relevant contributions of this

architecture, regarding scalability or reconfigurability, are also discussed in this chapter.

5.1 The SIMD architecture

 59

 The SIMD architecture 5.1

The SIMD architecture for carrying out the RTE inversion is presented in Figure 20. Two main

blocks can be distinguished, namely, the communications block and the RTE inversion core.

The first one is obviously in charge of the communications with the instrument’s DPU. It is

based on a proprietary System-on-Chip protocol and uses a single communication channel with

the rest of the instrument through a SoCWire bus [Osterloh (2008); SoCWire]. In Chapter 8 we

will give more information about the communication block, and about the communication

between the RTE inverter core and the DPU. The second block is in charge of the scientific

calculation and is made up of 12 individual processors, called nano-processors or nProcessors,

their net control unit, and a special block devoted to carry out some specific operations.

In our SIMD architecture, each one of the 12 processors, using only its local memory,

executes the whole RTE inversion algorithm without exchanging data. This is possible since

each input spatial pixel has no data dependencies with the others. Thus, we want to remark that

this SIMD architecture is not a classical vector unit, but it can be considered more similar to a

GPU architecture and to its SIMT model.

Figure 20 Main blocks of the proposed SIMD architecture within the FPGA

The processors work in IEEE 754 floating point precision. In order to save FPGA

resources, the nProcessor has been relieved of executing special operations (e.g., trigonometric

ones, divisions or square roots) since they are not much used along the algorithm. One division

60

Chapter 5. A SIMD architecture

core, for instance, implies almost a 3% of the FPGA resources. Thus, having a division core in

each nProcessor is not feasible. All the removed operation cores from the processors are brought

together in a shared operation block, which is used by all of them.

 The Net Control Unit 5.1.1

In other designs [Baklouti (2010),], the architecture Control Unit is another processor acting as

a host, which usually executes scalar operations. In our design, however, the Net Control Unit

(see Figure 21) is simplified and only delivers instructions and data to the processors. It carries

out fetch and emission of instructions from an Instruction ROM and drives the input and output

data flow. SIMD architectures save resources having only one centralized copy of the code. We

make the Control Unit even lighter, hence enabling more FPGA free resources for introducing

more processors.

Figure 21 nProcessor Net Control scheme

The instruction flow goes from the Net Control Unit to every processor and all of them

receive the same instructions through the nProcessor interface block. However each processor

receives different data for operating. Then, there are as many connections between the Net

Control Unit and the processors as the number of processors. As shown in Figure 21, the Net

Control Unit shares the input data (Input data Buffer) and gathers the output data delivered by

each processor (Output Data Buffer), including the shared operation block through the

corresponding communication interface. As shown in Figure 21, the Net Control Unit operation

is controlled itself by a local Control Unit. SIMD architectures tend to use mask techniques to

5.1 The SIMD architecture

 61

choose which processors have to execute the instruction coming from the Net Control Unit

[Siegel (1979)]. In our case, the mask technique is nothing but a set of enable signals from the

Net Control Unit to every processor (nP Enable ports in Figure 21). Usually, these techniques

are used to model the architecture behavior according to the instruction or data flow algorithm

necessities. However, we only use the mask capability for serializing the access to the shared

operation block or to gather and scatter data within the Net Control Unit.

The Instruction ROM contains two main fields: control commands and nProcessor

instructions. The first one codes the Control Unit behavior and the second one contains

instructions aimed to be executed in the nProcessors. All the instruction codification details

have been omitted for doing more readable this document, since they are not necessary for

understanding the SIMD proposal. In any case, these details can be found in Appendix IV.

Basically, the control commands are involved in the nProcessor instructions that need to

exchange data with the Net Control Unit, as Input and Output instructions, or instruction to be

executed in the Shared Operation Block. Using these commands, the Control Unit is micro-

programmed to arbitrate the access of the different nProcessors to the shared resources in a

serial way.

The Net Control Unit has buffers that the nProcessors have to access one by one for

reading or writing data. The control commands are in charge of managing this task masking the

nProcessors and allowing that only one nProcessor is enabled at a given time. The access to the

Shared Operation Block is carried out in the same way. So, the nProcessors are serialized for

sending operands and, later on, for receiving the results.

On the other hand, the nProcessor instruction field stores the nProcessor instructions which

control the nProcessor internal working: input and output managing, write and read address,

operands load, and the ALU configuration signals. Deep details about instruction fields can be

found in Appendix IV.

 The processor 5.1.2

Using most of the FPGA resources at maximum is essential to fulfill the high computational

requirements of our system. Moreover, this type of devices does not usually bear high frequency

clocks. Then, the use of pipelined processors and the avoidance of data hazards –that may cause

empty cycles– are necessary in order to exploit every operation core at maximum. We, thus,

propose a processor design called nanoProcessor (see Figure 22. With this name we want to

emphasize that we are designing a new kind of processor. We do not use generic processors,

like MIPS or NIOS, as in other SIMD architectures [Baklouti (2010), Xu (2003)]. Rather, we

62

Chapter 5. A SIMD architecture

propose the nProcessor which has a pipeline design and which is optimized to execute one

instruction every clock cycle in floating point precision.

The nProcessor is fed with instructions through the instruction port. Instead of receiving

RISC instructions, like in most implementations [Baklouti (2010); Xu (2003); Yiannacouras

(2012)], the nProcessor is not micro-programed, but every instruction contains directly the

internal control signals decoded: write/read address, load of operands in the ALU, store of the

Figure 22 nProcessor architecture

5.1 The SIMD architecture

 63

result in the memories, input/output data. Since the instructions arrive decoded, decoding units

within the nProcessor are not necessary. The names of the entire field sets within each

instruction are shown in Figure 22. The codification is detailed in Appendix IV.

The nProcessor has two data communication ports, one for inputs and another for outputs;

both of them use single floating point data. The input port is used to introduce data into the

address space of each nProcessor, through a multiplexer for selecting the destination memory. A

demultiplexer selects which memory can send data to the output port. As mentioned before, the

nProcessor does not have communication with the other nProcessors, but both communication

ports are connected to the Net Control Unit.

Regarding the computation capabilities, the nProcessor ALU can execute multiplications,

additions, and subtractions in single floating point precision. The subtraction and addition

operations are performed using the same physical core, since the subtraction operation is

changed into an addition operation changing the sign of the second operand. The ALU is also

able to execute comparison operations: equal to, greater than, greater than or equal to, lower

than, and lower than or equal to.

Figure 23 Instruction catch scheme within the Local Control block

However, the comparison operations do not produce any numeric result, but a logic result –

into the flag_cmp register that is used to produce control signals in order to customize the

incoming instruction flow. The local control unit catches the instructions from the input

instruction port attending to the previous conditional results and to the Net Control Unit

permissions –through the Enable port. Usually the Net control unit broadcasts the algorithm

instructions and each processor will follow the conditional path that the previous conditional

results have traced. For this purpose, a conditional flag stack (see Figure 23) can be found

within the nProcessors. The conditional flag stack stores the results obtained from the flag_cmp

64

Chapter 5. A SIMD architecture

register, which provides the conditional instruction results. The stack top commands when the

nProcessor has to catch the incoming instructions. The else-type instructions invert the stack top

value and the endif-type ones remove the stack top. Quite obviously, if the stack is empty there

are no previous conditional results and, hence, all the instructions are caught.

Most of the proposed SIMD architectures so far do not use cache memory into the

processors, but they are provided with registers, limited data memories [Baklouti (2010),

Yiannacouras (2012)], or shared memory where the processors share an address space between

all or several of them [Roma (2012)]. In our work, we propose to split the address space in two

cache memories (see Figure 22). This way, the processor can be supplied with the two needed

operands in one clock cycle and a full pipelined processor design is achieved. The processor

register can produce bottle-neck problems and data hazards in the processor performance. Using

our proposal based on a double cache scheme, we avoid those problems.

In any case, in pipelined architectures with cache memory others problems could appear

that affect the performance, as cache faults due to non-ideal data locality. To deal with this

issue, the cache memory size can be configured in our architecture in order to contain all the

data used along the algorithm. The cache management is scheduled statically by the compiler as

will be detailed in Section 6.2.

 The Shared Operation Block 5.1.3

As introduced before, to save FPGA resources, some less used functions are centralized into a

Shared Operations Blocks (SOB), shown in Figure 24. For example, arithmetic division in

floating point is into the SOB since this operation is used less than one per cent of the whole

RTE inversion algorithm. That supposes a big saving of resources since only one division core

need around 3% of the device resources, meanwhile this operation is used less of 1% of all the

operations in the algorithm.

The operation cores in the Shared Operation Block are designed to be pipelined and all the

processors can access them in a serial way. They are:

- Division core: it does the floating point division.

- Arctangent core: it does the arctangent operation.

- SinCos core: it does sine and cosine operations.

- SQRT core: it does the square root operation.

- SVD: it does the Singular Value Decomposition for the covariance matrix.

- Normalize and division controller: it normalizes a covariance matrix for being

processed by the SVD to the interval [-1,1]. Besides it works as Division Controller.

5.1 The SIMD architecture

 65

Figure 24 Shared operations block diagram

Since this unit only has an input and an output port, a bus is necessary to connect them with

the different operation cores. This bus is inside the SOB control. The SOB behavior is also

controlled by the Net Control Unit using the Control port, the SOB receives the necessary

control signals in order to control the input/output ports and the operation code (see Appendix

IV).

As Figure 24 reflects, there are two cores called Fxp2Float and Float2Fxp. They do a

conversion from fixed-point data to floating-point data and the reverse conversion, respectively.

This block is necessary because RTE inversion works in 32 bits floating-point precision, but it

needs to perform some calculation in fixed-point precision (20 bit) as arctangent, sine, cosine,

and square root. The reached precision of these cores, and its resource occupation, is shown in

Appendix IV.

In the diagram, the block size is not proportional to its resource occupation since, for

instance, the SVD block occupies more than 30% of all the FPGA resources. As mentioned, the

SVD block will be studied specifically in Chapter 7.

The SVD needs a normalization of the input correlation matrix since the internal SVD

architecture works in the range of data [-1, 1]. The de-normalization of its eigenvalues is made

in the nProcessors, but for that, the de-normalization values have to be returned to the

nProcessors. Each correlation matrix size consists of 60 values (upper triangular matrix of the

covariance matrix for ten free parameters), and its result size is 111 values (the de-normalization

value, the 10 eigenvalues, and the 100 eigenvector values).

As Figure 25 shows, the Normalize and Division Controller block performs the

normalization of such matrices. They are stored in a FIFO memory (FIFO_to_SVD) until the

66

Chapter 5. A SIMD architecture

SVD block is able for processing them. The SVD results are also stored in a FIFO memory until

the pProcessors are able for reading them (FIFO_from_SVD).

Figure 25 Normalize and Division Controller block within the SOB

It is very important to remark that the Normalize block does not contain a division core, but

it uses the division core inside the SOB. The Normalize block is detailed in Figure 26. As can

be seen, the division operands can be directly channeled to the Division block. The Normalize

block receives the correlation matrix elements in a serial way. While such elements are received

and stored in the FIFO_MATRIX buffer, their maximum is computed. Once the 60 matrix

values are received, the entire matrix is divided by its maximum. The normalized matrix is sent

to the FIFO_to_SVD through the Output port1, and the maximum of each matrix is stored in the

FIFO_MAXS buffer. This is, the normalization value is not sent to the SVD block, but it has to

wait until the SVD is performed. Later this value will be put at the top of its corresponding SVD

result. Every time that the SVD block returns a result of a correlation matrix, it is stored in the

FIFO_from_SVD buffer. Just in that moment, its normalization value is read from the

FIFO_MAXS buffer and allocated as the first value of the SVD results.

Figures 24 through 26 about SOB and its sub-blocks are shown with great detail for

providing a faithful idea of how they work. Control signals, however, have been omitted and

communication interfaces simplified. Schematics at RTL level with all these signals are given in

Appendix IV (Figure 70 and Figure 71).

In
p
u
t
p
o
rt

O
u
tp
u
t
p
o
rt

S
O
B
 C
o
n
tr
o
lle
r
I/
F

In
p
u
t p

o
rt

O
u
tp
u
t p

o
rt

S
V
D
 I/F

C
o
n
tr
o
l

5.2 The SIMD architecture on the FPGA

 67

Figure 26 Normalize block within the Normalize and Division Controller block

 The SIMD architecture on the FPGA 5.2

The proposed architecture to carry out the RTE inversion inside the FPGA XQR4VSX55

contains 12 nProcessors. This number is not random but the maximum possible number after

introducing the remaining necessary elements. In fact, Table 11 shows the total FPGA resource

occupation and how it was exhaustive in order to obtain the maximum performance from the

proposed architecture.

Resources Occupation %
Occupied Slices 24.574 99%
 LUTs 30.918 62%
 FFs 34.502 70%
BRAM (18kb) 223 69%
DSP48 168 32%
Maximum Frequency 150 MHz
Power Consumption 4.5 W

Table 11 SIMD architecture resource occupation

The occupation distribution for each one of the main blocks in the architecture is shown in

Figure 27. Percentages are rounded for simplicity. This graph reveals the difficulty of reaching

high performance computing using this specific device, after taking overall account of the

limitation imposed by the SVD core, which occupies 31% of the logic resources. The SoCWire

bus [Osterloh (2008)], connecting the SIMD architecture to the rest of the instrument, takes

around a 5% of the FPGA. Finally, discounting shared operations and communications, there is

FIFO_MAXS

Normalize

Division I/F

Output portInput port

Compare

MAXIMUM

To_FIFO_to_SVD

To_FIFO_from_SVD

Counter

[0..59]

68

Chapter 5. A SIMD architecture

only a 48% of the FPGA for instancing nProcessors. All these facts also justify the use of a

SIMD architecture and our “obsession” for saving resources.

Plenty of details about the resources that each element needs in the architecture can be

found in [Cobos (2014)]. But we can summarize, regarding others FPGA logic resources, that

the BRAM embedded memories are used mainly by the Input and Output Buffers (8 BRAMs),

the Instruction ROM (86 BRAMs), and the cache memories in the nProcessors (48 BRAMs).

The Instruction ROM occupies 96 BRAM because each instruction word has a width of 54 bits

and the maximum program depth has been fixed to 32k words. In the current version only 22k

words are used but we have kept this size for future widening. The nProcessors spend 48

BRAM in its cache memories. Although they only use address space of up to 1024 positions, we

have kept 2048 positions for future widening.

Figure 27 Occupation distribution of the main blocks within the SIMD architecture

The embedded DSP48s are used basically for the ALU operation cores. This kind of

resources is essential to implement the floating point operation optimally, in a space and power

consumption senses, as was pointed in [Aparicio (2010)] and shown in Appendix III for the

MIMD architecture.

The trigonometric shared operation cores and square root core have been generated by the

Xilinx Core Generator tools. They use a CORDIC algorithm. The SVD core is designed and is

based on the Jacobi method. It will be discussed in Chapter 7.

The system is RTL designed in VHDL and was compiled by the Xilinx ISE 14.1 tool. The

SIMD architecture is able to work with a maximum frequency of 150 MHz. However, the SVD

and Atan blocks of the shared operation blocks only reach 115 MHz and the SoCWire bus

works at 50 MHz. Therefore, there are three different clock domains which are communicating

5.3 The RTE inversion algorithm within the SIMD architecture

 69

through FIFO memories. These synchronization elements are not shown in the figures for

simplicity.

The power consumption is around 4.5 watts in the most demanding case; it is when all the

input data are getting to the FPGA without any delay. Anyway, this power is below the system

requirement of 5 watts. A deep study about the power consumption in the test device can be

found in Chapter 9.

 The RTE inversion algorithm within the SIMD 5.3

architecture

Although details of the scientific inversion algorithm are far from the scope of this dissertation,

the main tasks within the iterative process were outlined in Chapter 2. However, in order to

simplify the understanding of the execution of the algorithm with the proposed SIMD

architecture, we now use a sequence diagram with a simpler task schedule. In short, we consider

the main tasks within the RTE inversion algorithm are four: calculation of synthetic spectral

synthesis and response functions (SYNTH), calculation of the correlation matrix between the

observed and synthetic profiles (CORR), a singular value decomposition (SVD) of the

correlation matrix in order to modify the initial model, and the modification of the parameters of

the initial model using the eigenvalues and eigenvectors (MODP).

The RTE inversion code for the SIMD architecture is composed basically for these four

task codes. It is written in a traditional and sequential C-style way, and it can be consulted in the

attached CD. The operation cores in the SOB are called from the code using a function calls

style, except for the division case where the mathematical symbol is used. These issues will be

described in the next chapter.

In a nominal state, all the nProcessors are executing all the RTE algorithm tasks in parallel.

Then they can be blocked for using the shared operation cores: division, arctangent, sine, cosine

or square root. In Figure 28 shows an example of using the division and sine cores by the

nProcessors, for computing the SYNTH task. In the division case, since it is a non-blocking

instruction, the nProcessors send the data to operate to the SOB in a serial way. However, they

will receive the results at the same time while they are executing other instructions. However, in

the access to other cores, each nProcessor blocks the others until it has finished computing the

operation. Once all they finish the shared operations, they will continue executing in parallel the

rest of the SYNTH task. How the Sine core is accessed by the nProcessors is illustrated in this

example, but is the same procedure for the arctangent and square root cores.

70

Chapter 5. A SIMD architecture

Figure 28 Sequence diagram that illustrates the calls to some SOB functions.

As it has been explained, each one of the 12 processors executes the whole RTE inversion

algorithm on different input spatial pixels without exchanging any data. However, the 12 SVD

tasks have to be performed by the same SVD core. To avoid a bottleneck in the SVD core use,

memory buffers to store the 12 correlation matrices and their 12 results have been implemented.

Thus, the nProcessors are able to carry out the other RTE main tasks in parallel. Of course,

these parallel tasks are executed on different spatial pixels. With this way of processing the

SVD in parallel we reach the optimal use of the device and the architecture, since it is using

virtually hundred per cent of the computing elements.

In Figure 29 the task scheduling for taking advantage of the data parallelism and for

optimizing the resources utilization is illustrated. In this picture we focus on the access to the

SVD core within the SOB, we have removed the calls to other cores for simplicity. In any case,

Figure 28 details how all of them are accessed by the nProcessors. In this example we show the

schedule of the RTE inversion task according to the iterative process. In iteration 1, the

nProcessors load a set of 12 pixels, Pixel_set(I) in the diagram, and all of them carry out the two

first tasks (SYNTH and CORR) in parallel. They send the 12 correlation matrices to the SVD

core while loading and processing another set of 12 pixels, Pixel_set(J). Note that the

5.3 The RTE inversion algorithm within the SIMD architecture

 71

nProcessors use the SVD block through the SVD_in and SVD_out calls, as will be explained in

section 6.2. In a nominal iteration, all the nProcessors read previous SVD results and carry out

the rest of the RTE algorithm (MODP, SYNTH and CORR) on alternative sets of pixels. In the

last iteration, the nProcessors have to read the last SVD results and execute the final

modification of parameters. All this scheduling is possible because the SVD core is able of

processing the 12 correlation matrices faster than each nProcessor executes the rest of the

algorithm.

Figure 29 Sequence diagram that illustrates the RTE inversion algorithm tasks working in
parallel

As Figure 28 and Figure 29 denote, the data transfer times between nProcessors and the

SOB are far shorter than the computational time. The time for completing the various

transferences is negligible since most operations in the SOB use only one or two operands.

nProcessors send and receive data in a serial way with a rate of one datum per cycle. The

Instruction Set Architecture (ISA) will be explained later in detail.

The SVD_in and SVD_out instructions are different since they have to send the input

correlation matrices and receive the obtained results. Each correlation matrix consists of 60

values (upper triangular matrix of the covariance matrix for ten free parameters), and its result

size is 111 values (the de-normalization value, the 10 eigenvalues, and the 100 eigenvector

72

Chapter 5. A SIMD architecture

values). These instructions are only executed once per iteration. In short, the total amount of

time that nProcessors spend doing data transfers with the SOB is less than a 0.5 per cent of the

total computation time. This fact also corroborates that sharing resources using SOB (in a serial

and pipelined way) is a very good alternative for saving hardware resources with a small loss of

time.

 In summary, the SIMD architecture is able of executing all the RTE inversion tasks in

parallel on different pixels making use of the Shared Operation Block for reaching high

temporal utilization of the resources. Since the number of instructions to be executed in the

SOB is lower than 1.5 per cent and the SVD core is around a 65 per cent faster than the other

RTE inversion main tasks (SYNTH, CORR, and MODP), we can estimate the scalability of the

RTE inversion in the SIMD architecture. Introducing more nProcessors in the architecture, the

speed up will be linear until 18 nProcessors. If that number is exceeded, the SVD core would be

the slowest core and it would block the data pipeline. Then, to reach lineal performance

scalability, the system must increase the number of nProcessors in a proportional way to the

number of SVD cores (with a ratio 18 to 1). In Section 5.4 we will emphasize other issues about

the scalability of the system.

 A reconfigurable and scalable SIMD architecture 5.4

Despite the proposed SIMD architecture is clearly focused to the RTE inversion problem, it is

enough generic to be applied in other problems, provided they show enough data parallelism.

The architecture can be reconfigured in several features. Such a reconfiguration can be of

interest for attacking other problems. A more generic SIMD architecture is presented in Figure

30. Obviously, in the ideal case with enough resources, we can obtain SIMD architectures 100%

scalable for embarrassingly parallel problems, simply using a higher number of nProcessors.

However, the resource limitation forces us to propose a solution using a shared operation block

that moves away from the ideal SIMD scalability.

To minimize the impact of sharing operation cores, we make design decisions as pipelining

the shared cores and the data path between the nProcessor and them, as was explained in the

previous section. Note in Figure 30 that there is one bus for sending data and another for

receiving them.

Other design milestone to increase scalability is to implement the instruction to be executed

in the SOB as a non-blocking instruction. In this way the nProcessor can follow executing

instructions in parallel to the SOB ones. For example, the division is implemented in a pipelined

and non-blocking way. This example is relevant because the division core takes about 30 clock

5.4 A reconfigurable and scalable SIMD architecture

 73

cycles. The SVD case is even more important since the SVD core takes as long as almost the

rest of the algorithm. Implementing the SVD instruction as a non-blocking instruction allows us

to execute in parallel the rest of the RTE inversion algorithm in the nProcessors –obviously for

different input pixels.

An obvious remark is that the scalability of our system depends on the percentage of the

algorithm operations which uses cores into the shared operation block. In the RTE inversion

case, this number is very low, approximately 1.5 per cent, and then the scalability that can be

reached is very high. In any case, for other algorithms the final system performance would be

calculated taking into account the code to execute (percentage of operation to share, data

dependencies, etc.).

Knowing the resource necessities of each element in the system (see Figure 30) and aiming

at using the architecture for other algorithms, the FPGA could contain around 22 nProcessor if

the SVD core were not used. It could almost double its theoretical arithmetical capacity.

Another possible configuration, to be taken into account for using the system in other problems,

is to use the 12 nProcessor with the division core into them.

The precision to use in the architecture can be redefined, in a non-standard floating point or

even in fixed point, by simply changing the data bus width and by introducing new operation

cores within the ALU.

In the RTE inversion problem a communication network is not necessary. However, the

architecture is able to implement a communication network by simply enabling the

communication channel bridge (dashed line arrow in Figure 30). Although that resulting

network would be rudimentary, it allows executing more complex problems within the

architecture.

74

Chapter 5. A SIMD architecture

Figure 30 Generic SIMD architecture

75

________________________________ 6 ________________________________

6 The TAPAS tool

s mentioned along this work, two different DPU designs have been proposed for the

SO/PHI instrument. Each design allocates two different FPGA devices: Virtex-4 and

Virtex-5. For each device two parallel computing architectures have been developed in two

different flavors: SIMD and MIMD respectively. A software tool to automatize the system

configuration processes has been developed. The tool provides a compiler to make it easier the

use and programming of the architecture.

The tool is called TAPAS (Tool for Auto-generating Processor Architecture and

Simulation). From an input pseudo-code (similar to C, although it only contains operations of

two operands), it generates the necessary binaries for configuring both architectures.

 MIMD TAPAS 6.1

The software tool takes the initial code and automates the following tasks: to calculate the

required number of pProcessors; to allocate the operations into pProcessors; to design the

memory space; to design the communication network; and to generate a ROM of instructions

for each pProcessor. All this automatization process is carried out taking into account the real-

time requirement that applies to this version. In short, given an entry code, TAPAS

automatically sets an optimal MIMD architecture using a software intensive-pipelining method.

Currently, the pseudo-code is generated using a set of scripts that, starting with the scientific

A

76

Chapter 6. The TAPAS tool

algorithm code, unroll loops and decompose the complex instruction in a chain of two-operand

instructions.

Besides, it is necessary to establish the ROM for each pProcessor. Each ROM instruction

defines the operations to execute and the control signal to enable at every instant. That is, the

control unit (Figure 17) simply extracts the values to establish for every control signal: input

port, output port, the operand order and needed counters for consistency. The ROM has as many

instructions as the length of a synchronization stage. Each instruction contains control signals,

but not all instructions contain operations.

The TAPAS tool counts with a module that from a real C-code is able to decompose

complex mathematical operations in several operations with only two operands. This final

decomposed code is the TAPAS code. This module is also able of loop unrolling. An example

of operations decomposition an unrolling is shown in Code 1. There can be seen how new

intermediate variables are created to allow the tree operation generation.

In short, the software tool TAPAS starts with an entry code and carries out the following

tasks:

- decomposes the complex mathematical operations in simpler ones,

- makes an operation tree,

- counts the operations of each arithmetic type,

- calculates the minimum number of necessary pProcessors for achieving a temporal

constraint,

- allocates the operations in the pProcessors,

- creates the communication network according to the pProcessor operations and the data

flow defined by them,

- generates each pProcessor memory space,

- assigns a position and enough space for each data in order to ensure memory consistency,

- sorts the instructions of all pProcessors for preventing collisions at input ports,

- generates the ROM of all pProcessor,

- and generates consistency counters.

An operation tree is usually generated for studying an input code and proposing

optimizations over it. Often, such an operation tree is called Data Flow Graph (DFG) [Veen

(1986)]. We shall follow this common recipe and employ our own DFG. An example of DFG,

which TAPAS generates is shown in Figure 31. The algorithm execution is assumed from left

to right. Therefore, inputs are on the left. Those operations that are allowed to be executed

simultaneously are in a given column. The data dependencies are indicated using arrows. From

this algorithm expression the MIMD methodology exposed in section 4.2 is applied.

6.1 MIMD TAPAS

 77

Code 1 Example of decomposition in simpler operations and loop unrolling. Initial C-code (up)
and decomposed and unrolled code (TAPAS code) (down)

Once TAPAS has processed the input code and has generated a configuration for the

pProcessor net, it can be synthetized and tested. For that purpose, the test and validation flow

shown in Figure 32 is followed. The MIMD architecture configuration can be synthetized using

two different languages: VHDL and Handel-C.

Handel-C was used at the beginning of this project for fast prototyping. However it was left

because of a twofold reason: first, because the commercial company gave up supporting it;

second, because we wanted to have more control over the synthetized hardware. Overall, once

we started to use operation cores from Xilinx, the integration task within the Handel-C code

made it harder. In any case, the Handel-C code is in the attached CD and can be revised. It is

remarkable that the code length is around a factor 10 shorter than the VHDL code.

The Xilinx ISE tool is used for simulating at VHDL level: generating waveforms or

generating files with a list of results. The TAPAS tool generates also a simulation of the input

code, these simulation details the pProcessor execution cycle by cycle, and so this simulation

can be compared with the VHDL simulation. This comparison is made in Matlab, as is depicted

in Figure 32. It is nothing but a script that compares lists of numbers. This simulation is very

for(i=0;i<numl;i++){
 parcial1[i]=fi_b[i]+fi_r[i];
 parcial2[i]=(E0_2)*(fi_p[i]-(parcial1[i])/2);
}

parcial1_0=fi_b_0+fi_r_0;
parcial1_1=fi_b_1+fi_r_1;
parcial1_2=fi_b_2+fi_r_2;
parcial1_3=fi_b_3+fi_r_3;
parcial1_4=fi_b_4+fi_r_4;
parcial1_5=fi_b_5+fi_r_5;
parcial2_0_a=parcial1_0/2;
parcial2_0_b=fi_p_0-parcial2_0_a;
parcial2_0=E0_2*parcial2_0_b;
parcial2_1_a=parcial1_1/2;
parcial2_1_b=fi_p_1-parcial2_1_a;
parcial2_1=E0_2*parcial2_1_b;
parcial2_2_a=parcial1_2/2;
parcial2_2_b=fi_p_2-parcial2_2_a;
parcial2_2=E0_2*parcial2_2_b;
parcial2_3_a=parcial1_3/2;
parcial2_3_b=fi_p_3-parcial2_3_a;
parcial2_3=E0_2*parcial2_3_b;
parcial2_4_a=parcial1_4/2;
parcial2_4_b=fi_p_4-parcial2_4_a;
parcial2_4=E0_2*parcial2_4_b;
parcial2_5_a=parcial1_5/2;
parcial2_5_b=fi_p_5-parcial2_5_a;
parcial2_5=E0_2*parcial2_5_b;

78

Chapter 6. The TAPAS tool

valuable for debugging the input code, but it also was very valuable for debugging the MIMD

architecture, and pProcessor, in the developing phase.

The ISE tool is also used for generating programming files for the FPGA. Once the FPGA

is programmed, Matlab is also used for transmitting data through the RS-232 port. The FPGA

design for using the RS-232 port is shown in a schematic in Appendix V. The results that FPGA

sends are compared in Matlab with the TAPAS simulation result, in execution time. The data

are transmitted in ASCII mode but Matlab translates then to a floating-point representation.

In short, following the flow proposed in Figure 32 the MIMD architecture generated for a

specific input code can be executed and tested on the FPGA. This will be used in Chapter 9 for

explaining the results obtained for the RTE inversion code.

Figure 31 Operation tree exaple using by the MIMD TAPAS version.

6.1 MIMD TAPAS

 79

Figure 32 MIMD-TAPAS developing and debugging flow

80

Chapter 6. The TAPAS tool

 The SIMD TAPAS 6.2

The second architecture proposed in this work is focused on carrying out the RTE inversion

using a SIMD computation model in the Virtex-4 FPGA device. In this section, the TAPAS

tool design for compilation and configuration of the SIMD tasks is described.

 The programming language 6.2.1

TAPAS is able of decomposing an input code in the so-called TAPAS code for the MIMD

architecture (Code 1). However, the TAPAS code for the SIMD architecture needs other

features that are described in this section. In addition, since the MIMD had to be frozen due to

change of design, the SIMD-TAPAS version is now more advanced. A unification of both

versions reveals as an interesting work for the future.

Since the SIMD architectures appeared, some libraries and languages have emerged to

program them [Gokhale (1995)]. Tools have also been created [Zima (1988)] to model

algorithms in such architectures and offering the capacity to mask processors and create data

flow between processors, etc.

In the case of embarrassingly parallel problems where there is no need to decide which

tasks are carried out by each processor or to communicate data between processors, or to share

memory, this sort of extensions is not required. Thus, the SIMD architecture gets closer to a

traditional sequence implementation and turns out to be easy to program. Therefore, as

explained in section 5.2, the SIMD architecture does not need either indicate any

synchronization commands. These issues are totally transparent to the programmer, since the

compiler generates the Instruction ROM which contains the nProcessor instructions and all the

control commands, which are able of selecting the processors when it is necessary.

For the architecture presented here, we propose a high level language able to program the

device without worrying about the number of processors used, the required data flows, or the

internally used architecture. This language takes its name from the architecture compiler itself:

TAPAS. We call it a high level language because of its ability for making transparent the

architecture assembler to the programmer. There is no need, for instance, to define tags, to

manage jumps or function calls, or physical data addresses, etc. Table 12 summarizes the

Instruction Set Architecture for giving a programmer view of the SIMD architecture explained

in Chapter 5. Two instruction subsets can be identified: instructions executed in parallel within

the nProcessors, and instructions executed on a serialized way in the Shared Operation Block.

6.2 The SIMD TAPAS

 81

Instruction Set Architecture
(All operands and results are floating point data)

Instruction Allocation Syntax Blocking
execution

Description

Addition nProcessor
ALU
(Parallel)

r = a + b;

Not
affected

Arithmetic operation :
addition

Subtraction r = a - b; Arithmetic operation :
subtraction

Multiplication r = a * b; Arithmetic operation :
multiplication

Greater than ifgt(a,b) Comparison Greater than
Greater than
or equal

ifgte(a,b) Comparison Greater than
or equal

Lower than iflt(a,b) Comparison Lower than
Lower than
or equal

iflte(a,b) Comparison Lower than or
equal

Equal ifeq(a,b) Comparison Equal
Division Shared

Operation
Block
(Serialized)

r = a / b; No Arithmetic operation :
division

Arctangent r=arctan(a/b); Yes Trigonometric arctangent
operation

Sine r=sin(a); Yes Trigonometric sine
operation

Cosine r=cos(a); Yes Trigonometric cosine
operation

Square root r=sqroot(a); Yes Square root
SVD_in SVD_in(a1)

…
SVD_in(a60)

No Inputs to the Singular
Value Decomposition. The
input matrix is given in a
serial way.

SVD_out

r1=SVD_out()
…
r111=SVD_out()

No Outputs of the Singular
Value Decomposition. The
eigenvalues and
eigenvectors matrix are
given in a serial way.

Table 12 Instruction Set Architecture

For the programmer, the use of any operation from the SOB is transparent since they all are

perceived as function calls, except for the division where the classic operator is used. The cores

within the SOB are custom cores and they do not have to be micro-programed from TAPAS.

They only have to implement a serial interface for getting inputs and outputs. This allows

carrying out future co-design tasks easily by adding co-processors through the SOB.

The cores within the SOB also have to define if they are implemented in a pipelined and

non-blocking way. The division and SVD cores are non-blocking as can be seen in Table 12.

The division core only generates one result per instruction and it is easily managed by the Net

Control Unit for introducing it to the nProcessor. However the SVD core generates a set of

82

Chapter 6. The TAPAS tool

results from a set of inputs, so the input data task and output data task are split in two sets of

instructions: SVD_in and SVD_out, as shown in Table 12.

We cannot forget that the final target is the SIMD architecture. Thus, the TAPAS

programming language is oriented to this final architecture and has a series of special features

and limitations. For instance, there are no bit-level operations and all the arithmetical operation

instructions should have two operands.

A code example of this language is shown in Code 2. With this example code, we attempt

to show the main features of the TAPAS programming language. For example, the use of the

SOB is carried out using only calls to special functions –arctan and sqroot–. The input and

output are also calls to special functions –Input and Output–; in this case the order is important

and corresponds with the order in which the data are supplied to the system, and in which the

data are provided by the system. The number of declared inputs is used by the architecture for

launching the algorithm execution when there are enough data in the Input Buffer to feed all the

nProcessors. Each time the algorithm is executed, the input data are loaded into all the

processors in a serial way. Finally, the Output Buffer gathers the outputs generated by the

nProcessors, corresponding in number to the Output function calls carried out in the code.

We can see as well how there are no variable declarations, only constant variables are

declared with no other intention than assigning an initial constant value to them. All variables

starting with cte_static are considered constant and static in the cache memory.

 The conditional instructions are greater than, –ifg–, greater than or equal to –ifgte–, lower

than –iflt–, lower than or equal to –iflte–, equal to –ifeq–. According to the conditional flag

stack seen above, the conditional instruction can be nested in the current version up to eight

levels.

Finally, a function is declared in the code example. The function parameters are always

passed by reference. In the current version, all functions are converted into an inline code –

similar to the C inline code– when generating the executable code.

There are other language sentences although they are not shown in the example. The

sentence call_file file_name is similar to the include one of the C language.

Also not shown in Code 2 it is possible using loops. The loop bodies, opposite to the

conditional instructions, are generic for all the nProcessors, so all the nProcessors execute the

code into the body. In any case, the nProcessors can specify a piece of code using conditional

instructions into the loop. The loops are defined as for i (0:N-1) and the body is delimited by

using endfor. It is important to note that the loops generate hardware counters into the

architecture, whose control lies in the architecture control unit.

6.2 The SIMD TAPAS

 83

Code 2 Example of TAPAS programming language code

To interact with external hardware signals from the code, the conditional instruction

if_control signal is introduced. This instruction, like for, is global for all the nProcessors. This

kind of instruction is used, for example, for deciding if a piece of code is executed depending on

an external signal status.

Note that there is no construction for selecting processors or the number or processors in

the code. These issues are totally transparent to the programmer.

The simplicity of the proposed language, which allows programming as if it were a totally

sequential code, facilitates a compiler. Translation from other languages such as C, Matlab, or

IDL is possible. In this sense, TAPAS can be considered as an intermediate language in the

future. At present, to translate from C-MILOS into TAPAS we have generated some scripts that

make the complex operation decomposition process, variable rename, input/output declaration

and loop-unrolling in a semi-automatic way. These tasks are based in the previously presented

version for the MIMD architecture.

%Constants

cte_static_2 = 2;

cte_static_pi = 3.141593;

%Inputs declaration

Input(input_a);

Input(input_b);

aux = input_a + input_b;

median(aux,cte_static_pi,out1);

out2=arctan(out1,cte_static_2);

iflt(out2,aux)

 out3 = sqroot(aux2);

else

 iflte(out1,cte_static_2)

 out3= cte_static_pi / out1;

 endif

endif

%Program outputs

Output(out3);

%function declaration

function median(val1,val2,rslt)

 aux = val1 + val2;

 rslt = aux / cte_static_2;

endfunction

84

Chapter 6. The TAPAS tool

 The compiler 6.2.2

To generate the assembler code for the SIMD architecture from the TAPAS programming

language we have developed the TAPAS compiler. Unlike other multi-processor architectures,

in a SIMD architecture the distribution of the instructions between different processors is not

necessary, since all the processors execute the same code. So, TAPAS basically generates the

only Instruction ROM and configures some architecture features according to an input program

(for instance the maximum value of the program counter).

As mentioned before, the Instruction ROM contains two main fields: the nProcessor

instructions and the control commands aimed at managing the Net Control Unit. In order to

generate the Instruction ROM, the compiler looks for all the arithmetic instructions from an

input code. It translates them to nProcessor instructions. However, the compiler also generates

the control commands field for the shared operation function call and the inputs and output

instructions case. The details about instruction codification have been omitted for keeping this

work readable. We refer the interested reader to Appendix IV.

The nProcessor instructions are stored once decoded, so the compiler has to generate all the

nProcessor internal control signals. For this purpose, the nProcessor instructions have different

fields for coding the behavior of the different multiplexers, the read and write address of both

cache memories.

The control command field codes the behavior of the control unit for executing all the

Instructions ROM. The Net Control Unit has to broadcast the instructions to the nProcessors,

but also needs to manage the data flow between the nProcessor and the Input and Output Buffer,

and between the nProcessor and the Shared Operation Block.

Without going into bit-level details, it is important to remark that the Instruction ROM

word width is defined by the compiler. And it depends on the input algorithm features as

address space requirement, number of cores in the SOB, or number of nProcessors in the

architecture.

Before generating the final object-code for the Instruction ROM, the compiler has to

perform some tasks in the input program. The first task is to replace the call_file sentences by

the corresponding file content and the function calls by the corresponding inline code.

The most important task of the compiler is to reorganize the operations to avoid data

hazards and introducing null operations in the cases when this reorganizing is not possible. This

means that TAPAS performs a static schedule of the instruction execution. In Code 3, we can

see an example of instruction reorganization for avoiding a data hazard. It assumes that the

multiplication instruction lasts 10 cycles. Thank to that reorganization, there is no data hazard in

that code example and the processor is never stalled.

6.2 The SIMD TAPAS

 85

As previously commented on, by doubling the memory space and using it as a cache

memory, we try to ensure the availability of the required data for every operation in one clock

cycle. Furthermore, through the static scheduling carried out by the compiler, the smallest size

of usable memory is determined.

The procedure has two steps: firstly, the compiler has to assign all the data to one memory

and, secondly, it has to assign positions into the memories.

When assigning a datum to a memory, the compiler needs to study which operations will

be using it and if these are commutative or not. The compiler also tries to balance the fill of both

memories for practical reasons. Once all the data are assigned to memory, the compiler will

assign a virtual position to each datum. The first positions in each memory are reserved for the

constant data. Afterwards, the compiler carries out an algorithm virtual execution, assigning

each result to the first position with an erasable datum. Erasable position will be the one

occupied by a datum not to be used again –except the variables declared as constant; if there is

no erasable datum, it will go to the first available position. An example about this is shown in

Code 4, where datum dt_0_a is written in position 21 of the Memory A at given instant, i. This

Code 3 Example of instruction reorganization for avoiding a data hazard in TAPAS

86

Chapter 6. The TAPAS tool

datum is valid in that position until instant i+12 since this datum will not be used again. For

that, the position 21 is occupied in instant i+13 by another erasable datum and it can be

occupied for the dt_1 datum.

Following this procedure, the compiler will determine how much memory is required by

each processor to be able of executing the algorithm in an optimal scenario. In a general purpose

processor, the programmer, using the compiler or handmade optimizations, could reach a

balance between loop-unrolling and cache fault, while using our proposal the cache is statically

reconfigured to contain all the algorithm address space.

Code 4 Example of cache static scheduled

To conclude, the amount of variables generated in an algorithm like the RTE inversion is

proportional to the amount of operations: around 17000. Applying the procedure seen above, the

compiler has determined that using cache memories of 1024 positions memory is enough to

carry out the algorithm in an optimal way.

Once TAPAS has processed the input code and has statically scheduled the instruction set

execution (the Instruction ROM), the code can be synthetized and tested. For that, the test and

validation flow shown in Figure 33 is followed. The SIMD architecture is programmed in

VHDL, and it is configured with the Instruction ROM generated by TAPAS.

The same way than the MIMD architecture, the Xilinx ISE tool is used for simulating at

VHDL level: generating waveforms or generating files with a list of results. The TAPAS tool

6.2 The SIMD TAPAS

 87

generates also a simulation of the input code. This simulation details the nProcessor execution

cycle bye cycle. Hence, this simulation can be compared with the VHDL simulation. The

comparison is made in Matlab, as shown in Figure 33. It is nothing but a script that compares

lists of numbers. This simulation is very valuable for debugging the input code, but it also was

very valuable for debugging the SIMD architecture, and the nProcessor, in its developing phase.

Figure 33 SIMD-TAPAS developing and debugging flow

The ISE tool is also used for generating programming files for the FPGA. Once the FPGA

is programmed, LabView is used for transmitting data through the SoCWire bus. The FPGA

design of the SoCWire will be detailed in Chapter 8. The results that the FPGA sends are

88

Chapter 6. The TAPAS tool

compared, in execution time, in LabView with the TAPAS simulation results. The data are

transmitted in floating-point representation.

In short, following the flow proposed in Figure 33, the SIMD architecture generated for a

specific input code can be executed and tested on the FPGA. This will be used in Chapter 8 for

explaining the obtained results for the RTE inversion code.

A Graphical User Interface (GUI) has been developed for the TAPAS compiler. It is shown

in Figure 34. This GUI provides a friendly way of organizing the compilations in projects. For

each project, TAPAS creates different versions automatically. For each version we can

introduce:

- the Source code to use as input code,
- the ISE Path where the Instruction ROM, and RAMs will be generated,
- the Simulation file to use,
- and a description about the version.

Every time TAPAS is executed for a version, it stores a copy of that version in a specific

directory within the project directory. In this way, we have an automatic log, and backup, of all

versions in that directory.

In addition, if we want to use a specific version, we can mark the “Use internal stored local

files” in the GUI, and TAPAS executes with the logged version. This is very useful during the

testing and developing phases.

The operation tree shown in Figure 31 appears in the Operation Tree Tab of the GUI. This

operation tree is very useful for studying the compilation results.

Figure 34 The TAPAS Graphical User Interface

89

________________________________ 7 ________________________________

7 The Singular Value Decomposition within the RTE

inverter

n this Chapter we address the design of an SVD architecture to be allocated inside the SIMD

architecture; specifically, inside the Shared Operation Block (see Figure 24). Since the RTE

inverter based on an MIMD architecture is incomplete, a specific SVD has not yet been

developed for it. The SVD architecture presented in this chapter can nevertheless be adapted to

the MIMD architecture in the future.

 Introduction to the SVD 7.1

The SVD of a correlation matrix is one of the crucial and heavier tasks in the RTE inversion.

This task implies more than a 30 % of the total necessary operations, as shown in Table 5. This

is even more critical when we study the usual methods for computing the SVD like SVDCMP,

TRED+TQLI, etc. (see Section 2.3). Prior to running an iterative procedure, these techniques

use matrix transformations that are computationally complex. Among them we find loops,

square roots, branches, and other. Such matrix transformations are aimed, however, at reducing

the iterative method tasks. The bibliography is full of attempts for accelerating these SVD

algorithms in several ways (cluster, multithreads, GPUs). However, in spite of being fairly old,

the Jacobi method [Jacobi (1846)] ̶ based on iterative rotations ̶ is well suited for being

implemented by parallel processes in hardware as we are going to see.

I

90

Chapter 7. The Singular Value Decomposition within the RTE inverter

The Jacobi method obtains a diagonal matrix from an original Hermitian matrix through a

sequence of rotations as is explained in [Wilkinson (1988)]. The final non-zero values in the

diagonal matrix are the singular values of the original matrix. These singular values are the

eigenvalues of the original Hermitian matrix. Since our covariance matrices are Hermitian

matrices by construction, we can use the Jacobi method.

The works of Brent and Cavallaro [Brent (1983, 1985), Cavallaro (1987)] have shown how

systolic hardware architectures using the Jacobi method can be implemented for carrying out the

SVD in parallel. They proposed to de-compose the initial matrix in 2x2 interconnected sub-

matrices operating in parallel to get the result. Their proposal is not very efficient for our

purposes since they need as many resources in the FPGA as possible for maximizing the

parallelism. More efficient architectures, however, were proposed by [Bravo (2006, 2007,

2008)] and [Ahmedsaid (2004)] clearly inspired in the works by [Brent (1983, 1985)]. These

architectures are focused in saving hardware resources by re-using as many elements as

possible.

To study the performance of our proposed SVD architecture, we have coded the Brent’s

algorithm in C and carried out a battery of RTE inversion tests using this implementation.

Following [Bravo (2006], we assume that our covariance matrix is normalized to its maximum

matrix element. We have started by using a long representation in fixed-point precision of 48

bits. Precision has been iteratively reduced as much as possible while keeping the equivalent

RTE inversion accuracy to the single floating-point version. After all these iterations, an

average accuracy of around 5 x 10-8 in the computed eigenvalues has been found necessary.

In summary, we propose an architecture on FPGA similar to [Bravo (2006)] and

[Ahmedsaid (2004)], which are inspired as well in the Brent’s proposal. The fastest architecture

takes 16.5 µs for carrying out the SVD on a 10 x 10 matrix with an 18-bit precision [Bravo

(2006)]. Errors with this precision are of the order of 4x10-6 in units of the largest eigenvalue.

Our challenge, hence, is bigger than his because we can only afford errors of 5x10-8 in less than

14.3 µs (according to the 15 minute time requirement for the whole RTE inversion).

The SVD design shown in this dissertation has not been possible without the works by

[Ramos (2011)] and [Aparicio (2013)], where thorough discussions and details can be found.

 The Jacobi iterative method 7.2

Several computational solutions for SVD are usually based in the Jacobi method. In general

terms, this method consists in appropriately rotating matrices to get diagonal matrices [Jacobi

(1846)]. After such operations, the diagonal elements of the obtained matrix correspond to the

7.3 The Brent’s algorithm

 91

singular values. This is a sequential process where the previous stage has to be finished in order

to complete any stage in the algorithm.

The method consists in the calculation of a proper angle to rotate the matrix so that every

non-diagonal element will be equal to zero. Every rotation affects the majority of the matrix

elements (exactly those placed in the same row and in the same column). Jacobi showed that

each rotation takes us closer to the solution, as each rotation reduces the quadratic sum of the

non-diagonal elements. An extended outline about the Jacobi method can be found in [Bravo

(2007)].

Note that the initial matrix is finally diagonalized after several rotations and its diagonal

elements are the eigenvalues. We call that matrix the eigenvalue matrix along the SVD process.

The final eigenvector matrix is obtained through the product of all the rotations applied in

the eigenvalue computation. That is, we depart from the identity matrix and then apply on it the

same rotations as in the eigenvalue matrix –the rotation angles for the identity matrix

correspond, column by column, with the angles applied to get the eigenvalues in that column.

This way, both the eigenvectors and the eigenvalues are obtained simultaneously.

The number of iterations depends on the required accuracy in the eigenvalues. [Brent

(1983)] finds that Mxlog(M) iterations are needed, where MxM is the size of the matrix.

Here, the algorithm input matrix is a covariance square matrix, that is, a symmetrical

matrix of 9 x 9 elements. The matrix symmetry reduces the amount of rotations needed for the

diagonalization [Götze (1993)].

 The Brent’s algorithm 7.3

A hardware-focused implementation of the Jacobi method was presented by [Brent (1983,

1985)]. Such an implementation exploits the implicit parallelism that the method provides.

For square matrices and with an even number of rows and columns, Brent proposed a half-

parallelizable algorithm for the SVD process. He suggested to de-compose the initial matrix in 2

x 2 sub-matrices that operate interconnected to get the result. Brent named “processors” each of

these sub-matrices according to their operation mode. Table 13 specifies the three types of such

processors.

Since our correlation matrix has a size of 9 x 9 elements, we have to fulfill the matrix with

zeros for getting a squared matrix with an even number of rows and columns. Hence, our

problem matrix has 10 x 10 elements. The 10 x 10 covariance matrix is divided in 2 x 2 sub-

matrices. The diagram in Figure 35 shows an illustration of such a decomposition. Likewise, the

92

Chapter 7. The Singular Value Decomposition within the RTE inverter

identity matrix is decomposed in PV processors to get the corresponding eigenvectors in Figure

36

Name Description
Diagonal Processor
(PD)

The (2x2) sub-matrices with elements from the initial matrix
main diagonal

Non-Diagonal Processor
(PND)

The (2x2) sub-matrices with elements that do not appear in
the initial matrix main diagonal

Vectorial Processor
 (PV)

The (2x2) sub-matrices which operate on the identity matrix
for the eigenvector calculation. The operations on these sub-
matrices are related, column by column, with the operations
applied to get the eigenvalues in the PD

Table 13 Types of processors in the Brent’s algorithm

Figure 35 Eigenvalues matrix decomposition into processors

.

Figure 36 Eigenvector matrix decomposition into processors

Therefore, the Brent algorithm consists of a mesh of rotation matrices iteratively working

in parallel. It is important to note that we are working with symmetric matrices. Hence, the

7.3 The Brent’s algorithm

 93

number of “processors” can be reduced, as proposed by [Götze (1993)] and adopted by [Bravo

(2006)], by taking the upper (or lower) triangular matrix. In our case we have finally 5 PD, 10

PND, and 25 PV processors.

The algorithm is iterative and the solution is closer after each iteration. Any iteration has

four stages. In each of them, the PD, PND, and PV processors have to perform a number of

operations as detailed in the following sections. The precision requirements will determine the

amount of iterations that we should apply in the process.

 Stage I: angle calculation 7.3.1

Each PD calculates the rotation angle required to cancel its corresponding non-diagonal

elements. At this stage, all PDs work simultaneously. The diagram in Figure 37 shows the

involved PD processors (one color per processor). Only the necessary processors for a

symmetric matrix are shown.

PD

PD

PD

PD

PD

PND PND PND PND

PND PND

PND PND

PND

PND

Figure 37 Stage I Brent’s algorithm (angle calculation)

Assuming a diagonal processor like PD = �X�� X��
X�� X���,

the rotation angle is given by

∝	 �
� tan� �

2	���
��� � ����. (1)

Note that X12 = X21 because our matrix is symmetric.

 Stage II: angle transmission 7.3.2

In the next stage, the diagonal processors transmit the value of the calculated angle, α, to all

the processors being on their rows and columns (see Figure 38).

94

Chapter 7. The Singular Value Decomposition within the RTE inverter

PD

PD

PD

PD

PD

PND PND PND PND

PND PND

PND PND

PND

PND

PV

PV

PV

PV

PV

PV

PV PV PV PV

PV PV

PV PV

PV PV

PV PV

PV PV

PV PV

PV PV

PV

Figure 38 Stage II Brent’s algorithm (angle transmission)

The PND processors receive the corresponding angle from their row PD and column PD

while the PV processors receive the angle from their corresponding column PD. Once all the

angles are received, all the processors are ready for the next stage.

 Stage III: simultaneous operations 7.3.3

In this stage, all the processors have the angles to carry out their corresponding operations

simultaneously. PD and PND both carry out a double operation. PV performs a single operation.

Below we detail how these operations are performed inside them.

• (Stage III - PD) Diagonal processors

The PD processors are transformed by rotation of an angle α of their original

expression, according to

��� 	 	��α������� ! �� ! ��α�������,

(2)

where ��α� 		 	 " cosα sin α
� sinα cos α', and αcolumn being the angle previously calculated in Stage

I.

7.3 The Brent’s algorithm

 95

• (Stage III - PND) Non-Diagonal Processors

Instead of a pure rotation, PNDs transform according to

�(�� 		��α)*+� ! �(� ! ��α�������, (3)

where αrow and αcolumn are the angles received from their row and column PDs, respectively.

• (Stage III - PV) Vector Processors

The vector processors transform according to

�,� 	 	�, ! ��α�������. (4)

 Stage IV: re-sorting elements 7.3.4

In this stage, we re-sort all the matrix elements in order for all the possible pairs of data to pass

through the diagonal processors. Likewise, we carry out the corresponding sorting of the data

affecting the PV so that we do not lose the correlation between eigenvectors and eigenvalues.

As described in [Brent (1983)], the re-sorting of data corresponds in fact to a re-sorting of

data within the processors themselves and an exchange of data between the different processors.

The general idea is to fix the element (0,0) of the matrix and exchange rows and columns within

each processor; then, later exchange rows and columns between processors.

These operations can be specified in a clearer way by indicating which is the new position

of the matrix elements after having re-sorted the initial one. The diagrams of Figure 39 show the

initial position (a) and the position where the data must be written to be re-arranged (b). Once

the matrices are re-sorted, the four stages of the algorithm can be repeated again.

Figure 39 Positions of covariance matrix elements, before and after the rearrangement process

96

Chapter 7. The Singular Value Decomposition within the RTE inverter

 The SVD architecture design 7.4

The proposals by [Brent (1983, 1985)] use specific hardware for each sub-matrix using a

systolic architecture. However, this approach is obviously too demanding in terms of hardware

resources. This issue was improved in a recent proposal by [Bravo (2006, 2007, 2008)], where

specific pipelined cores are used. Bravo suggested using only one unit for calculating the angle

and another one for rotations in a pipelined way. Since we need to save as many resources as

possible we have taken the proposals by Bravo as a reference.

The necessary tasks in the Brent’s algorithm are sketched in Figure 40. The eigenvalue and

eigenvector matrices are iteratively introduced into the four stages of processing explained in

the former section. In this picture, the task dependencies that the Brent’s algorithm requires are

reflected. It clearly illustrates how the angle calculation stage stalls the following stages, so that

they cannot be executed in parallel. Each sub-matrix of the eigenvalues matrix needs two

transformations (PDs and PNDs; see stage III and Equations (2) and (3)), while sub-matrices of

the eigenvectors matrix only need one (PVs; see stage III and Equation (4)).

Figure 40 SVD algorithm task dependencies

The use of pipelined cores with a high throughput, like one result per cycle, is justified by

[Bravo (2006)]. This is a clear advantage with respect to the Brent’s architecture where several

angle and rotation cores are needed in stages I and IV. We follow the same strategy in our

proposal. On the other hand, Bravo modified the angle unit for being used also as a second

rotation unit during stage III in order to accelerate the processing of that stage. However, we are

going to arrange the architecture in an alternative configuration.

The task dependencies do not permit to execute both main stages in parallel over a unique

correlation matrix, as Figure 40 illustrates. This obviously limits the performance of the

architectures in [Bravo (2006)]. Hence, we suggest computing two Singular Value

7.4 The SVD architecture design

 97

Decompositions over two different correlation matrices at the same time. In this way, Stage I

and Stage III can be executed over each matrix in parallel without any conflictive task

dependence.

As we explained in Section 5.3, the SVD block is inside the Shared Operation Block. This

means that the 12 nProcessors can use it in a shared way in the SIMD architecture.

Nevertheless, only two such correlation matrices can enter the SVD block at a time.

Figure 41 SVD architecture

So, in the same way as Bravo, we propose an SVD architecture that uses only one pipelined

angle calculation core and one pipelined rotation core. This is illustrated in Figure 41, where the

architecture is sketched. Our improvement to former proposals is the simultaneous calculation

of the SVD for a second matrix. Thus, our SVD architecture is improved and optimized for

carrying out the decomposition of two correlation matrices at the same time in a pipeline way.

Figure 42 tries to illustrate how both cores are always working in parallel and the matrices use

each operation core alternatively. That is, while a matrix MB is executing Stages I and II (angle

calculation and angle transmission), other matrix MA is executing the Stages III and IV

(rotations and re-allocation) using angles previously computed. We have called Angle Stage

EigenVal &

EigenVect

Memories

Control Unit

Rotator

Angle

Calculation

Angle memo

sin(α) & cos(α)

Input portOutput port

Reallocate

2x2 matrix bus

98

Chapter 7. The Singular Value Decomposition within the RTE inverter

and Rotation Stage to these parallel tasks. The Angle Memo block in Figure 42 is the buffer that

permits to disconnect the two main tasks. This block is provided with memories to store the

computed angles in the Angle Calculation block that are later used in the Rotator block.

Figure 42 Pipelined Scheme of the SVD architecture

The SVD block performance and resource occupation obviously depend on the desired

precision. Defining a target precision is not an immediate decision because the SVD algorithm

implies an iterative procedure nested within the iterative RTE algorithm. Besides, the SVD

result conditions the convergence along the RTE inversion. According to our numerical

experiments in Section 7.1, we have concluded that 27 bits are enough in the Angle Calculation

block for getting the target SVD precision (5 x 10-8 in the computed eigenvalues). The rotation

core works in single floating point precision like most parts of the RTE system, as we are going

to show later. This means that data paths and memories have to support this word length. The

consequences will be analyzed later.

A Control Unit block is also shown in Figure 41. This block handles all multiplexers,

decoders, enable signals for memories, and the rest of control signals in order to control the

pipelined SVD process. Most of these signals are omitted in the diagram for simplicity. We

describe the most important control issues in the next subsections for a better understanding of

our proposal. In any case, the Finite State Machine of the Control Unit Block has been

thoroughly detailed in [Cobos (2013)].

Angle

Calculation

ROTATOR

MB

eigenVals i-1

MA

eigenVals i

MA

eigenVect i

MA

eigenVals i-1

MA

eigenVect i-1 R
e
a
llo
c
a
te

A
n
g
le
 m

e
m
o

s
in
(α
)
&
 c
o
s
(α
)

MB angles i

ANGLE STAGE

ROTATION STAGE Angle memo

sin(α) & cos(α)

MA angles i-1

7.4 The SVD architecture design

 99

 Eigenvalue and eigenvector memories 7.4.1

Working with two correlation matrices in parallel implies to store both matrices in

memory. This increases the needs for memory size. But this issue is not a severe problem since

the matrices are not enormous and the FPGA has enough Block RAM to allocate them (see

Table 5).

Both computation cores need a sub-matrix of 2 x 2 elements for operating (buses for

transmitting 2 x 2 matrices are used as indicated in Figure 41). This means that it is necessary to

read four data in a cycle for an optimal performance. Bravo uses double-port memories (which

provide two data in one cycle). The work frequency of these memories is double than the rest of

the SVD system. So, he obtains the four data in one cycle of the main SVD system. He can also

write four data in the same cycle but he does not need to write and read simultaneously because

the angle calculation stage does not work in parallel with rotations in his architecture. Then,

until the eigenvalues matrix is not completely finished, the angle calculation cannot be executed

again.

The solution in [Bravo (2006)] has two drawbacks for us. The first one is that we need up

to eight data in one cycle (remember that both cores are working in parallel), but the double-port

memory technology in the Virtex 4 FPGA does not permit that. The double-port memories only

permit write or read two data in one cycle at maximum. The second inconvenience is that using

the double frequency in the Block RAMs increases the power consumption significantly. Using

high frequency clocks in a space system could add other problems in the device since the

probability of having an error due to radiation increases with increasing clock frequency [Engel

(2006)].

We have solved the first issue by using two memory address spaces for allocating the two

matrices: Memory A and Memory B. To get four data in one cycle without using two different

frequencies, we propose to split each memory address space in two dual-port Block RAMs. In

Figure 43, this splitting is indicated with different colors and with a suffix to the memory name:

MemoryA_1, MemoryA_2, MemoryB_1, and MemoryB_2. Since each dual-port Block RAM is

able to provide two data, four of them are able to provide 8 data.

Since each matrix is doing a different task with a different memory, it is never stalled by

the other matrix. But it is important to remark that this memory organization also solves the

problem of writing the four rotation results because it can write them in one cycle without any

problem.

Storage of an initial matrix into a specific memory address space, which has been split in

two memories, is not straightforward. The sub-matrices are always read in the same order but

the writings are done in the Reallocate block in different positions. To guarantee that four

100

Chapter 7. The Singular Value Decomposition within the RTE inverter

elements can be read in one cycle, they always have to come two by two from the two

memories. In the same way, to write four elements in one cycle, then, they have to go two by

two to the two memories. In Figure 44, we show the splitting that we have proposed for the

input matrix and for the initial identity matrix. Colors correspond to the two different dual-port

memories. There are several combinatorial possibilities, but we have selected a solution that

permits some homogeneity in the process, for that there only are two types of readings and

writings, namely, readings and writings of crossed elements in the sub-matrix. We called them

crossed readings and writings hereafter. This scheme is easily scaled for other matrix sizes.

Figure 43 Matrix memories implementation detail

The matrix elements of the different processors are stored in order, since all of them are

introduced one by one and one per cycle to the rotation core. PD matrix elements come first,

then PND elements and, finally, the PV elements are stored. Only PD matrices have to be

introduced to the angle calculation core in Stage I. The memory organization is shown in detail

in Appendix VI. Following this organization within the memories, the Distribution block (see

Figure 43) can easily access the different processors using just one counter. The Distribution

block uses a reading block that compensates the kind of crossed reading of each processor. The

7.4 The SVD architecture design

 101

crossed reading depends on its position within the matrix as Figure 44 illustrates. This internal

reading block is shown in Appendix VI.

X11 X12 X13 X14 X15 X16 X17 X18 X19

X22 X23 X24 X25 X26 X27 X28 X29

X33 X34 X35 X36 X37 X38 X39

X44 X45 X46 X47 X48 X49

X55 X56 X57 X58 X59

X66 X67 X68 X69

X77 X78 X79

X88 X89

X99

X01 X02 X03 X04 X05 X06 X07 X08 X09X00

PD1

PD2

PD3

PD4

PD5

PND1 PND2 PND4

PND9

PND2

PND10

PND7

X11 X12 X13 X14 X15 X16 X17 X18 X19

X21 X22 X23 X24 X25 X26 X27 X28 X29

X31 X32 X33 X34 X35 X36 X37 X38 X39

X41 X42 X43 X44 X45 X46 X47 X48 X49

X51 X52 X53 X54 X55 X56 X57 X58 X59

X61 X62 X63 X64 X65 X66 X67 X68 X69

X71 X72 X73 X74 X75 X76 X77 X78 X79

X81 X82 X83 X84 X85 X86 X87 X88 X89

X91 X92 X93 X94 X95 X96 X97 X98 X99

X10

X20

X30

X40

X50

X60

X70

X80

X90

X01 X02 X03 X04 X05 X06 X07 X08 X09X00

PV1

PV5

PV20

PV25

Figure 44: Eigenvalue and eigenvector memory splitting

In summary, each eigenvalue matrix consists of 60 elements (upper triangular matrix of the

correlation matrix of 10 x 10) and the eigenvector matrix is composed of 100 elements. Thus,

each memory block, Memory A and Memory B, will have 80 positions in total because 30

positions are for eigenvalues and 50 for eigenvectors. Each Block RAM on the FPGA has a

length of 1024 positions. Therefore, using this same organization, we can compute matrices up

to 25x25 elements without using additional Block RAMs.

 Rotator block 7.4.2

This block has to carry out the rotation of the processors using the corresponding angle.

CORDIC (Coordinate Rotation Digital Computer) blocks were proposed by [Cavallaro (1987)]

to perform the angle calculation and rotations within a Brent’s architecture. CORDIC is a

simple and efficient algorithm to calculate trigonometric functions, in fixed-point precision,

102

Chapter 7. The Singular Value Decomposition within the RTE inverter

through an iterative process based on small steps that only use addition, subtraction, bit shift,

and look-up-tables (LUT) [Volder(1959)]. In addition, CORDIC blocks can also be used for

resolving rotations. The use of pipelined CORDIC block in the SVD computation was

introduced by [Bravo (2006)].

Vector rotations are primitive CORDIC operations. The diagonalization of each processor

can be performed by treating each processor as a pair of vectors and using the rotation angles to

transform the processor [Cavallaro (1987)]. Then, two CORDIC blocks are used to carry out

the two vector rotations of each processor in parallel. They called this structure two-sided

CORDIC. [Cavallaro (1987)] uses two two-sided CORDIC (four CORDIC blocks) for the

double rotation necessary in the PD and PND processors and one two-side CORDIC in the

single rotation of the PV processors.

[Bravo (2006)] also uses two two-sided CORDIC but in a pipeline way and one of them

has been modified for computing the angle calculation. This is possible because, as mentioned

in Section 7.3, he does not carry out the angle calculation stage in parallel with the rotation

stage and he configures the two-sided CORDIC for angle calculation or rotation.

CORDIC is extremely useful when no hardware multipliers are available. Note that

Cavallaro’s proposal is almost thirty year old. However, the Virtex family has embedded DSP

cores which are able of implementing multiplication in an optimal manner. Bearing in mind this

fact, and in an attempt to find the rotation core that consumes less hardware resources, we

propose to use a particular implementation of vector rotation on FPGA better than using

CORDIC blocks.

Our implementation lies on that rotation of the vector (X, Y) by an angle α:

�′ 	 �./0 ∝ 	−1023 ∝,
1′ = �023 ∝ 	+1./0 ∝.

(5)

That equation can be solved on the FPGA through floating-point arithmetic operations. The

basic idea is to extract the trigonometric operations of each vector rotation calculation, which

will be computed previously to the rotation. That significantly reduces the amount of

trigonometric operations. In fact, the sin(α) and cos(α) operations should be calculated in all the

rotations (55 in total, two for each PD and PND), but using our proposal they have only to be

computed as many times as angles (5 in total, one for each PD). Then, the angles are now used

for calculating the trigonometric operations directly instead of being used as rotation angles like

in [Cavallaro (1987), Bravo (2006)]. This proposal of a simplified vector rotation core is

illustrated in Figure 45, where sin(α) and cos(α) are explicitly received instead of α.

7.4 The SVD architecture design

 103

Figure 45 Simplified vector rotation based on arithmetic operations

For computing the trigonometric operations, a CORDIC block has been introduced in the

Angle Calculation block to use the angles at the same time they are produced (see Section

7.4.3). This new CORDIC block is able of computing the sine and cosine at the same time. The

Angle Calculation block does not return an angle but trigonometric values. Later, in the angle

transmission stage, sin(α) and cos(α) are transmitted directly instead of α. This transmission is

done by using the intermediate memory Angle Memo (see Figure 41). Note that, despite this

new functionality, we have kept the name of these blocks as Angle Calculation block and Angle

Memo block.

To summarize, the Rotator block is composed of two simplified rotation blocks (see Figure

45), which substitute the two CORDIC blocks within the two-sided CORDIC block of

[Cavallaro (1987)] and [Bravo (2006)].

Figure 46 clearly indicates that the resource occupation in our proposal is smaller than that

in Cavallaro’s. In our simplified version we have added the resources occupation of the new

rotator core and the trigonometric CORDIC core for understanding how the new strategy affects

the total amount of resource consumption. The differences are not very significant in favor of

the simplified version since they only represent around 2 % of the total FPGA logic resources

(Flip-Flop and LUTs). However, the new simplified rotation core does not expand in resource

occupation as faster as the CORDIC-based one. Our proposal is also more efficient as far as a

possible precision increase is concerned. The cases for 27 bit and 32 bit precision are displayed.

Differences between the two methods are only about 2 % for the first case but increase up to 5%

in the second case. The reason for the high resource occupation of these blocks lies in that they

are in a pipelined implementation, as we commented on before. This justifies our decision of

using a simplified Rotator block instead of a CORDIC-based one like in [Bravo (2006)].

104

Chapter 7. The Singular Value Decomposition within the RTE inverter

Figure 46 Two-sided CORDIC rotator vs. simplified Rotator block plus the trigonometric
CORDIC. Comparison of resource occupations according to the number of bits

Introducing a CORDIC core in the Angle Calculation block for releasing another similar

block from the Rotator block could seem a paradox. But, apart from saving hardware resources

as we have argued, there are other advantages of using our simplified rotation. The new rotator

version admits more freedom upon adjusting the final precision. Its resource occupation growth

is not as dramatic in proportion to the target precision. Thanks to working in floating point

precision, which provides a wider dynamic range than fixed point precision, we can partially

avoid the rounding errors that are usually introduced by a CORDIC rotator, as was documented

in [Bravo (2006)]. These rounding errors are due to the limit that its fixed-point precision can

reach. In fixed-point operations the relative errors are always equal or greater than those using

floating point operations, under the same conditions in number of bits [Kahan (1987)].

The proposed simplified Rotator block, occupies around a 5 % of the total FPGA resources

(Flip-Flop and LUTs). On the other hand, rotations of eigenvalue and eigenvector matrices can

be performed in parallel. Thus, we can introduce a second Rotator block for performing these

rotations in parallel with a hardware cost of around a 5 %. Introducing another two-sided

CORDIC in the architecture by Bravo means a hardware cost of around a 14 %. We can

conclude that our SVD proposal provides a higher theoretical scalability than Bravo’s.

To take the Rotator block to its maximum performance, the rotation process is in a

pipeline, that is, when the rotation starts and we provide it with inputs, it takes a number of

cycles in yielding the rotated data (initial latency). Fortunately, thanks to the pipelined

implementation, we do not have to wait until the rotator has finished each rotation. That would

7.4 The SVD architecture design

 105

be too slow and not efficient. Rather, we give a new input to the rotator block in each clock

cycle. The result is such that when rotation is finished after a latency period, we have a new

result every clock cycle.

To compensate for having a unique Rotator block and the initial latency we have attempted

to introduce the processors as soon as they are available. We start the first rotation of PD and

PND processors (eigenvalue matrix). When all the eigenvalue data are already given to the

Rotator, we start with the unique rotation of PV processors (eigenvector matrix). When the

result of the first rotation of eigenvalues is ready, we can go with the second rotation for them if

all the eigenvectors have been rotated. Thus, the Rotator block needs a data feedback as is

illustrated in Figure 41.

Each processor has to be rotated by the angle that corresponds to its position. To choose the

right sine and cosine values from the Angle Memo memory, according to the proposed memory

distribution, the Control Unit uses a table which codifies the corresponding angle for each

processor position. This table is shown in Appendix VI.

 The Angle calculation block 7.4.3

The other main task in the SVD process is the angle calculation for the PD processor. So, this

block is intended to do the angle calculation expressed in Equation (1) as well as to calculate the

sine and the cosine of each angle. This block is illustrated in Figure 47.

As commented on in Section 7.4.2, we are using floating point operations in the Rotator

block in the same way that memories and buses work. Then, the only part that works in fixed-

point precision is the CORDIC blocks in the Angle calculation block. However, the inputs to the

Angle calculation block, PD processor, are data in floating point representation. As seen in

Figure 47, the inputs are operated also in floating point to calculate the difference of the PD

processor diagonal, as Equation (1) requires.

CORDIC blocks work in fixed point and a format conversion is necessary. Hence, the

block flp2fxp performs this conversion. The fixed point format uses 27 bits of precision. As is

shown in Figure 47, the necessary multiplication by 2 is performed after the conversion using a

shift-register of 1 bit to the left.

The arctangent of a division is necessary in Equation (1). To implement this arctangent

operation we use a CORDIC core synthesized for arctangent(y/x) solving. In this manner, we do

not have to carry out the division separately. This operation is reflected in Figure 47 as

ATAN2_CORDIC(Y, X). This CORDIC block actually implements the well-known atan2

function. Later, a quadrant translation is necessary to get the desired angle. It is carried out in

106

Chapter 7. The Singular Value Decomposition within the RTE inverter

the Quadrant_Translation block. The last step to complete the computation in Equation (1) is a

division by 2. This is performed through a shift-register of 1 bit to the right.

As we have argued in the last subsection, another CORDIC block was introduced for the

trigonometric calculations, which is called SIN_COS_CORDIC. It calculates the sine and cosine

in fixed-point precision. The outputs of this core are immediately converted to 32 bit floating

point data, in the fxp2flp block, in order to be stored in the Angle Memo block.

CORDIC cores are Intellectual Property (IP) cores by Xilinx and they have been generated

using the Xilinx Core Generator tool [Xilinx]. More details about implementation of these

specific cores are given in Appendix VI.

Figure 47 Angle Calculation block

Output:

X11X22X12

y

α'=ATAN2_CORDIC(Y,X)

SIN_COS_CORDIC(α)

Shift_right (÷2)

flp2fxp

fxp2flp

α =Quadrant_traslation(α')

x

-

Shift_left (Mult. by 2)

sin(α) cos(α)

Input: PD processor

7.5 Results

 107

 Reallocate block 7.4.4

As Figure 41 illustrates, the Reallocate block gathers the outputs from the Rotator block and it is

in charge of writing them in the Eigenvalue and Eigenvector Memories (EEM). During the

writing process the re-sorting of elements is carried out.

The Rotator output is composed of four elements (a rotated processor) and the EEM is

designed for writing these four values in the same clock cycle. The Reallocate block contains a

ROM memory inside that codifies the write address for each element. This ROM is prepared

according to the re-sorting stage and the memory organization explained in Section 7.4.1. A

table with the ROM contents is given in Appendix VI.

 Results 7.5

In this section we are going to outline the most important results of the SVD proposal as the

reached precision, the speed performance and hardware resource occupation. We discuss the

architecture scalability as well.

It is important to remark that the SVD design presented in this thesis was implemented and

tested by [Aparicio (2013)]. In addition, specific studies and tests about the CORDIC blocks

were presented in [Ramos], who has provided several software tools for debugging and testing

the SVD architecture. However, these tools are currently unpublished.

 Hardware resource occupation 7.5.1

In Table 14, the hardware resource occupation of the proposed architecture is shown. The

required precision imposes a high occupation of resources. Most of the occupied elements are

due to the CORDIC blocks since this implementation needs a lot of LUTs and Flip-Flops, as

was discussed in last subsection. The DSP elements are used in the floating point operations

within the Rotator block and the subtraction operation in the Angle Calculation block.

The maximum frequency of the SVD subsystem is limited by the CORDIC arctangent. It

forced us to have two different clock domains within the RTE inverter since the rest of the RTE

inverter works at 150 MHz.

Resources Occupatio %
Occupied Slices 10,754 43%
 LUTs 16,266 33%
 FFs 14,735 29%
BRAM (18kb) 9 2%
DSP48 60 11%
Maximum 116 MHz

Table 14 SVD architecture resource occupation

108

Chapter 7. The Singular Value Decomposition within the RTE inverter

 Precision 7.5.2

As we mentioned in 7.1, a target average precision of 5x10-8 was decided after simulations of

the RTE inversion using the SVD algorithm coded in C.

To test that the SVD is able of reaching this precision, we carried out the SVD on FPGA

over 105 correlation matrices obtained from an execution of the RTE inversion algorithm using

MELANIE profiles. Then, we compared the eigenvalue results from the FPGA with the ones

from the SVD algorithm in C in single floating point precision. The average root-mean-square

differences between the obtained eigenvalues are shown in Table 15.

SVD Iterations Average root-mean-
square differences

9 2,61 x 10-8
18 2,63 x 10-8
27 2,63 x 10-8

Table 15 Root-mean-square differences in the computed eigenvalues (FPGA vs C)

As we mentioned in Section 7.2, the study in [Brent (1983)] about the Jacobi iterative

method concluded that the SVD solution is reached approximately after Mxlog(M) iterations,

where M is one dimension of the square input matrix. On the other hand, the eigenvalue matrix

elements are re-sorted in the Brent’s algorithm after every iteration and the position of the final

eigenvalues are exchanged along the diagonal. After M-1 iterations the elements in the diagonal

are sorted according to their initial order. Thus, we have restricted the number of iterations to

multiples of this number, that is, to 9, 18, and 27 iterations but alternative numbers can be used.

Table 15 shows that the target average precision has been reached. Also, the FPGA results

have the same behavior than those in the C version along the number of iterations because the

differences are constant independently of that number.

This test has verified that the SVD block works properly. However, to compare how well

the initial eigenvalue matrix is diagonalized and how well the eigenvectors are computed, we

carried out another test based on the fulfilment of Equation (6):

(6)

where A is the input matrix to the SVD, 56
77778 stands for any of the 10 calculated eigenvectors and

vk its corresponding eigenvalue. We can compute the quadratic differences, χ2. The value of χ2

indicates the goodness of the eigenvalue problem solution.

95:77778 = ;:5:77778,

7.5 Results

 109

(7)

Table 16 shows the results from computing χ2 for both SVD methods, C-MILOS and

FPGA. For 9 iterations, the FPGA version is able of diagonalizing the input matrices as good as

the C-MILOS version. This is not the case for 18 and 27 iterations, however, where C-MILOS

reaches better results. The differences can be explained by the higher precision that the C

version reaches in the computation of the arctangent and sine and cosine functions. This is

indeed the only implementation difference. Remember that the FPGA uses a fixed point

CORDIC approximation to the trigonometric functions, 27 bits specifically. This implies that

elements in the eigenvalue matrix can be neglected on the FPGA if they are smaller than the

used precision by CORDIC.

SVD
Iterations

Average χ2

 C SVD FPGA SVD
9 9.04 x 10-9 9.04 x 10-9
18 9.79 x 10-16 3.57 x 10-15
27 4.82 x 10-16 3.18 x 10-15

Table 16 Average χ2 for C and FPGA versions

In any case, according to these results we conclude that the FPGA SVD architecture

diagonalizes the input matrix correctly and provides root-mean-square differences of the order

that we have estimated adequate. The final validation will be carried out using this architecture

within the RTE inverter in order to know whether the reached precision is good enough for

SO/PHI. This test will be discussed in Chapter 9.

 Time performance 7.5.3

As is well known, the execution time of a pipeline system is computed taking into account the

number of pipelined stages and the duration of the longest one. We have designed a pipelined

SVD architecture where the two main stages are the Angle Stage and the Rotation Stage. In this

section we are going to discuss the time performance of the proposed SVD architecture taking

into account that is focused to 10 x 10 matrices. So, we calculate the time for this size of matrix

first and speak about the architecture scalability later.

The Rotation Stage duration is conditioned by the floating-point operation trees within each

vector rotator. Taking into account a latency of 18 cycles in the Rotator block, the 55 rotations

<� =
=	|95:77778 −	;:5:77778|�

? @?

110

Chapter 7. The Singular Value Decomposition within the RTE inverter

performed in total (double rotations in PD and PND, and single in PV processors), and a latency

in the Reallocate block of 6 cycles, the total duration of this Stage is 79 cycles.

On the other hand, the duration of executing the Angle Stage is mainly conditioned by the

two CORDIC blocks and the floating-point subtraction within the Angle Calculation block. The

duration of both blocks is proportional to the target precision since CORDIC performs as many

iterations as those required for the desired precision. This final duration is of 30 cycles for each

block. Then, the Angle Stage takes 75 cycles.

We can then compute the total duration (in cycles) of the SVD execution, TSVD, as

(8)

where Lini is an initial latency of 60 cycles in which an initial eigenvalue matrix is introduced to

the SVD architecture, Lfin is the final latency of 110 cycles for releasing the eigenvalue and the

eigenvector results, Tmax is the longest duration of all the Stages (79 cycles), S is the number of

the Stages in the pipelined architecture (2), Niter is the number of iterations in the SVD

algorithm, and Clk_period is the inverse of the clock frequency in the system. Note that the

number of iterations is increased in one for the latencies produced for filling and emptying the

two main stages to be taken into account: at the beginning of the execution only the first matrix

(MA) is inside the Angle Stage and the Rotation Stage is empty; finally, the Rotation Stage is

occupied by the second matrix (MB) and the Angle Stage is empty.

The maximum frequency at which the SVD block is able to work is limited by the

arctangent CORDIC block which is around 116 MHZ. We are using a frequency of 110 MHz in

this test and in the final RTE inverter.

Times obtained applying Equation (8) are shown in Table 17 for different number of

iterations. Note that the times in this table are for each SVD execution, which indeed computes

the SVD for two matrices at a time. As was mentioned in 7.1, the time requirement for the SVD

within the RTE is 14.3 µs per matrix. Thus, we can conclude that only the cases with 9 and 18

iterations can be used for reaching that requirement. Their times are 7.38 and 13.77µs per

matrix, respectively.

 Iterations

 9 18 27

2 matrices of 10x10 14.76 µs 27.55 µs 40.35 µs

Table 17 Execution time of the SVD (2 matrices)

TBCD = EFGHG + IJKL	S	(NGOP) + 1) + FRGHSTU6VP)G*W ,		

7.5 Results

 111

When compared to Bravo’s performance [Bravo (2006)], whose architecture takes 16.53 µs

using 19 iterations for a 10 x 10 matrix, we can see that our proposal improves the execution

time when using either 9 or 18 iterations. The root-mean-square differences that are reached in

[Bravo (2006)] are around 4x10-6 while we have reached root-mean-square differences around

two orders of magnitude better.

 About scalability and improvements 7.5.4

The SVD architecture is able of computing the singular value decomposition of matrices

with a size up to 25 x 25 without introducing any important change. Only more Block RAMs

for larger matrices would be necessary but this is almost direct as well. The main change for

adapting the SVD proposal to other matrix sizes is to carry out a configuration of the memory

address space and the reading and re-allocation tables.

On the other hand, a second Rotator block can be introduced for improving the time

performance at the expense of around 5% of the FPGA resources (see Section 7.4). This could

be interesting because the Rotation stage is the longest one. Additionally, TSVD depends on the

maximum duration time, Tmax, which in turn depends on the size of the computed matrix. If we

consider using different matrix sizes, the Rotation Stage will increase its duration proportionally

since the number of sub-matrices grows. The Angle Stage duration is less affected by the matrix

growth since it only processes the diagonal processors (PD) instead of the Rotation Stage which

has to rotate all the processors (PD, PND and PV).

The final SVD times using one Rotator and two Rotators are compared in Figure 48, where

TSVD is plotted as a function of the matrix dimension. In that comparison the number of

iterations is 9. The improvement, however, can be assumed similar for other number of

iterations, as the time for different iterations is proportional to Niter .

Contrary to expectations, the SVD execution time with two rotators is almost constant until

the matrix reaches a 14 x 14 dimension. It is even longer than that with only one rotator for

matrices smaller than approximately 10 x 10. The explanation is to be found in the Angle

Calculation Stage, which becomes the longest stage for matrices of these sizes. It conditions

Tmax and, thus, the total time in Equation (8).

112

Chapter 7. The Singular Value Decomposition within the RTE inverter

Figure 48 SVD time execution for different matrix sizes

Therefore, the only means for improving the execution time for matrices of size less than 14 x

14 with 2 rotators is to reduce the time for the Angle Calculation block. To reach this

improvement, the best option is to implement the arctangent and/or the sine and cosine blocks

using Look-Up-Tables (LUTs). These operations are usually implemented through a LUT-based

method for improving time and space on FPGA [Florent (2005)]. Then, using two rotators and

introducing a sine and cosine block in the Angle Calculation block with a shorter latency of

about 8-10 cycles, an improvement is reached, as shown with red dots in Figure 48. This

improvement, however, has not been implemented in the final system because the time

performance already fulfilled the requirements.

5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9
x 10

-5

Square matrix dimension

ti
m

e
 (

µ
s
)

SVD execution time

9 iter 1 rot

9 iter 2 rot

9 iter 2 rot+LUTs

113

________________________________ 8 ________________________________

8 The RTE inverter aboard SOPHI

ntil now, we have omitted some information about the communication with the DPU and

the error mitigation in the radiative space environment. In this chapter we discuss these

important issues in the final SIMD architecture. We will also give some more details about the

integration of the RTE inverter within the DPU from a double point of view, namely, the

hardware and software interfaces.

 Fault mitigation, detection, and correction on the FPGA 8.1

The radiation environment in which Solar Orbiter will orbit has been studied in [Michel

(2013)], where authors have confirmed that the Virtex-4 are out of permanent and non-

reversible damages, since the Total Ionizing Dose Effect requirement are completely fulfilled.

In that work, the fabrication of these FPGAs is summarized with emphasis in the fact that no

latch-up effects occur because of any radiation effect. The testing process is described in [Swift

(2008)]. According to these authors, the only radiation effect to take into account for our FPGA

is the Single Events Upset (SEU) induced by heavy ion and protons.

Under normal solar quiet conditions the upset and resulting error rates were estimated to

keep inside the reasonable limits allowing a normal operation. In the specific case when Virtex-

4 FPGAs are used only for processing, these quiet conditions permitted an unmitigated design

[Michel (2013)]. However when flare conditions appear, data processing cannot be allowed with

U

114

Chapter 8. The RTE inverter aboard SOPHI

an unmitigated design. Since data are stored elsewhere, they can be processed when conditions

permit.

The Xilinx test consortium has identified a list of functional interrupts which can be

triggered by SEUs [Allen (2008)]. These Single Event Functional Interrupts (SEFI) are caused

by SEUs within control logic elements. This kind of errors will not be discussed here because of

the Virtex-4 FPGA does not have leeway for action against these errors, but the System

Supervisor (RTAX FPGA in Figure 5) has to take the control in these cases. It usually will have

to reset and reconfigure the FPGA to recover from these functional interrupts. The SEFI cases

are seldom [Allen (2008)] and their impact in the system functionality is insignificant as pointed

out in [Michel (2013)].

The radiation tolerant Virtex-4 series FPGAs have been tested for single event upset by

[Swift (2008); Allen (2008)]. SEUs can affect basically the main elements on the FPGA:

configuration cells, block of memory elements (BRAM), and distributed memory (flips flops,

FF). Taking into account the estimations by [Michel (2013)], in quite solar conditions, less than

five SEUs to configuration cells and BRAM per day are expected for Solar Orbiter. Around two

SEUs per month are expected to affect the FF. In addition, if all resources in an FPGA were

used, only about 15 % of configuration cell upsets lead to an incorrect behavior, as a worst-case

scenario [Fuller (2000)]. Even more, the System Supervisor FPGA contains a JTAG interface to

perform a configuration memory scrubbing, that is, the process of detecting and correcting

upsets in configuration memory. It is running cyclically and each cycle takes around 10 seconds

for the entire FPGA.

In short, the RTE inversion could be carried out without any fault mitigation strategy,

where the System Supervisor simply monitors and controls the Xilinx FPGA. This would be,

however, an unwise alternative. The final strategy to perform is not still decided, and it will be

chosen depending on the DPU availability for attending and controlling the information about

errors that the RTE inverter provides. However, we are working on some techniques to improve

the fault mitigation capabilities of our system. In the next subsections, we propose two fault

mitigation strategies, taking always into account the high resources occupation on the FPGA. In

the last subsection we point out some improvements that could convert the SIMD architecture in

a fault tolerant one.

 Optimistic fault mitigation strategy 8.1.1

In the most optimistic case, the System Supervisor is the only responsible for the data and

results integrity. It will send the entire image of 4 mega-spatial-pixels to the Virtex-4, row by

8.1 Fault mitigation, detection, and correction on the FPGA

 115

row, in a burst mode (hereafter, we refer spatial pixel simply as pixel, but remember that a

spatial pixel is composed by 24 pixels from 24 different images). After each row, it will send a

pattern of 12 known pixels, one for each nProcessor. If the result of processing these 12 pixels

matches with the previously off-line calculated pattern result, then the System Supervisor will

assume that the entire row was well computed and will send another one. In the opposite case,

the Virtex-4 will be reconfigured and the entire row will be recalculated. The same procedure

could be performed using one half of a row.

The System Supervisor will reconfigure the FPGA and restart the row in course, in the

presence of some evidence of error, like timeouts, error in the number of results received, or

errors in a communication packet through the SoCWire bus.

In this strategy, the configuration memory scrubbing will be disabled because it could

correct an error, and then, the System Supervisor would not be able to detect any error in the

previous pixels using the pattern. Other alternative would be to reconfigure all the FPGA every

time the scrubbing detects an upset.

This strategy could be a good candidate if the SEU rate coincides with the estimated one.

However, if the SEU exceeds the estimations, the number of repeated pixels could result in an

important overload.

 Fault mitigation strategy with FPGA error detection and 8.1.2

correction

In this strategy we try to be fault tolerant and to give more information about the RTE inversion

process to the System Supervisor, but introducing the minimum hardware elements as possible,

and only monitoring the nProcessors by software.

We propose to add a label to the head of each pixel with an identifier. The nProcessor adds

a label with two fields to each result: the original PIXEL identifier and a well-processed mark,

where the nProcessor indicates if the result is correct. The root mean square error (RMSE)

between the observed and the synthetic profiles is a good proxy for the fitting quality. If the

final RMSE is under a fixed threshold the pixel is considered to be well computed.

Using this information exchange the System Supervisor can confirm pixel by pixel, instead

of “row by row” as in the optimistic case. The System Supervisor can make decisions about the

RTE inversion process depending on the error cadence. In this strategy, the SIMD architecture

can also make decisions about its internal performance and even correct internal errors by itself.

The SEUs affect the FPGA elements, and this is translated into specific errors in the SIMD

architecture. In Table 18 the main blocks on the FPGA, the type of FPGA elements used, and

116

Chapter 8. The RTE inverter aboard SOPHI

how SEUs can affect the internal performance are summarized. How all the errors can be

detected and the architecture corrected is also shown. Basically, there are two main evidences

for detecting errors: good results (that indicates that the algorithm is converging) and good

communications operation between the two FPGAs within the DPU (see Section 1.5).

The error detection and correction is organized in two levels, an External Recovery

Protocol from the System Supervisor point of view, and an Internal Recovery Protocol from the

SIMD architecture point of view. Each one of these protocols is able to detect errors in the

results and correct the architecture in order to avoid new errors. Each protocol acts over

different blocks of the FPGA as is indicated in Table 18.

In addition, the FPGA will make use of a configuration register, provided by the SoCWire

Bus (see Section 8.2), for communicating its internal status to the System Controller. In this

register, the FPGA gives information about its proper functioning (OK) or, in the contrary, it

can ask for a reprogramming. Furthermore, the FPGA reports about where the error was: Net

Control Unit, SOB, or nP. This information is useful for future evaluations.

The External Recovery Protocol, from the System Controller point of view, consists on:

- The System Controller is typically sending bursts of pixels and confirming the results

through a checking in its header. There is a timeout alert. If the FPGA does not reply in a given

time interval, it has to be reconfigured.

- If the header indicates that a pixel is not well computed, that pixel is resent again to the

FPGA, only if the FPGA status is OK. In this way, if there was a temporal error, or the error

was internally corrected, the pixel will be well computed. Each pixel is only sent twice, if it is

returned as a wrong result, the wrong result is stored.

This step can be improved for the case where there are noisy input images (with dead

pixels, salt-and-pepper noise, etc.). If the System Supervisor detects that there is a high number

of pixels with wrong results (e.g. more than 3% or 5% per line), then it will disable the resent of

pixels. In this way, the overload of computing repeated pixels is eliminated. Nevertheless, the

instrument will be able to have a statistics about the RTE inversion process and data acquisition.

- If a result with an unformatted header is received, that result will be eliminated. The

System Controller could know which pixels are affected using the reception order as indicator.

- If a burst of wrong results (for instance more than 30 pixels) is received, the FPGA must

be reconfigured. Note that if the FPGA status register is OK, it could mean that the input data

are not well calibrated, or the original images are corrupted. Then, using a pattern, like in the

optimistic case, the System Controller can conclude about that. This important report, which

gives us information about the images, is not possible to be achieved using the optimistic

strategy.

8.1 Fault mitigation, detection, and correction on the FPGA

 117

Using the External Recovery Protocol, temporal errors within the SoCWire and

Input/Output Buffers FIFOs will be corrected. In general, the protocol provides a mechanism for

recovering from situations where communications have been interrupted or when the FPGA is

having a wrong behavior.

 As mentioned in Section 5.2, the nProcessors and the Shared Operation Block occupy

almost the 90 % of the FPGA. All the error affecting these two blocks can be detected and

corrected if needed by an Internal Recovery Protocol. This is explicit in Table 18.

The Internal Recovery Protocol consists on:

- The nProcessor carries out the RTE inversion for the incoming pixel and marks the result

according to the calculated RMSE. When one nProcessor marks the header as a wrong result,

then an error flag is activated in its nProcessor status register. This register will be checked by

the Net Control Unit.

- The nProcessor carries out a short software check after processing every pixel. This check

is nothing but a few operations using its constants data in memory. If the check fails, first the

nProcessor is reset, and then the constant data from a reserved memory positions are re-written.

Then they repeat the software check. If the software check still fails, the FPGA asks for a

reconfiguration to the System Supervisor. This process is able to correct temporal errors in the

internal elements of the nProcessor as Flip Flop or BRAM or it can finish in a total FPGA

reconfiguration.

- If several error flags are activated in the nProcessors, then the Net Control Unit, besides

of performing the software check in the nProcessors, will check the Shared Operation Block.

This check consists in resetting the SOB and executing an instruction set in the nProcessors that

does use of the SOB. This check is able to correct temporal errors in the SOB. If the check fails,

the FPGA asks for a reconfiguration.

- If the watchdog detects an error, it interrupts the Net Control Unit operation, and asks for

a reconfiguration to the System Supervisor.

- The Instruction ROM can be equipped with an Error Detection and Correction Code

(EDAC) technique. Currently we are considering using a BCH codification able to correct errors

in 2 bits [Bose (1960)]. Considerations about the hardware resources that are spent by this

technique are given in [Cobos (2015)].

Applying the Internal Recovery Protocol, almost all the errors in the nProcessor and the

SOB, within BRAM or FF, are detected and the architecture is recovered. In BRAM within the

SVD block this is not possible, since that BRAM does not have any protection mechanism so

far.

118

Chapter 8. The RTE inverter aboard SOPHI

Block FPGA
Element

Internal
Affected
Block

Effect Detection Solution

ALL FPGA Entired
device by
SEFI

Configuration
line

Functional
Interrupts

System
Supervisor

Reconfiguration

SoCWire BRAM FIFOs Input or Output
Data corruption

System
Supervisor or
nPs: no
algorithm
convergence

PIXEL Resending

FF Control State
Machine

Communication
interruption

System
Supervisor

External Recovery
Protocol

Conf.
Cell

Configuration
Memory
Scrubbing

Scrubbing

Input/Output
Buffers

BRAM FIFOs Input or Output
Data corruption

nPs: no
algorithm
convergence

PIXEL Resending

Net Control
Unit

BRAM Instruction
ROM

Less or 2 bits /
word

EDAC EDAC correction

More than 2 /
word

Watchdog
nPs: no
algorithm
convergence

Internal Recovery
Protocol:
Reconfiguration

FF Control State
Machine

Net Control Unit
Wrong Operation

Watchdog
nPs: no
algorithm
convergence

Internal Recovery
Protocol:
Reconfiguration

Conf.
Cell

Configuration
Memory
Scrubbing

Scrubbing

nP BRAM nP Caches Internal data
corruption

nPs: no
algorithm
convergence

Internal Recovery
Protocol: Corrected

FF Local Control
Unit

nP wrong
operation Conf.

Cell
Configuration
Memory
Scrubbing

Scrubbing

SOB BRAM SVD internal
Reallocation
Memory

SOB cores with
wrong operation

nPs: no
convergence

Internal Recovery
Protocol: Corrected

FF Control State
Machine

nPs: no
convergence

Internal Recovery
Protocol: Corrected

Conf.
Cell

Configuration
Memory
Scrubbing

Scrubbing

Table 18 Summary of the main blocks in the architecture and the error detection and
correction in each of them

The configuration memory scrubbing is continuously checking for correcting errors on the

FPGA. In any case the recovery protocols are able to detect errors in the behavior before the

scrubbing could do it. The scrubbing cycle is around 10 seconds, while the recovery protocol is

working with a time resolution of milliseconds. Nevertheless, the scrubbing is kept working in

background and correcting errors in case it finds them.

8.2 Integration of the RTE inverter in the DPU

 119

All the exposed details supply the FPGA a robust operation behavior in the case of SEU

induced errors. In addition, the FPGA will provide statistical information about the RTE

inversion and the scientific data quality, and, even, about the robustness of the architecture.

Both strategies, optimistic and fault mitigation, are being tested with faults injection. That

makes it possible to find which features have to be improved.

 A Fault tolerant architecture 8.1.3

Taking into account the high resource occupation of the main blocks in the SIMD

architecture as the SVD, it is impossible to suggest a fully Triple Modular Redundant (TMR)

architecture. However, we have to explain how most of the errors in the SVD block and in the

nProcessors can be detected and the architecture recovered using only software supervision.

It would be possible to have a hardened architecture version to be used in the worst

radiation conditions or in most critical applications. For instance, we could take the nProcessors

in sets of two or three of them. With a set of three and a voter that connect the three ALUs the

architecture could correct errors during the data processing. With a set of two nProcessors, one

voter could alert about fault or discard it. Taking into account the final use of the RTE inverter,

obviously, we can afford this kind of strategies.

A totally fault tolerant mechanism could be used in the Instruction ROM by employing the

memory scrubbing proposed in [Rollins (2010)]. For it, the use of BRAM would be triple plus

an expensive control logic. Combining the fault tolerant Instruction ROM, a TMR’ed Control

Unit and set of three nProcessor the reaching architecture would be enough fault tolerant for

most applications.

 Integration of the RTE inverter in the DPU 8.2

 Hardware interfaces with the DPU 8.2.1

This section puts the RTE inverter in context within the Data Processing Unit (DPU). Hence,

the Communication block within the general diagram of the RTE inverter is described here

because itis the only means for data transfer between the two systems.

A detailed Communication block diagram is shown in Figure 49. It depicts its functional

sub-system blocks. We can distinguish the SoCWire elements, the Communication Control

block, and the RTE inverter Core Interface. This Communication block is, therefore, managing

120

Chapter 8. The RTE inverter aboard SOPHI

the connection between the RTE FPGA device with the Data Flash Memory (through the Actel

RTAX FPGA) and the other Virtex FPGA (Xilinx FPGA #2) (see Figure 5 for details).

Figure 49 Communication block diagram

On the other hand, this communication block manages the input/output data to ensure an

efficient work of the RTE inverter core. The Communication block is directly communicated

with the nProcessor Net Control, through the RTE inverter Core Interface, to provide the

necessary raw data (I,Q,U,V) and to reach the final model atmospheres to the DPU.

The RTE inverter Core Interface is nothing but a set of input and output registers of the

RTE inverter core. The other two blocks are described in the next sub-sections.

8.2.1.1 The Communication Bus

The Communication Bus is based on SoCWire, which is a Network-on-Chip (NoC) approach

based on the ESA SpaceWire interface standard to support dynamic partial reconfigurable

System-on-Chip (SoC). It is developed by IDA and the whole information about this core can

be found in [Fiethe (2010)]. SoCWire is an asynchronous communication, parallel data,

bidirectional (full-duplex) interface including flow control, error detection and recovery in

hardware, hot-plug ability and automatic reconnection after a link disconnection.

The protocol that controls SoCWire core is called SoCWire protocol (SoCP). The SoCWire

access is done by using a serializer which saves some pins on the FPGA. The serializer-

deserializer is transparent for the SoCP. The SoCP provides the RTE inverter Core with a full-

duplex data communication link and, the SoCWire Protocol Write Registers that are used as

configuration registers. These configuration registers are written by the DPU in order to

configure the desired RTE inverter performance, as we will describe later. Also there are

C
o
n
fi
g
u
ra
ti
o
n

A
tm

o
s
p
h
e
re
 m

o
d
e
l

IQ
U
V

R
T
E
 I
n
v
e
te
r
C
o
re
 I
n
te
rf
a
c
e

8.2 Integration of the RTE inverter in the DPU

 121

SoCWire Protocol Read Registers which are used by the RTE inverter Core for communicating

the RTE Internal Status Registers to the DPU.

As it is shown in Figure 49, the RTE FPGA has two connections with two DPU devices,

namely, the RTAX FPGA and the Xilinx FPGA #2. With the connection to the RTAX FPGA,

the device has access to pre-processed data ready to be used by the RTE inverter. The

connection to the Xilinx FPGA #2 allows us to know the status of the data pre-processing and

provides a control link on the operating status of the RTE inverter. This link can also be used for

communicating data between both FPGAs.

The DPU generates a specific communication clock, defined at 50 MHz, and it also

generates and controls a reset signal specifically for this communication core. The SoCWire bus

width is defined in 16 bit but, thanks to the serializer, the FPGA only use 4 lines: three lines for

control and another one for the clock. The internal SoCWire Protocol Registers are 16 bits wide.

8.2.1.2 The Communication Control Block

The most relevant functions in the Communication Control block are the following:

- Input data buffer for the RTE inverter core: it stores the input data into a First In First

Out (FIFO) memory until the set of input data is complete. An input data set consists of

one single spatial pixel from all the 24 images.

- Format conversion: it changes the representation of the data received from the DPU in

fixed-point format into single precision floating point format, as Figure 4 illustrated.

This is the operation format of the RTE inverter Core in order to fulfill the scientific

requirements of the algorithm as we have seen in Chapter 2.

- Output data buffer for the RTE inverter core: it stores the result data from the inversion

in a FIFO in order to send them to the DPU. The core output data are in single precision

floating point format and this way they are sent to the DPU.

- The Configuration Registers FIFOs: it is composed of a full-duplex channel that reads

the SoCWire Protocol Write Registers and introduces the values to the RTE inverter

core using the configuration ports. And it also reads the RTE Internal Status Registers

and writes them in the SoCWire Protocol Read Registers.

- Control: The Control block manages the input/output data FIFOs providing the data to

SoCP and the RTE inverter. One of its main functions is to avoid the data overflow in

these FIFOs by controlling the SoCP activity.

122

Chapter 8. The RTE inverter aboard SOPHI

The Input/Output Data Buffers and the Configuration Registers FIFOs are stored in FIFO

memories. These FIFOs are synthesized from double port Block RAM with independent writing

and reading clock. The communication core data are in a clock domain at 50 Mhz and the RTE

inverter Core’s at 150 Mhz, so that these FIFOs perform a proper interface between these two

clock domains. These FIFOs are generated by the Xilinx Core Generator software and they use

BRAM resources.

 The software interfaces with the DPU 8.2.2

The RTE inverter core programming structure is a pipeline structure. In every operation cycle,

this core needs a complete set of data to be entered in this pipeline structure. It also needs to

get rid of some results in order to be able to go on with its normal working pattern.

As it is a pipeline structure, there is a latency time while the core stream is filled with data.

In this filling period, the RTE doesn’t provide results. The RTE inverter core delivers the set of

results in the same order as the set of operands was entered. This is an important point for the

re-construction of the result images from the sets of results/pixels that the RTE inverter core

delivered; anyway the pixel identifier makes it easier that task.

As it was deeply discussed in Section 5.3, the RTE inverter core starts after receiving a 12

input data set. It later receives sets in rows of 12 data. Remember that an input data set consists

on one single spatial pixel from all the 24 images. After an initial latency, the RTE inverter Core

starts to deliver its scientific results (model atmospheres).

So, the RTE inverter follows a clear master-slave process where the DPU acts as the

master. To carry out the RTE inversion some parameters have to be defined by the DPU where

the number of iterations and the specific scientific inversion are the most important. So far, we

have spoken about the RTE inversion as the main target scientific problem to deal with but the

RTE inverter Core also carries out other scientific calculations like the classical estimations and

the no-polarization-modulation and longitudinal modes. These other calculations are much

simpler than the RTE inversion and we are not going into details about them. However, the

DPU has to indicate the RTE inverter core which calculation has to be carried out. This implies

a change in the input pixel format and in the result one. Beside, the DPU has to monitor the

RTE performance.

This bi-directional interaction between DPU and RTE is established using the SoCWire

Protocol Write Registers, hereafter Configuration Register, and the SoCWire Protocol Read

Registers, hereafter, Status Register. The description and use of each register is plenty of

scientific details which are not important to be explained for understanding this thesis. An

8.2 Integration of the RTE inverter in the DPU

 123

ample explanation about the use of this register and of the software protocol can be read in

[Ramos (2015)]. In any case, in Appendix VII some details about the registers can be found.

Regarding the interaction protocol, the DPU can always know the RTE inverter internal

status by accessing its Status Registers, and it can also change the RTE inverter performance

writing on its Configuration registers. In summary, the RTE inverter can work in one of the

following internal status: Waiting Configuration, RTE Ready, RTE Inverting, and Info Mode (in

blue box in Figure 50). This figure details how to change the device state and which is the

device behavior the DPU can expect in each state. The remaining annotations in the diagram are

explained in the subsequent parenthesis.

The Waiting Configuration state is the internal state to which the RTE inverter accesses

after carrying out the FPGA programmed or “Reset” process. In this state, the device is waiting

to receive the configuration from the DPU. This programming is carried out by the DPU

through writing in the RTE device Configuration Registers.

As the diagram in Figure 50 shows, if the device is in the RTE Inverting state it will not

review the new configuration flag until it moves to the RTE Ready state which will only take

place when the internal data stream is totally empty. Therefore, the RTE inverter configuration

only will be attended in the RTE Ready and Waiting configuration states.

When the RTE inverter detects that the DPU has written a new configuration, it goes on

analyzing such a configuration. The result of the analysis (configuration accepted or not) is

written in the RTE Internal Status in order to inform the DPU. After this analysis, the RTE

inverter moves to the Info Mode or RTE Ready state depending on whether the configuration

was accepted. If the configuration is not accepted due to some error in the configuration

process, the device will remain in the “Waiting Configuration” state and will inform the DPU.

Therefore, the DPU, after programming a new configuration, must check through the RTE

Internal Status register that the device accepted it and that it was placed in the proper state (RTE

Ready or RTE Info Mode) before sending the data.

Once in the RTE Ready state, the device has a valid configuration programmed and the

input data stream is empty or the number of input data set is lower than 12. In this state, the

RTE inverter is waiting to receive the data to start operation but the DPU can also change the

configuration if desired. As soon as it detects a rising edge on the flag of new configuration has

changed, the RTE inverter reads and processes the whole new configuration.

As Figure 50 illustrates, the RTE Ready state can be reached:

- from the Waiting configuration state after programming a valid configuration or

- from the RTE Inverting state after having calculated the results and having sent them

to the DPU.

124

Chapter 8. The RTE inverter aboard SOPHI

In the RTE Inverting state the RTE inverter is operating. These are the features of this state:

a) It can receive more input data from the DPU,
b) It is calculating, as it has data inside its internal operation stream and
c) The results are sent to the DPU as soon as they are processed.

When it has finished operating and sending all the results, the device will automatically

move to the RTE Ready state.

Figure 50 RTE inverter internal states and interaction flow with the DPU.

In Figure 50 the “Parallel Process” symbol means that two processes always depart from

the RTE Inverting state after an inversion is finished:

8.2 Integration of the RTE inverter in the DPU

 125

- One process is the reception of the input data which remains waiting the reception of

the new 12 data packets in order to invert them.

- Another process is the delivery of results which is finished when all the results are sent

to the DPU.

That is, these two processes take place every time an inversion is finished: one for

reception in order to wait for additional data and another one for transmission that ends when all

the results are sent.

Exiting Inverting state is carried out automatically (after operating and sending all the

results) therefore the DPU might require knowing a “Time Out” for this state. While in the RTE

inverting state, the DPU can re- program the device configuration, but this new configuration

will not be analyzed until the processing of all the data is totally finished and, therefore, the

device moves to the RTE Ready state.

After having finished the processing of all pixels in an entire image, the DPU can program

the device in the RTE Info mode. This way, the DPU can get the statistical information produced

during the data processing and indicate the RTE inverter that it is going to send a new image.

Then the RTE inverter re-starts the internal statistical variables which are accumulative for the

whole image.

As a good practice, the DPU should re-program all the configuration registers when it has

received the “Info packet” in order to ensure the integrity of all the values in the registers (this

process is carried out after processing the whole image).

127

________________________________ 9 ________________________________

9 Results

wo architecture proposals have been presented in Chapters 4 and 5 for carrying out the

RTE inversion on FPGA aboard the SO/PHI instrument. As explained in those chapters,

they are two different approaches that are inspired in two well established computational

models. They introduce innovation in the high-performance embedded computing on FPGA

field and we will show their main results in this chapter.

To demonstrate the valuable results of this thesis we are using two different points of view:

one from the engineering requirement verification and another from the solar physics scientific

verification. We will show how the main RTE Inverter requirements outlined in Table 2 are

satisfied.

First, in the next section we are going to put the RTE inverter in context within the SO/PHI

development status since, as a subsystem of the instrument, it is one of the main results of this

thesis. In Section 9.2, we show how both computing architectures reach the computational

power that the RTE inversion requires and, thus, how the time requirements are reached. The

RTE inverter power consumption is discussed in Section 9.3.

Later, we explain how the RTE inversion on FPGA works in Section 9.4. This verification

is done through a comparison of inverted scientific data with the FPGA and usual computers.

This verification is only done for the SIMD architecture, which is the final design being

embedded in the instrument DPU.

T

128

Chapter 9. Results

Other merits of this thesis like the scientific publications and oral presentations in the

computer science field are mentioned in Appendix X.

 The RTE inverter within the SO/PHI development status 9.1

The model philosophy followed by SO/PHI is [Meller (2013-B)]:

- A Breadboard (BB) Model was developed for some subsystems. It was aimed at having

an early definition and verification of the internal interfaces. This model was not

delivered to ESA.

- A Structural Thermal Model (STM) was used to qualify the PHI structure, to verify the

mechanical and thermal interfaces at system level, and to validate the structural and

thermal mathematical models. It was delivered to ESA on May, 2014 to support the

spacecraft STM program.

- An Electrical and Functional Model (EFM) consisted on a set of modules with similar

electrical behavior to the flight models. It was used to qualify the design in electrical

and functional terms. This model is aimed to test the telecommands and telemetry

interfaces to the spacecraft. It will also be used to test the loads at the spacecraft

primary power interfaces.

- The EFM was delivered to ESA on September, 2015 to support the spacecraft EM

program.

- An Instrument Qualification Model (QM) will be flight representative and will be

subjected to qualification and performance testing. This model has the purpose of

verifying the electrical and software interfaces as well as the on-board software and

operational procedures. It will be checked for Electromagnetic compatibility (EMC) and

will validate the performance and calibration activities. The QM will not be delivered to

ESA.

- The Instrument Flight Model (FM), as well as the Spare model (FS), will only be

subjected to acceptance test levels. The FM will be delivered to ESA two years before

launch. The FS will be delivered to ESA two months later.

The RTE inverter design flow (see Figure 6) is in correspondence with this model

philosophy. While the Breadboard and the Structural Thermal Model were developed, the RTE

inverter finished two requirement and design phases, which were documented for a Preliminary

Design Review and a Critical Design Review. A documentation package was generated for each

review. After that, an iterative cycle of development, verification and test was carried out, which

9.2 Time requirements and computing performance

 129

culminated with the generation of a new documentation package. It has been delivered along

with the Electrical and Functional Model.

The first functional test of the RTE Inverter within the DPU was performed during the

EFM battery of tests. Such a test is documented in [Ramos (2014)]. We are currently preparing

the next integration in the QM, where more exhaustive functional tests will be done. This

integration will be carried out by the end of 2015.

A list of all generated documents is shown in Appendix VIII. All the documents in every

package have been reviewed by the Project Manager, the Assistant Manager, the Quality

Assurance team, and by an external supervision company, SENER. Finally, the documents have

been approved by the SO/PHI co-Principal Investigator and released to ESA for final review.

Reaching the specifications for an electronic device that carries out the inversion of the

radiative transfer equation for the first time is a major success, which can be attributed to this

thesis.

 Time requirements and computing performance 9.2

Since the two proposed architectures are in fact the first two trials for inverting the RTE on

FPGA, comparison of the performance has to be carried out with other regular software versions

of the problem. One of such reference systems is VFISV [Borrero (2010)], which analyzes data

coming from the Helioseismic and Magnetic Imager instrument [Scherrer (2002)] of the

NASA’s Solar Dynamics Observatory [Pesnell (2012)]. Such an analysis is made off line when

the data have already downloaded on ground. The code runs in a cluster of 50 CPUs. The goal

of this system is to carry out the RTE inversion of 16 megapixel images in 10 minutes. That is,

four times more pixels in a shorter time than SO/PHI (our time requirement is 15 min for 4

megapixel images; see Table 2). For that, VFISV has 50 times more computing devices than

ours and, what is more important, they do not have any limitation of power consumption.

 Processing power of the MIMD architecture 9.2.1

As explained in Chapter 4, the MIMD approach only addresses the Spectral Synthesis and

Response Functions blocks (SSRF) (see Chapter 2 for details about these blocks). The MIMD

architecture was consequently tailored for these parts of the inversion algorithm and

automatically adapted for the specific temporal requirement (RTE-R-0030) using TAPAS.

TAPAS is able of arranging an optimal pProcessor architecture for the SSRF blocks and that

requirement, as shown in Section 4.4.
Following the scheme in Figure 32, the proposed architecture was tested in a Virtex

XC5VFX130T FPGA, which is a commercial version of the radiation hardened one. The

130

Chapter 9. Results

development board used in this test was the ML510 board by Xilinx [Xilinx]. Since this board

does not have external pins, we had to develop an ad-hoc expansion board for debugging the

design. This expansion board provides enough pins for using logic analyzers. It was later used

for implementing the SoCWire bus. A picture about the final configuration of these devices is

shown in Figure 51.

Figure 51 From right to left: ML510 board, the ad-hoc expansion board, and the logic
analyzer used for testing the Virtex-5 prototype

As Figure 52 outlines, once the FPGA is programmed, Matlab is used for transmitting data

through the RS-232 port to the FPGA. A detailed schematic about this test configuration is

shown in Appendix V. The data are transmitted in ASCII mode but MATLAB translates then to

a floating-point representation. The UART core is responsible for packing and unpacking the

data packet. The results sent by the FPGA are compared with the TAPAS simulation results in

Matlab and in runtime.

Figure 52 Scheme about the FPGA communication configuration used in the test of the MIMD
architecture

This subsection is focused to test the processing power of the proposed architecture but we

also take this opportunity for showing its precision because the same configuration test is used.

9.2 Time requirements and computing performance

 131

Using a set of 10,000 MELANIE atmospheric models, the SSRF was computed in the

FPGA and was compared with the C-MILOS results. The maximum relative difference between

both calculations was of the order of 10-7 which is the maximum precision attainable with

floating-point, single precision calculations. In any case, such a difference is well below the 10-3

rms noise expected for the data. To illustrate the comparison, an example with a specific model

atmosphere is shown in Figure 53. More information about this test can be found in [Cobos

(2011)].

Figure 53 Synthetic Stokes profiles using C-MILOS and the pProcessor net (MIMD
architecture) for one selected model atmosphere. (B = 1000 G, inclination = 160º, azimuth = 170º,
and vLOS = 2.25 km .s-1)

The SSRF block has to be computed as many times as the number of pixels multiplied by

the number of RTE iterations: 2048x2048x15, that is, almost 63 million times. Therefore, the

10,000 MELANIE model sets were sent to the FPGA 6,300 times, approximately. The proposed

system calculates the Spectral Synthesis and Response Functions almost 63 million times in a

minute, hence achieving the engineering goal. Computationally, the system reaches high

calculation performance in floating point with single precision. Over 10 GFLOPS running at

200 MHz are reached and using less than 50% of all available resources in the FPGA (see

Section 4.4).

On the other hand, Table 19 compares the SSRF calculation times in the FPGA version

with the C-MILOS inversion software. They are for one SSRF calculation. Shown is the

6172.8 6173 6173.2 6173.4 6173.6 6173.8 6174 6174.2
0.4

0.5

0.6

0.7

0.8

0.9

1

wavelength

I

c

fpga

6172.8 6173 6173.2 6173.4 6173.6 6173.8 6174 6174.2
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

wavelength

Q

c

fpga

6172.8 6173 6173.2 6173.4 6173.6 6173.8 6174 6174.2
-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

wavelength

U

c

fpga

6172.8 6173 6173.2 6173.4 6173.6 6173.8 6174 6174.2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

wavelength

V

c

fpga

132

Chapter 9. Results

average time for 10,000 C-MILOS calculations. So far, the FPGA acceleration with respect to a

leading PC is almost forty times. However, the possible final acceleration factor for the entire

RTE inversion algorithm is more than eighty times. This is possible because the FPGA runs all

the inversion tasks in parallel at the same time than the spectral synthesis and response functions

are calculated. For instance, the SVD task will be carried in parallel in a similar way to the

SIMD architecture does.

Resource MIMD FPGA C-MILOS
Device XC5VFX130T Intel Xeon

Clock 200 MHz 2,6 GHz

Execution time 1,1 µs 43.35 µs

Table 19 Time comparison of MIMD architecture on FPGA vs PC

Unfortunately, it is no possible to make a specific and more accurate comparison with the

system by [Borrero (2010)], or VFISV, because it uses simplifications of the algorithm that we

do not consider. We cannot then compute the exact time for their SSRF block. We can assume,

however, that the SSRF time is longer in the VFISV case than the C-MILOS one because their

total inversion time is 1.57 times longer than ours.

According to the mentioned hardware resource occupation of the MIMD architecture (see

Section 4.4), our MIMD system on FPGA is able to run the SSRF twice as fast as a cluster of

almost fifty PCs in the VFISF system. Although it is not a severe comparison since they are not

using exactly the same algorithm, this quantitative information shows the high performance of

the MIMD multicore architecture proposed in this work. In any case, taken as a full system, the

magnitude of the reached acceleration is enough to make the MIMD computing capabilities

clear, and overall, it reaches the initial objective of doing real-time RTE inversions.

 Processing power of the SIMD architecture 9.2.2

The final RTE inverter system is based upon the SIMD architecture proposed in Chapter 5

together with the Communication Block introduced in Chapter 8.2. Following the test flow

shown in Figure 33, a valid SIMD architecture for carrying out the inversion is obtained and

programmed on the FPGA. Once programmed, a battery of tests must be done to ensure the

correct functionality of the system. The tests are intended to verify the requirements, which are

detailed in the FPGA requirements document [Aparicio (2014)].

To test the RTE inverter at the IAA without using a DPU board, a test platform has been

developed [Ramos (2013)]. The software and hardware system designed to provide support

9.2 Time requirements and computing performance

 133

during the development and validation of the RTE inverter is outlined in Figure 53. The system

allows the delivery and reception of data to/from the SIMD architecture, which is being run in

the FPGA device (Virtex-4). The system guarantees the transmission through the SoCWire

communication bus in the conditions specified by the DPU.

The data control is performed through data files in ASCII format and a first analysis of the

results can be carried out in real time so that the consistence of the results can be assessed. The

final analysis of the results will be done, later on, on data files with a specific programming for

each test written in the necessary software language (e.g., Matlab or LabView).

Figure 54 General block diagram of the test platform

The test platform is composed by three main blocks: the development board for the Virtex-

4, the PXI Module [National Instrument], and the host PC. No development boards using the

XCV4VSX55 FPGA, which is the commercial version of the radiation tolerant one, were in the

market. Therefore, a custom development board was ordered to a third party company. The

main features of this development board are shown in Appendix IX. In addition, the test

platform is extensively detailed in [Ramos (2013)]. A picture of how the test platform is set up

in the laboratory is shown in Figure 55.

In
p
u
t

C
o
n
n
e
c
to
rs

O
u
tp
u
t

C
o
n
n
e
c
to
rs

O
u
tp
u
t

C
o
n
n
e
c
to
rs

D
D
C
B

In
p
u
t

C
o
n
n
e
c
to
rs

D
D
C
A

In
p
u
t

C
o
n
n
e
c
to
rs

O
u
tp
u
t

C
o
n
n
e
c
to
rs

O
u
tp
u
t

C
o
n
n
e
c
to
rs

D
D
C
B

In
p
u
t

C
o
n
n
e
c
to
rs

D
D
C
A

134

Chapter 9. Results

To test the RTE inversion, the host PC sends a set of profiles to the FPGA in the

development board through the PXI module which emulates the SoCWire bus. All the process is

controlled by a LabView program which is also presented in [Ramos (2013)].

Using a set of 100,000 MELANIE synthetic profiles we have tested the RTE inversion

speed. Table 20 shows that we have achieved a speed almost ten times faster than the

commercial CPU used for the RTE inversion in VFISV [Borrero (2010)]. This is even more

remarkable since we have used an FPGA that was released to the market in 2004. Obviously the

whole computer cluster still remains better than the FPGA, over a factor of five times.

Regarding the C-MILOS code we have achieved a speed up of 6.32 times, since this code had

already been optimized to low level by us. In the C-MILOS case we have chosen the best case

after testing with several compiler optimizations like SSE-MMX extensions, different loop-

unrolling methods, etc.

It is important to remark that the responsible for that speed up are not only the nProcessors,

but all the architecture involved, since it allows executing the SVD in parallel with the rest of

the algorithm. While in a commercial CPU all the RTE inversion is executed in a serial way, our

architecture basically does a double-thread execution, as was explained in section 5.2 and

depicted in Figure 29.

Figure 55 Test platform at the IAA laboratory: (from the upper left to the right) PXI module,
oscilloscope, logic analyzer, FPGA development board wired to the PXI module, and the host
desktop PC running the LabView test software

9.2 Time requirements and computing performance

 135

 SIMD FPGA GPU C-MILOS 1 PC of
VFISV

Device XQR4VSX55 Quadro
600

Intel Xeon Intel Xeon

Clock GHz 0.15 0.64 2,6 2,6
Profiles/seconds 4765.9 1131.1 754 479.75
Minutes / image 14.6 61.8 92.7 145.7
Speedup vs VFISV 9.93 2.35 1.57 1

Table 20 Time comparison of RTE inversion using SIMD architecture and conventional
computers.

The RTE inversion algorithm has also been developed in CUDA and executed in a GPU,

specifically in a Nvidia Quadro 600 which uses the Fermi architecture [Nvidia]. We have

adopted the same execution strategy used in the SIMD architecture where several pixels are

executed in parallel in different cores. Actually, several groups of pixels are gathered in blocks

of threads and they are distributed in different cores, as is the usual execution schedule in a

GPU. As Table 20 shows, despite using 96 cores and a faster clock, the GPU is not able of

outperforming the FPGA. It is around four times slower. This GPU device is not in the state of

the art. Currently, there are new devices with 20 times more processing power. Nevertheless,

this comparison gives us a good evidence of the outstanding performance of our SIMD

architecture.

Thinking on ground-based system versions, we could perform the VFISV tasks [Borrero

(2010)] using four Virtex-4 FPGA devices instead of a computer cluster of 50 CPUs. Besides,

based on our simulations, with only one device of the last Virtex-7 family we could accelerate

in a factor two the computer time of VFISV and its 50 CPUs.

Without forgetting the main aim of this system, the time to invert an image in FPGA is

around 14.5 minutes. Then we have achieved the target of not exceeding 15 minutes. Thus, we

conclude that the SIMD architecture is suitable for being used in the RTE inverter.

 MIMD versus SIMD architecture 9.2.3

At a glance, the MIMD architecture overtakes the SIMD computation capabilities. In fact, the

MIMD architecture is able of speeding up the C-MILOS version (commercial personal

computer) in a factor almost 40, while the SIMD architecture does it only by a factor of little

more than 6. Nevertheless, it is necessary to remark that the MIMD architecture uses a bigger

device.

Other features of the MIMD architecture make that proposal more innovative and

interesting. Among them, we can mention the adaptability to a specific temporal requirement or

136

Chapter 9. Results

the easiness for finding the optimal system for that requirement. Even so, a minimal change in

the input code implies that the entire MIMD architecture has to be re-compiled, both at a

TAPAS level and at a VHDL level since MIMD is customized for each input code. However,

changes in the SIMD input code only imply a re-compilation with TAPAS.

On the other hand, the SIMD is a simpler architecture that makes the task of scaling the

number of processors easy and exploring different possibilities of co-design hardware/software

through the use of shared resources.

 Power consumption requirements 9.3

So far, we have given estimations about power consumption but realistic measurements were

made with a specific test [Ramos (2014)].

In order to carry out this test, the DPU emulator LabView software must send and receive a

data flow that guarantees the RTE inverter is at maximum speed operation. This is made by

means of the bus and the SoCP protocol.

The FPGA device has an internal storage memory able to host 120 input spatial pixels in a

queue to be processed and another memory permits to queue the corresponding results. The

software must guarantee that the input storage memory does not remain empty for a given

period. During this period we can measure the device power consumption. After all the input

pixels are processed the results are taken by the DPU emulator from the results queue. This data

sending and reception is cyclically repeated by the system software during the time necessary to

adjust the measurement instrumentation.

The power consumption is measured through the input current reaching the development

board. The board power supply is provided with a +5 V DC signal. Inside the development

board this voltage is used to generate the supply voltages required for the FPGA trough a

specific regulator whose efficiency is around 90%.

Once the RTE inversion cycle starts, the FPGA receives input data and sends results at a

maximum internal activity. The scope screen capture in Figure 56 shows how the status of the

inverter internal activity translates to device power consumption. It can be noted how, after

having received the 120 input pixels, the device internal activity continues for 57 ms. The 15 ms

of low consumption status is the time the DPU emulator takes to get the results and process this

information.

9.3 Power consumption requirements

 137

Figure 56 Scope screen capture that shows the RTE Inverter power consumption cycles

Using this test configuration we have taken measurements of power consumption in

different FPGA status: before and after the FPGA is programmed and once the RTE inverter is

working at its maximum load. Table 21 reflects the average, maximum, and minimum power

where the regulator efficiency has been already applied. When the FPGA is programmed and

the RTE inverter is waiting for data, the maximum power consumption is around 3.2 W and

when the RTE inverter is carrying out the inversion this maximum power is near 5 W. Since

these measurements include other small electronic devices in the development board we can

conclude that the power consumption estimations given in Table 11 are realistic. We estimate

4.5 W only for the FPGA device using the Xilinx XPower tool. In any case, we conclude that

the RTE inverter has fulfilled the power requirement of using less than 5 W.

FPGA Status Power (Watts)

 Average Max Min

FPGA not programmed 1.63 1.75 1.51

FPGA programmed 3.05 3.21 2.91

RTE Inverter Working 3.59 4.95 3.00

Table 21 Power consumption measurements for the FPGA not programmed, programmed and
the RTE Inverter working

The power consumption of a commercial CPU like those used in VFISV is around 100

Watt [Intel]. Therefore our power savings is of the order of 1000 with respect to VFISV. It is

also remarkable that the GPU we used in the former subsection needs around 40 Watts, hence

almost 10 times as much power as that of the FPGA.

138

Chapter 9. Results

 RTE inversion scientific requirements 9.4

Only the SIMD architecture will be subject of scientific validation. This is so because the

complete problem has not been addressed with MIMD. To check the scientific results, our test

bench is C-MILOS. On the one hand, we have demonstrated (Chap. 2) that it is equivalent to the

original IDL-MILOS. On the other hand, the FPGA code is based on C-MILOS.

First, we have inverted with the FPGA and C-MILOS the same reference basis of Milne-

Eddington synthetic Stokes noisy profiles used in Section 2.4. In Figure 57, a scatter plot of the

results from both inversions is shown. The fitting is almost perfect for these Milne-Eddington

profiles since the points hardly scatter away the straight line of slope unity. Table 22

summarizes the root mean square differences (RMSE) among the results of both versions. For

the sake of comparison, the RMSE between C-MILOS and IDL-MILOS are also shown. One

can clearly see that the contribution to these RMSEs by the FPGA programming alone can be

considered negligible.

Figure 57 Scatter plot for the magnetic field strength, field inclination, field azimuth, and LOS
velocity inverted on the FPGA and C-MILOS. The red dashed line shows a one-to-one
correspondence

9.4 RTE inversion scientific requirements

 139

 FPGA vs C-MILOS C-MILOS vs IDL-MILOS
RMSE RMSE

Field strength (G) 5.30 4.55
Inclination (º) 4.86 4.20
Azimuth (º) 5.77 5.39
Velocity (ms-1) 5.90 6.10

Table 22 RMSE for inversions carried out with FPGA and C-MILOS

Unlike ME profiles, real solar Stokes profiles are not symmetric. Therefore, a ME inversion

that tries to fit them to symmetric profiles will necessarily fail. This is intrinsic to the inversion

itself and is accepted by solar researchers that still continue using the Milne-Eddington

approximation to analyze their results. What is crystal clear is that the misfits obtained with the

FPGA must be as close as possible to those obtained with the post-facto, software codes of the

RTE inversion. The nature itself of the calculation already heralds that a comparison between the

software (C-MILOS) and hardware (FPGA) versions with real profiles may not be as ideally

good as that in Figure 57. Many iterative procedures are nested and decisions on precision have

to be taken in order to cope with the device resources. But indeed such a comparison is the

needed cornerstone to qualify the electronic inverter of the RTE from a scientific point of view.

The first test has been performed using an image set including a big sunspot and an area of

quiet Sun. The image was taken at the Swedish Solar Telescope in the Roque de los Muchachos

Observatory, La Palma, on September 28, 2011. The spectral line is sampled at 35 mÅ. We

have only chosen those samples at [-140, -70, 0, +70, +140, +420] mÅ far from the line core

(6173.335 Å), in order to simulate the SO/PHI measurements. The continuum intensity image is

shown in Figure 58. It has an 894 x 883 pixel size, each 56 arcsec wide.

140

Chapter 9. Results

Figure 58 Continuum intensity image of the sunspot image from the CRISP instrument

Figure 59 shows the result of inverting the CRISP data set using the FPGA (left column) and

C-MILOS (right column). We show the magnetic field strength, field inclination, field azimuth,

and LOS velocity results because these are the model atmospheric parameters that the RTE

inverter has to provide (see Table 2). Both inversions have run 15 iterations.

IDL-MILOS uses a convolution with the instrument profile with a previous interpolation of

the samples. We cannot afford this interpolation in our system and simply calculate the direct

convolution with our five samples within the line. Therefore, comparisons are shown without

convolution.

Although the graphical comparison in Figure 59 looks very nice except for a few locations

in the umbra (inner, darker part of the spot), the differences between the two inversions are

shown in Figure 60. Differences in the umbra can be attributed to the lower level signal in that

area, which is, thus, more liable to errors induced by noise.

Ic

9.4 RTE inversion scientific requirements

 141

B using FPGA

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

0

500

1000

1500

2000

2500

3000

B using CMILOS

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

0

500

1000

1500

2000

2500

3000

Inclination using FPGA

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

0

20

40

60

80

100

120

140

160

180

Inclination using CMILOS

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

0

20

40

60

80

100

120

140

160

180

Azimuth using FPGA

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

0

20

40

60

80

100

120

140

160

180

Azimuth using CMILOS

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

0

20

40

60

80

100

120

140

160

180

V
LOS

 using FPGA

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

-3

-2

-1

0

1

2

3

V
LOS

 using CMILOS

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

-3

-2

-1

0

1

2

3

Figure 59 Magnetic field strength (Gauss), field inclination (degree), field azimuth
(degree), and LOS velocity (km·s-1) as a result of inverting the sunspot image using FPGA
(left) and C-MILOS (right)

142

Chapter 9. Results

Figure 60 Differences between the magnetic field strength (Gauss), field inclination (degree),
field azimuth (degree), and LOS velocity (km·s-1) after inversion of the sunspot image using FPGA
and C-MILOS

A scatter plot of the two inversion results and the corresponding histogram of their

differences are shown in Figures 62 and 63, respectively.

In general, the fits are very good except perhaps in the strong field regime, where some

excess scattering can be seen. Such stronger fields belong indeed to umbral points. The largest

negative differences in magnetic field strength that appear in the histogram of Figure 63 also

correspond to them. The differences, however, do not seem very large when compared with

those between C- and IDL-MILOS (see Table 23).

 Entire sunspot image
 FPGA vs. C-MILOS C-MILOS vs. IDL-MILOS

RMSE RMSE
Field strength (G) 69.2 86.47
Inclination (º) 5.47 4.51
Azimuth (º) 6.50 4.50
Velocity (ms-1) 79.1 77.8

Table 23 RMSE for the differences between the FPGA and C-MILOS inversions, and C-
MILOS and IDL-MILOS, for the entire sunspot image.

Differences in B

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

-150

-100

-50

0

50

100

150

Differences in Inclination

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

-10

-8

-6

-4

-2

0

2

4

6

8

10

Differences in Azimuth

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

-10

-8

-6

-4

-2

0

2

4

6

8

10

Differences in V
LOS

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

9.4 RTE inversion scientific requirements

 143

Figure 61 Scatter plot for the magnetic field strength, field inclination, field azimuth, and LOS
velocity inverted on the FPGA and C-MILOS for the sunspot image. The red dashed line shows a
one-to-one correspondence.

144

Chapter 9. Results

Figure 62 Normalized histograms of the differences in the magnetic field strength, field
inclination, field azimuth, and LOS velocity results from inversion on the FPGA and C-MILOS

If our hypothesis is true that noise is directly influencing the largest deviations in the umbra,

restricting our test to less noisy areas of the image should produce better results. This is indeed

shown in the scatter plots in Figure 65, where inversions of the selected area in Figure 63 are

displayed. Table 24 summarizes the RMSEs for these scatter plots. The improvement in the

results is clear. Note that the RMSEs between the FPGA and C-MILOS are even smaller than

those between the two software versions.

Figure 63 Selected area of the sunspot image without umbra

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

Field strength difference [G]

Field strength difference normalized histogram

-3 -2 -1 0 1 2 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Inclination difference [º]

Inclination difference normalized histogram

-4 -3 -2 -1 0 1 2 3 4
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Azimuth difference [º]

Azimuth difference normalized histogram

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Vlos difference [km*s
-1

]

Vlos difference normalized histogram

Ic

9.4 RTE inversion scientific requirements

 145

Figure 64 Scatter plot for the magnetic field strength, field inclination, field azimuth, and LOS
velocity of correspondences between FPGA and C-MILOS results for the selected part of the
sunspot image. The red dashed line shows a one-to-one correspondence.

 Bottom part of the sunspot image
 FPGA vs. C-MILOS C-MILOS vs. IDL-MILOS

RMSE RMSE
Field strength (G) 46.34 46.90
Inclination (º) 6.09 6.92
Azimuth (º) 7.45 5.71
Velocity (ms-1) 61.1 86.3

Table 24 RMSE for the differences between the FPGA and C-MILOS inversions, and C-
MILOS and IDL-MILOS, for the selected part of the sunspot image.

146

Chapter 9. Results

Figure 65 Evolution of the RMS difference between the FPGA and C-MILOS as a function of
the number of RTE iterations for both 9 (blue lines) and 18 (red lines) SVD iterations.

All the tests in this section have been carried out with an SVD version including only 9

iterations. As commented on in Chapter 7, the SVD iterative procedure can be carried out with

any multiple of 9 iterations in order to avoid further re-sorting of the eigenvalues and

eigenvectors. Thus, the question arises as to why not to use 18 or a higher number of internal

iterations. The results in Figure 64 already indicate that 9 iterations are enough for providing

results within the scientific requirements. Nevertheless, we further address this question in

Figure 65, where the evolution of the RMS difference between the FPGA and C-MILOS is

shown as a function of the number of RTE iterations for both 9 (blue lines) and 18 (red lines)

SVD iterations. The reference (C-MILOS) is taken with 30 iterations, which is assumed to give

the optimum results. The convergence to the optimum result is apparent. Both 9 and 18

iterations seem to provide similar results, so that we decide to keep the smaller number in order

to speed up the whole procedure. The small bump that appears in the LOS velocity plot for 18

iterations is due to a few points close to the umbra but we still do not have a real reason for it.

0 5 10 15 20 25 30
60

80

100

120

140

160

180

200
B

Iterations

R
M

S
 (

G
)

18 Iter

 9 Iter

0 5 10 15 20 25 30
4

5

6

7

8

9

10
Inclination

Iterations

R
M

S
 (

º)

18 Iter

 9 Iter

0 5 10 15 20 25 30
4

6

8

10

12

14

16

18

20
Azimuth

Iterations

R
M

S
 (

º)

18 Iter

 9 Iter

0 5 10 15 20 25 30
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

V
LOS

Iterations

R
M

S
 (

m
·s

-1
)

18 Iter

 9 Iter

147

________________________________10________________________________

10 Conclusions and future prospects

he RTE inverter has been presented as the first device ever specifically designed to invert

the radiative transfer equation aboard a space-borne instrument. The stringent time and

power consumption constraints of space instrumentation, as the Polarimetric and Helioseismic

Imager for Solar Orbiter, made the development a real challenge, which has been finally

successful. Two high-performance scientific computing architectures on FPGA have been

proposed, one of them will be implemented in the real instrument.

The RTE inversion is an involved, iterative, non-linear least squares minimization of a

merit function. Such a merit function measures a distance (goodness of fit) between the

observed and synthetic Stokes profiles of a given spectral line. An optimized RTE inversion

code called, C-MILOS, has been presented that is based on a previous version (MILOS) written

by scientists in IDL. We have demonstrated that C-MILOS working in single floating point

precision is as reliable and robust as MILOS, which works in double precision. We have

assessed the computational cost and how performance is affected by the working spectral line,

the number of wavelength samples, and the convolutions related with the broadening

instrumental profile.

We have designed two new processor architectures for adapting the parallel computer

paradigms to the RTE inversion problem using current high-performance computing techniques

like multi-core architectures, code optimization, and specific-domain efficient processors. We

T

148

Chapter 10. Conclusions and future prospects

have taken well established, state-of-the-art, computing models like MIMD and SIMD, and

have applied novel ideas on them for getting enhanced their computing capabilities.

Both multiprocessor architectures are proposed in order to achieve high performance in

floating point precision using the Xilinx FPGA Virtex-5 and Virtex-4 respectively and trying to

make the best out of all the FPGA resources.

 We have proposed an MIMD multiprocessor architecture as a firm candidate to be part of

embedded systems in an FPGA, mainly due to its ability for exploiting the functional and data

parallel algorithms. This architecture is original because of its pipelined execution based on a

novel programming method, called intensive-pipelining software. Using this method, the

architecture can increase the system performance. With the proposed design, the

synchronization and the communication between processors have been simplified. The

implementation of this architecture using simplified processors, pProcessors, has been shown.

Such pProcessors work for eliminating latency and for exploiting the computing power that the

FPGA provides.

On the other hand, a SIMD multiprocessor architecture has been presented and it is finally

in charge of carrying out the scientific analysis aboard the SO/PHI instrument within the DPU

instrument. The new proposal was developed because the Virtex-5 FGA was not finally

accepted by ESA. Despite the SIMD architecture is slower than the MIMD version, it provides a

good scheme to save resources having a unique control unit for all the processors. Besides, one

of the main contributions of this work is the ability of saving resources allocating operation

cores in a shared operation block. The pipeline-designed processors of this architecture are

tailored for reaching a high rate of executed instructions, trying to execute one instruction per

clock cycle. An innovative memory address space has been introduced in order to feed the

processor with its operands as fast as possible. The memory works as if it was a cache and it is

statically scheduled by the compiler.

The proposed architectures are very focused on the RTE inversion problem, but we have

pointed out that they can be used in other embarrassingly parallel problems since the number of

processors in the architectures can be configured an adapted. Thus, the architectures are

presented as scalable and configurable.

We have presented a software tool, TAPAS, which follows given design guidelines and

makes it easier the use and programming of the proposed MIMD and SIMD architectures. It

also makes the debugging and test tasks easier because it provides simulations of both the

architectures and its running code.

This tool uses advanced techniques of software pipelining. Specifically, the compiler is

decisive in this work, since it is responsible for re-ordering the instructions and organizing the

Chapter 10. Conclusions and future prospects

 149

memories in order to exploit the architectures at maximum. The associate programming

language makes it easier to program the architecture using a C-like style and isolating the code

from the under system.

The RTE inversion algorithm needs to perform the Singular Value Decomposition of a

correlation matrix within its iterative procedure. A specific SVD pipelined architecture which is

able of diagonalizing two correlation matrices at the same time has been developed. The final

SVD architecture has been integrated within the SIMD architecture; it exceeds the best systems

on FPGA in time and precision performance.

The impact of SEU induced errors in the proposed architecture has been discussed and two

different strategies for detecting and mitigating errors within the RTE inverter have been

proposed. Furthermore, one of the strategies is able to detect and correct error for most elements

within the architecture.

A software protocol for communication between the RTE inverter and the DPU, based on

register operations, has been detailed.

By using TAPAS and a Virtex-5 FPGA, a fully-configured pProcessor MIMD architecture

has been obtained along with the communication network inside it. The proposed system

calculates the synthesis and spectral response functions almost 63 million times in a minute,

achieving the science goal. Computationally, the system reaches high calculation performance

in floating point with single precision: over 10 GFLOPS running at 200 MHz and using less

than 50% of all available resources on the FPGA. This means that it is able of exceeding to

commercial desktop processor by a factor 40.

Using the SIMD architecture, the challenge of carrying out the RTE inversion in less than

15 minutes has been reached. The architecture has not only demonstrated that is able to do it but

it is also improves the computing capabilities of ground systems by more than ten times using a

relatively slow (and 10 year-old) Virtex-4 FPGA device.

This dissertation has demonstrated that FPGAs offer enough floating-point capabilities and

enable allocation of specific-domain processors to solve high demanding scientific problems

even embedded aboard a space-borne instrument.

The RTE inverter prototype has been tested using real images taken by another instrument.

It is able of working as accurately as usual computers regarding the scientific precision. In

addition, it has satisfied the stringent requirements of power consumption and processing time.

In summary, this thesis has provided the scientific community with high-performance

computing architectures, compilers, configuration and simulation tools, and specific mathematic

cores like the SVD core, that all of them assembled are able of carrying out the same computing

problem than a cluster of PCs but using only FPGA devices.

150

Chapter 10. Conclusions and future prospects

Future work

Many are the research opportunities that this thesis generates. Among them let us

enumerate the following:

1) Development of a fault tolerant architecture.

2) Implementation of the proven solutions into other devices of the Virtex family.

3) Use of another type of bus (e.g. AMBA) that allows an easy integration in other systems.

4) Extensive comparison with GPU solutions.

5) Extend this type of architecture to other algorithms and benchmarks.

6) Convergence of the two SIMD and MIMD architectures in TAPAS.

7) Comparison of power consumption between MIMD and TopGreen500.

151

Appendices

153

11 Appendix I. The Voigt function

The original Voigt function code is shown in code 5. In Figure 66, we show the pipeline
design for the Voigt function (see Chapter 2). This function originally was in complex
operations, like in code 5. Here it is translated to real ones. We show the necessary fixed-point
format in each stage of the calculation. Is important to remark that this function is executed 18
times (see Table 2) along each RTE iteration (once for each wavelength by the cuantic number
(2*N_PI+N_SIG)).

Code 5 Matlab code for the Voigt function

%fvoigt function for RTE inversion

function [h,f] = fvoigt(damp,vv)

 A=[122.6087931777104326,

214.382388694706425,

181.928533092181549,

93.155580458138441,

30.180142196210589 ,

5.912626209773153,

0.564189583562615];

 B=[122.60793177387535,

352.730625110963558,

457.334478783897737,

348.703917719495792,

170.354001821091472,

53.992906912940207,

10.479857114260399,

1];

 Z=complex(damp,-abs(vv));

 Z=((((((A(7)*Z+A(6)).*Z+A(5)).*Z+A(4)).*Z+A(3)).*Z+A(2)).*Z+A(1))./ ...

 (((((((Z+B(7)).*Z+B(6)).*Z+B(5)).*Z+B(4)).*Z+B(3)).*Z+B(2)).*Z+B(1));

 h=real(Z);

 f=sign(vv).*imag(Z) / 2;

154

Appendix I. The Voigt function

vvdamp

Z0r

- abs(vv)

Z0i

Znum0iZnum0r

*A6 *A6

Z1r Z1i

Znum1iZnum1r

+A5

Z2r Z2i

Z3r Z3ix x x x

xxxx

Zdiv0i Zdiv0r

+B6

Znum2iZnum2r

- +

Zdiv1rZdiv1i

- +

Z4r Z4i Zdiv2rZdiv2i

+B5

Znum3iZnum3r

+A4

Z5r Z5i

Z6r Z6ix x x x

xxxx

Znum4iZnum4r

- +

Zdiv3rZdiv3i

- +

Z7r Z7i Zdiv4rZdiv4i

+B4

Znum5iZnum5r

+A3

Z8r Z8i

Z9r Z9ix x x x

xxxx

Znum6iZnum6r

- +

Zdiv5rZdiv5i

- +

Z10r Z10i Zdiv6rZdiv6i

+B3

Znum7iZnum7r

+A2

Z11r Z11i

Z12r Z12ix x x x

xxxx

Znum8iZnum8r

- +

Zdiv7rZdiv7i

- +

Z13r Z13i Zdiv8rZdiv8i

+B2

Znum9iZnum9r

+A1

Z14r Z14i

Z15r Z15ix x x x

xxxx

Znum10iZnum10r

- +

Zdiv9rZdiv9i

- +

Z16r Z16i Zdiv10rZdiv10i

+B1

Znum11iZnum11r

+A0

xxxx

Zdiv11rZdiv11i

- +

Zdiv12rZdiv12i

+B0

Znum12iZnum12r

Znum13iZnum13r

ac bd bc ad cc dd

Dr Di d

Dr Di

+ - +

/ /

R=((((((A(6)*Z+A(5))*Z+A(4))*Z+A(3))*Z+A(2))*Z+A(1))*Z+A(0))/
(((((((Z+B(6))*Z+B(5))*Z+B(4))*Z+B(3))*Z+B(2))*Z+B(1))*Z+B(0))

a=[122.607931777104326,
214.382388694706425,
181.928533092181549,
93.155580458138441,
30.180142196210589,
5.912626209773153,
0.564189583562615]

b=[122.60793177387535,
352.730625110963558,
457.334478783897737,
348.703917719495792,
170.354001821091472,
53.992906912940207,
10.479857114260399]

Figure 66 Pipelined Voigt function

10.22

Format: Integer.decimal

Bits

10.22

10.22

10.22

10.22

14.18

14.18

14.18

16.16

16.16

16.16

21.11

21.11

21.11

24.8

24.8

51.3

 64 bits! 64 bits!

10.22

10.22

10.22

10.22

14.18

14.18

14.18

17.15

17.15

17.15

21.11

21.11

21.11

25.7

25.7

25.7

29.3

29.3

29.3

56.8

56.8

Bits

155

12 Appendix II. HLS description of a RTE inversion

block

Figure 67 Spectral Synthesis block using System Generator.

V
L

L
D

w
a
v

e
le

n
g

th

u
lo

s

u
lo

s

la
m

b
d
a

w
a

v
e

le
n
g
th

L
D

u
lo

s

u

u

B
0

B
1

d
ti

e
ta

i
g
p

3
g
p

4
_
g

p
2

g
p

5
_
g

p
2

g
p

6
_
g

p
2

s
p

e
c
tr

a
0

s
p

e
c
tr

a
1

s
p

e
c
tr

a
2

s
p

e
c
tr

a
3

sp
e

c
tr

a
(1

..
4

)

s
h
i_

p

s
h
i_

b

s
h
i_

r

E
0
_

2

c
o
s
i_

E
0
_
2

s
in

is
_

c
o
s

a

s
in

is
_

s
in

a

rh
o
q

rh
o
u

rh
o
v

p
a

rc
ia

l3

rh
o

(q
,u

,v
)

e
ta

i
e
ta

q
e
ta

u
e
ta

v
rh

o
q

rh
o

u
rh

o
v

g
p

4

g
p

5

g
p

6

g
p

4
_

&
_

g
p

5
_

&
_

g
p

6

e
ta

q
e
ta

u
e
ta

v
rh

o
q

rh
o

u
rh

o
v

g
p
2

g
p

2

e
ta

i
e
ta

q
e
ta

u
e
ta

v
rh

o
q

rh
o
u

rh
o
v

g
p
1

g
p
3

e
ta

i_
2

g
p

1
_

&
_

g
p

3

g
p
2

g
p
4

g
p
5

g
p
6

rh
o
q

rh
o
u

rh
o
v

g
p
4

_
g
p

2

g
p
5

_
g
p

2

g
p
6

_
g
p

2

g
p

(4
,5

,6
)_

g
p

2

u n
u
x

M
F

A W
E

X

fi
_

x

s
h

i_
x H F

fC
o

m
p

o
n

e
tR

u n
u
x

M
F

A W
E

X

fi
_

x

s
h

i_
x H F

fC
o

m
p

o
n

e
tP

u n
u
x

M
F

A W
E

X

fi
_

x

s
h

i_
x H F

fC
o

m
p

o
n

e
tB

e
ta

i

fi
_
p

fi
_
b

fi
_
r

E
0
_
2

c
o

s
is

_
2

s
in

is

c
o

s
i_

E
0

_
2

s
in

is
_
c

o
s
a

s
in

is
_
s

in
a

e
ta

i

e
ta

q

e
ta

u

e
ta

v

p
a
rc

ia
l1

1

p
a

rc
ia

l2

e
ta

(i
,q

,u
,v

)

e
ta

i_
2

g
p
1

g
p
2

d
t

d
ti

d
t

G
M

A
Z

I

s
in

is
_

c
o
s

a
s

in
is

_
s
in

a
c
o
s

is
_
2

c
o
s

i
s
in

is

c
o

n
st

a
n

ts
T

ri
g

o
n

o
m

e
tr

y

M
F

w
a

v
e

le
n
g
th

L
D

N
U

B
N

U
P

N
U

R

n
u

b

n
u

p

n
u
r

N
U

x

E
0
0

c
o
s
i

E
0
_
2

c
o

s
i_

E
0
_
2

E
0

_
2

1
7

A
Z

I

1
6

G
M

1
5

W
E

R

1
4

W
E

P

1
3

W
E

B

1
2

N
U

R

1
1

N
U

P

1
0

N
U

B

9

la
m

b
d

a

8

w
a

v
e

le
n

g
th

7 B
16 B
05 A4 L
D3 V
L2 M
F1

E
0

0

157

13 Appendix III. MIMD architecture notes

In the MIMD architecture it is necessary to store a result for several stages before using

it. This is a requirement to guarantee the memory consistency: all pPs exchanging data should

see the same writing/reading order in the right positions referred to every data. For example, if

data A (generated at iteration 1) is needed in iteration 3, it must be stored during iteration 2,

without using it.

To properly keep the results, each datum is assigned to several memory addresses. It is

important to take into account that the instructions to control the writing and reading addresses

are stored in a ROM; this means that they cannot be modified. However, there are some data

that have to be kept in RAM because they are needed in later iterations, therefore their position

in RAM must change at execution time. To control these special data we have added external

counters to every pPs. The counters are incremented on each iteration. The difference among

them is that each counter has a different maximum. The number of external counters to use is

different for each pP and is driven by the dataflow. Looking at the data that a pP has to handle,

it is possible to see the maximum number of times that a datum has to be stored in RAM and the

maximum number of data to be stored between iterations. Empirical observations looking the

dataflow show that the maximum number of counters for a pProcessor is 8. The minimum is 1.

Therefore when we read from the ROM the addresses to write to or to read from, we have

to change this value according to the consistency of the data in that iteration. That is, we have to

add the value of the corresponding counter.

158

Appendix III. MIMD architecture notes

Figure 68 Illustration about the memory consistency process

When we read from the ROM the write address, first we have to add the value of the write

counter to this address. When we read from the ROM the read address, we have to add the value

of the corresponding counter and an offset to avoid reading from and writing in the same

address at the same time. This is expressed by Equations III.1

Final Write Address = Base Write Address + write counter

Final Read Address = Base Read Address + read counter + offset

(III.1)

In order to calculate the offset, it is necessary to take into account the maximum

consistency of each datum (maximum counter value). In fact, when a datum has consistency

then it must have some amount of memory reserved to be stored.

The offset is used to avoid writing and reading simultaneously on the same address, and to

read always the last written position in the memory. Therefore, the way to calculate it is

expressed in Equations III.2

Memory reserved for a datum = Maximum consistency +1

Offset = Memory reserved for a datum – Actual Consistency value

(III.2)

Instructions

ROM

Port

ReadDataPort

Write DataPort

InPortNInPort0 ...

Read Address

Read

AddressPort

Write

AddressPort

Data X0

Data X0

Data XN-1

...

Consistencia Write Address Consistencia

Memory consistency

Write

memory

consistency

Read

memory

consistency

 Appendix III. MIMD architecture notes

 159

Instruction Codification in the nProcessor architecture

Every pP has a ROM to store the set of instructions to execute. Every instruction contains

data indicating input ports for each RAM, the write/read addresses, and the output port. In Table

25 we show the codification for each 72 bits in the instruction word stored in the ROM.

RAM A RAM B
Input port Write Address Consist write Input port Write Address Consist write
3 bits 10 bits 3 bit 3 bits 10 bits 3 bit
Bits 71-69 Bit 68-59 Bit 58-56 Bits 55-53 Bits 52-43 Bit 42-40

Operation code
3 bits
Bits 39-37

RAM A RAM B
Read Address Consist Read Offset Read Read Address Consist read Offset Read
10 bits 3 bit 3 bit 10 bits 3 bits 3 bit
Bit 36-27 Bit 26-24 Bit 23-20 Bits 19-10 Bit 9-7 Bit 6-3

Output port
3 bit
Bit 2-0

Table 25: Instruction encoding for each word stored in ROM

Each instruction has several fields:

1. Input port A (bits 71-69): is the input port to the RAM A. We can have up to 8 different
inputs for each RAM memory. Therefore, the field is 3-bit wide.

2. Write Address A (bits 68-59): is the address where the data is written in the RAM A.
The field is 10-bit wide. As explained before, the final address depends on the memory
consistency.

3. Consist Write A (bits 58-56): it indicates the counter whose value is necessary to add to
the write address A to obtain the final write address. As the maximum number of
counters for a pP is 8, the field is 3-bit wide. The input counters are numbered from 0 to
7 in each pP.

4. Input port B (bits 55-53): is the input port to the RAM B. As said before, we can have
up to 8 different inputs in each RAM.

5. Write Address B (bits 52-43): is the write address to the RAM B. The final writing
address depends on the memory consistency

6. Consist Write B (bits 42-40): it indicates the counter whose value is necessary to add to
the write address B to obtain the final write address.

7. Operation code (bits 39-37): this value is used to control the multiplexer to change the
ALU operands (see Fig 5). When Operation Code is 000 then the operands are not
interchanged. When Operation Code is 001 the operands are interchanged.

8. Read Address A (bits 36-27): is the read address for the RAM A. The final reading
address depends on the memory consistency and on the offset.

9. Consist Read A (bits 26-24): it indicates the counter whose value is necessary to add to
the read address A to obtain the final reading address.

160

Appendix III. MIMD architecture notes

10. Offset Read A (bits 23-20): it indicates the offset to add to the read address A to obtain
the final reading address.

11. Read Address B (bits 19-10): is the read address for the RAM B. The final reading
address depends on the memory consistency and on the offset.

12. Consist Read B (bits 9-7): it indicates the counter whose value is necessary to add to the
read address B before obtaining the final reading address.

13. Offset Read B (bits 6-3): it indicates the offset to add to the read address B to obtain the
final reading address.

14. Output Port (bits 2-0): it indicates the pP output port. As each pP can have up to 8
different output ports, this field is 3-bit wide.

In this section we present the results for the synthesis of only one pProcessor. These results

pretend to be only an orientation, since the inclusion of several pPs on the FPGA will alter the

results because of the space occupied by the interconnection routing.

As said before, the pPs are classified in several types according to the operation they

perform. The logic utilization and the latency are different for each type. In order to minimize

the used logic, the operation core of each pP uses the DSP48Es available within the Virtex5

device [Xilinx]. The number of DSP48Es used in each case depends on the operation.

Logic utilization Used Available Utilization
Number of slice registers 572 81920 0,7%
Number of slice LUTs 575 81920 0,7%
Number of occupied SLICEMs 9 6320 0,14%
Number of BlockRAM/FIFO 3 298 1%
Number of 36k Block used 1
Number of 18k Block used 2
Number of DSP48Es 2 320 0,62%

Table 26: Device usage summary for the addition picoprocessor only

Logic utilization Used Available Utilization
Number of slice registers 572 81920 0,7%
Number of slice LUTs 575 81920 0,7%
Number of occupied SLICEMs 9 6320 0,14%
Number of BlockRAM/FIFO 3 298 1%
Number of 36k Block used 1
Number of 18k Block used 2
Number of DSP48Es 2 320 0,62%

Table 27: Device usage summary for the subtraction picoprocessor only

Logic utilization Used Available Utilization
Number of slice registers 433 81920 0,53%
Number of slice LUTs 434 81920 0,53%
Number of occupied SLICEMs 1 6320 0,01%
Number of BlockRAM/FIFO 3 298 1%
Number of 36k Block used 1
Number of 18k Block used 2
Number of DSP48Es 3 320 0,94%

Table 28: Device usage summary for the multiplication picoprocessor only

 Appendix III. MIMD architecture notes

 161

Logic utilization Used Available Utilization
Number of slice registers 1730 81920 2,1%
Number of slice LUTs 1102 81920 1,34%
Number of occupied SLICEMs 17 6320 0,27%
Number of BlockRAM/FIFO 3 298 1%
Number of 36k Block used 1
Number of 18k Block used 2
Number of DSP48Es 0 320 0%

Table 29: Device usage summary for the division picoprocessor only

As is shown in the tables, the use of DSP48Es significantly reduces the logic usage and the

power consumption. Unfortunately, the division operation cannot be performed using DSP48Es

and this increases the logic.

The latency depends on the arithmetic operation to perform and the desired clock speed for

the FPGA. The faster the clock, the longer the latency. The number of resources is increased

also with the clock speed. Figure 69 shows the evolution of the latency depending on the clock

speed. The graph has been obtained from [Xilinx]

Figure 69 Latency evolution with resources and speed for addition operation.

Table 30 shows the different latencies according to the operation to achieve 200 MHz:

Operation Latency
Addition 6
Substraction 6
Product 3
Division 28

Table 30: Latencies according to operation

163

14 Appendix IV. SIMD architecture notes

The nProcessor ALU can make multiplication and addition-subtraction arithmetic

operations in the 32 bit single-precision floating-point standard. The ALU also performs the

comparison operations: greater, greater or equal, lower, lower or equal, and equal than. As

shown in Figure 22, the “codop_alu” signal codifies the operation to execute in the ALU. The

four bit codification is shown in Table 31. Besides arithmetic and comparison operation codes,

the “codop_alu” codifies the else and end operations which are used to generate instruction flow

control signals.

The comparison operations do not produce a numeric result, but logic results through the

“flag_cmp” register (see figure 3). The “flag_cmp” register is a cluster of four one-bit signals

and it is detailed in Table 32. The “flag_cmp” register is used, together with the Enable input

port, by the Local Control unit for managing the instruction catch, and this will be detailed

below.

ALU operation Codop_alu value
Addition 0000
Subtraction 0001
Multiply 0010
Greater than 1000
Greater or equal than 1001
Lower than 1010
Lower or equal than 1011
Equal than 1100
Else 1101
End 1110

Table 31 ALU operation codification using the “codop_alu” signal.

Flag_cmp field Description
Flagif Result of a comparison instruction. (1 true, 0 false)
Flagif_ready It means when flagif is valid.
Else_rdy It means when an else operation has been executed.
End_rdy It means when an end operation has been executed.

Table 32 flag_cmp register fields

The mux_operand_select multiplexor (see figure 3) provides the data to the ALU from the

data memories. In addition, this multiplexor sorts the order of the operand if it were needed.

164

Appendix IV. SIMD architecture notes

This multiplexor is managed by the “codop_load” three-bit signal whose codification is shown

in the Table 33.

Codop_load
value

Mux_operand_select function Comments

000 Data A RAM -> Op A Data B RAM -> Op A Parallel load
001 Data A RAM -> Op B Data B RAM -> Op B Crossed load
010 Data A RAM -> Op A - Op B keeps the previous value
011 - Data B RAM -> Op A Op B keeps the previous value
100 - Data B RAM -> Op B Op A keeps the previous value
101 Data A RAM -> Op B - Op A keeps the previous value
110 Data A RAM -> Op A Data B RAM -> Op A Op A square
111 Data A RAM -> Op B Data B RAM -> Op B Op B square

Table 33 Mux_operand_select codification

The Input port is used to introduce new data to the nProcessor memory space, therefore the

Input port accept 32-bits floating-point data. An input data can be addressed to both memories.

The Mux_load_data_RAM multiplexor is used for loading the input data or the ALU result in

memory, this choice depends on the signal “rinput_load”, see Table 34.

Rinput_load signal value Mux_load_data_RAM function
0 The ALU result is loaded in memory
1 The Input port is loaded in memory

Table 34 Function Selection of Mux_load_data_ram

The Output port is used to get out data. The Mux_load_Routput multiplexor is used for

choosing between data from Data A RAM or Data B RAM. It is managed by the “load_rout”

signal (see Table 35).

Load_rout signal value Mux_load_Routput function
0 The output port is loaded with a data from Data A RAM
1 The output port is loaded with a data from Data B RAM

Table 35 Function Selection of mux_load_routput

The Instruction input port is used to provide of instructions to the nProcessor. The

instruction has 48 bits of width and defines the nProcessor behavior every instant. That is, each

instruction defines all the necessary control signals at a given time.

 Appendix IV. SIMD architecture notes

 165

Instruction fields
(from MSB to LSB)

Field width (bits)

RINPUT_LOAD 1

LOAD_ROUTPUT 1

ROUTPUT_READY 1

CODOP_ALU 4

CODOP_LOAD 3

READ_ADDRESS_A 12

READ_ADDRESS_B 12

WRITE_ADDRESS_RAMA 1

WRITE_ADDRESS_RAMB 1

WRITE_ADDRESS 12

Table 36 Instruction fields

In the Conditional Flag Stack the results of previous ALU comparison operations are stored

because Local Control reads the ALU comparison operation results using the flag_cmp register.

In Table 37 indicates how the flag_cmp is used in the Conditional Flag Stack management.

Flag_cmp field Conditional flag stack action
Flagif Adds the result of a ALU comparison operation to the stack top
Flagif_ready Indicates when Flaig is valid
Else_rdy Changes the value of the stack top
End_rdy Remove the value on the stack top

Table 37 Conditional flag stack behaviour

At FPGA technology level, it is important to point out that the nProcessor architecture

projects very well with the FPGA resources. nProcessors use embedded mathematical cores,

DSP48, and use Block RAM to implement each data RAM

nProcessor net Control Unit

The nProcessor net Control Unit behaviour is also managed by the instruction ROM which

contains the control signals to control this unit –and also the RTE inverter at the time. The

instructions are of 54 bits of width and they have three fields: loop, command and cargo (they

are detailed in Table 38). The nPCU reads the instructions, one by one, and always interprets the

Loop and Command fields. The Cargo field content depends on the command in the Command

field.

166

Appendix IV. SIMD architecture notes

ROM Instruction fields
(from MSB to LSB)

Field width (bits)

Loop 2
Command 4
Cargo 48

Table 38 Fields of the Instruction ROM

The Loop field can have three values: loop starts (“01”), loop ends (“10”), and no loop

indications (“00”). The instructions between loop starts and loop ends are sent to each

nProcessor in different turns. Therefore, the instructions in a loop are executed twelve times,

one time by each nProcessor. The control unit implements a counter –control_np- that set up the

nProcessors using the nP Enable ports.

The Command field has two main utilities: instruction flow control and data flow control,

as can be seen in Table 39. In the instruction flow control case, the Cargo field of the Instruction

ROM has an auxiliary field of the commands. However, in the data flow control case, the Cargo

field contains nP instructions. The commands are detailed in Table 39.

The commands of the instruction flow control type manage a counter –program counter-

that governs the read of instructions from the Instruction ROM. On the other hand, the

commands of the data flow control type manage the entire data flow in the nProcessor net:

input/output data flow and the data flow with the SOB unit. For this task, the data flow control

commands act over the Data_in_demux demultiplexor, over the Data_out_mux multiplexor, and

over the SOB control port –according to the command. Besides, since only one nProcessor can

access the SOB, and to the input/output buffers, the commands of the data flow control type

work together with the control_np counter, generated by the Loop commands, in order to

arrange in sequence the nProcessor access.

Command
code

Command
type

Command
name

Cargo
(From MSB to LSB,
adjusted to the right)

0000 No command nP_instruction nP instruction
1000

Instruction flow
control

If_control Condition_code(5 bits)
Jump_direction(16 bits)

1001 Reset_counter Count_code(5 bits)
1010 Inc_counter Count_code(5 bits)
1011 Jump Jump_direction(16 bits)
1111

Data flow
control

SVD_in nP instruction
1110 SVD_out nP instruction
0001 Input nP instruction
0010 Output nP instruction
0011 Division nP instruction
0100 Trig nP instruction
0101 SQRT nP instruction
0110 ATAN nP instruction

Table 39 Command set

 Appendix IV. SIMD architecture notes

 167

Shared Operations Block

Control
port code

SOB
Function

Comments

001 SVD_in It introduces an upper diagonal covariance matrix for the SVD to
be performed. Sixty values must be provided in the input port.

010 SVD_out It gets out the SVD result through the output port: 1
normalization value, 10 eigenvalues, and 10 eigenvectors (100
values).

011 Division It performs the division of two operands. The two operands are
provided in a sequence of dividend and divisor in the input port.
The division result is provided using the Output port.

100 Atan It performs the Arctangent de Y/X. The two operands are
provided in a sequence of Y and X through input port. The result
is provided using the Output port.

101 SQRT It performs the square root of an operand. The square root result
is provided using the Output port.

110 SinCos It performs the sine and cosine of an operand. The sine and
cosine are provided using the Output port.

Table 40 SOB functionality

168

Appendix IV. SIMD architecture notes

Figure 70 SOB schematic

 Appendix IV. SIMD architecture notes

 169

Figure 71 Normalize block within SOB

170

Appendix IV. SIMD architecture notes

Figure 72: Sin and Cos Error (SOB)

Figure 73: SQRT Error in (SOB)

0
,0

0

0
,2

0

0
,4

0

0
,6

0

0
,8

0

1
,0

0

1
,2

0

1
,4

0

1
,6

0

1
,8

0

2
,0

0

2
,2

0

2
,4

0

2
,6

0

2
,8

0

3
,0

0

3
,2

0

3
,4

0

3
,6

0

3
,8

0

4
,0

0

4
,2

0

4
,4

0

4
,6

0

4
,8

0

5
,0

0

5
,2

0

5
,4

0

5
,6

0

5
,8

0

6
,0

0

6
,2

0

6
,4

0

-1,00E-06

-5,00E-07

0,00E+00

5,00E-07

1,00E-06

1,50E-06

2,00E-06

2,50E-06

Sin and Cos Absolute Error

Sin Error

Cos Error

Angle from 0 to 2*PI

0 0,125 0,25 0,375 0,5 0,625 0,75 0,875 1 1,125 1,25 1,375 1,5 1,625 1,75 1,875

-1,0E-06

-8,0E-07

-6,0E-07

-4,0E-07

-2,0E-07

0,0E+00

2,0E-07

4,0E-07

6,0E-07

8,0E-07

1,0E-06

SQRT Error

 Appendix IV. SIMD architecture notes

 171

Figure 74: ArcTan Error (SOB).

Core LUTs BRAM Slices % Total
Max.

Frequenc.

Arc_Tan_Controller 46 0 26 0% 354,00

SinCos_Controller 25 0 14 0% -

FxP_20toFP_Controller 48 0 24 0% -

SOB_Controller 99 0 50 0% 474,24

SQRT_Controller 5 0 3 0% -

ArcTan.xco 681 0 377 1% 142,59

FxP_3_20toFP.xco 174 0 97 0% 183,25

DivisionFP.xco 828 0 789 3% 268,00

SQRT_FxP.xco 604 0 503 2% 249,19

SinCos.xco 757 0 435 1% 158,35

FP2FxP_3_20.xco 195 0 108 0% 170,11

DivisionFP_SVD_InOut: 1505 7 1406 5% 161,66

DivisionFP.xco 828 0 789 3% 268,00

FIFO_32x64_FWFT.xco 62 1 77 0% 328,19

FIFO_32x16_FWFT.xco 96 0 118 0% 315,11

FIFO_32x2048_FWFT.xco 106 4 123 0% 307,97

Comparator_FP.xco 71 0 35 0%

FIFO_FP_Division.xco (32x1024) 90 2 110 0% 310,72
Total Cores en

DivisionFP_SVD_InOut 1253 7 1252

SOB_Top 4132 7 3043 12,00% 142,59

Figure 75 Resources occupation of SOB and sub-blocks. See section 5.3.

The floating point division core is generated by Xilinx Core Generator software [IR08].

Those cores accomplish with the floating point IEEE-754 Standard [NR01], as was required in

RTE-R-0180 [Aparicio (2014)].

-1
,0

0
0

-0
,9

3
8

-0
,8

7
5

-0
,8

1
3

-0
,7

5
0

-0
,6

8
8

-0
,6

2
5

-0
,5

6
3

-0
,5

0
0

-0
,4

3
8

-0
,3

7
5

-0
,3

1
3

-0
,2

5
0

-0
,1

8
8

-0
,1

2
5

-0
,0

6
3

0
,0

0
0

0
,0

6
3

0
,1

2
5

0
,1

8
8

0
,2

5
0

0
,3

1
3

0
,3

7
5

0
,4

3
8

0
,5

0
0

0
,5

6
3

0
,6

2
5

0
,6

8
8

0
,7

5
0

0
,8

1
3

0
,8

7
5

0
,9

3
8

-1,0E-06

-5,0E-07

0,0E+00

5,0E-07

1,0E-06

1,5E-06

ArcTan(1,0/Data) Error ArcTan(Data/1,0) Error

[-1, 1]

173

15 Appendix V. Communications based on RS-232

schematic

Figure 76 FPGA design for using the RS-232

175

16 Appendix VI. SVD notes

The following tables show the memory organization:

READ
Processor

MemoryA_1 MemoryA_2
DATO POS DATO POS

PD1 X00 0 X01 0
X11 1 NoData 1

PD2 X22 2 X23 2
X33 3 NoData 3

PD3 X44 4 X45 4
X55 5 NoData 5

PD4 X66 6 X67 6
X77 7 NoData 7

PD5 X88 8 X89 8
X99 9 NoData 9

PND1 X03 10 X13 10
X12 11 X02 11

PND2 X04 12 X05 12
X15 13 X14 13

PND3 X07 14 X17 14
X16 15 X06 15

PND4 X08 16 X09 16
X19 17 X18 17

PND5 X25 18 X35 18
X34 19 X24 19

PND6 X26 20 X27 20
X37 21 X36 21

PND7 X29 22 X39 22
X38 23 X28 23

PND8 X47 24 X57 24
X56 25 X46 25

PND9 X48 26 X49 26
X59 27 X58 27

PND10 X69 28 X79 28
X78 29 X68 29

Table 41: Eigenvalue positions

The next table shows the eigenvector positions (taking by columns)

READ
Processor

MemoryA_1 MemoryA_2

DATO POS DATO POS
PV1 X00 30 X10 30

 X11 31 X01 31
PV2 X20 32 X30 32

 X31 33 X21 33
PV3

 X40 34 X50 34
 X51 35 X41 35

PV4

 X60 36 X70 36
 X71 37 X61 37

PV5

 X80 38 X90 38
 X91 39 X81 39

PV6

 X12 40 X13 40
 X03 41 X02 41

PV7

 X32 42 X33 42
 X23 43 X22 43

176

Appendix VI. SVD notes

PV8 X52 44 X53 44
 X43 45 X42 45

PV9 X72 46 X73 46
 X63 47 X62 47

PV10 X92 48 X93 48
 X83 49 X82 49

PV11 X04 50 X14 50
 X15 51 X05 51

PV12 X24 52 X34 52
 X35 53 X25 53

PV13 X44 54 X54 54
 X55 55 X45 55

PV14 X64 56 X74 56
 X75 57 X65 57

PV15 X84 58 X94 58
 X95 59 X85 59

PV16 X16 60 X17 60
 X07 61 X06 61

PV17 X36 62 X37 62
 X27 63 X26 63

PV18 X56 64 X57 64
 X47 65 X46 65

PV19 X76 66 X77 66
 X67 67 X66 67

PV20 X96 68 X97 68
 X87 69 X86 69

PV21 X08 70 X18 70
 X19 71 X09 71

PV22 X28 72 X38 72
 X39 73 X29 73

PV23 X48 74 X58 74
 X59 75 X49 75

PV24 X68 76 X78 76
 X79 77 X69 77

PV25 X88 78 X98 78
 X99 79 X89 79

Table 42: Eigenvector position

Figure 77 : Reading block: Logic for submatrix reading

ReadData1

ReadData2

ReadData3

ReadData4

Rot 1_1

Rot 1_2

Rot 2_1

Rot 2_2

SEL

 Appendix VI. SVD notes

 177

The signal “sel” in Figure 77 must change the value in every reading. Values for signals

“sel” are shown in Figure 78:

Figure 78: States of the SEL signal within the Reading block (see Figure 77)

Figure 79: Rotator scheme

0-0-0-0-0-1-0-1-0-1-0-1-1-0-1 0-0-0-0-0-1-1-1-1-1-0-0-0-0-0-1-1-1-1-1-0-0-0-0-0

EIGENVAL EIGENVECT

0-0-0-0-0

ANGLE

178

Appendix VI. SVD notes

Figure 80: Rotation vector core. Schematic version of Figure 45.

 submatrix Angle
Eigen
Value
rotation 1

PD1 1
PD2 2
PD3 3
PD4 4
PD5 5
PND1 1
PND2 1
PND3 1
PND4 1
PND5 2
PND6 2
PND7 2
PND8 3
PND9 3
PND10 4

Eigen
Vector

PV1 1
PV2 1
PV3 1
PV4 1
PV5 1
PV6 2
PV7 2
PV8 2
PV9 2
PV10 2

 Appendix VI. SVD notes

 179

PV11 3
PV12 3
PV13 3
PV14 3
PV15 3
PV16 4
PV17 4
PV18 4
PV19 4
PV20 4
PV21 5
PV22 5
PV23 5
PV24 5
PV25 5

Eigen
value
rotation 2

PD1 1
PD2 2
PD3 3
PD4 4
PD5 5
PND1 2
PND2 3
PND3 4
PND4 5
PND5 3
PND6 4
PND7 5
PND8 4
PND9 5
PND10 5

Table 43: Order of the angle selection within the Rotator block

Figure 81: Schematic of the Angle Calculation Block,

To calculate the angle, the block “AngleCalculation” uses the CORDIC core. Therefore the

arctangent is obtained. But the CORDIC core can only work with fixed point data. In order to

180

Appendix VI. SVD notes

avoid loss of precision, all the necessary operations before going into the CORDIC block are in

32bits floating point data. Before going into the CORDIC, a conversion is done to 40 bits fixed

point data with two bits integer. The angle obtained from CORDIC is 27 bits fixed point data

with three bits integer. Parameters used in the CORDIC core can be found in Table 44

CORDIC Parameter Value
Functional Selection Arc Tan
Architectural configuration Parallel
Pipelining mode Maximum
Phase format Radians
Input width 40
Register inputs Yes
Output width 27
Register outputs Yes
Round mode Nearest Even
Iterations 0
Precision 48
Coarse rotation Yes
Optional pins CE, ND, RDY, Phase Output

Table 44: CORDIC for arctangent implementation options

After calculating the angle, the FPGA calculates the sine and cosine to be stored. This

avoids calculating sine and cosine in every rotation. Sine and cosine are calculated by using

another CORDIC core. Parameters used in this CORDIC core can be found in Table 45

CORDIC Parameter Value
Functional selection Sin and Cos
Architectural configuration Parallel
Pipelining mode Maximum
Phase Format Radians
Input width 27
Register inputs No
Output width 25
Register outputs No
Round mode Nearest even
Iterations 0
Precision 48
Coarse rotation No
Optional pins ND, RDY, X Out, Y Out

Table 45: Cordic for sine and cosine implementation options

 Appendix VI. SVD notes

 181

Write
Processor

OUT ROT ->Submatriz 2x2

PD1 1X00 0 NoData 1
2X02 = ‘0’ 11 1X22 2

PD2 1X44 4 NoData 3
2X14= ‘0’ 13 1X11 1

PD3 1X66 6 NoData 5
2X36= ‘0’ 21 1X33 3

PD4 1X88 8 NoData 7
2X58= ‘0’ 27 1X55 5

PD5 1X99 9 NoData 9
2X79= ‘0’ 28 1X77 7

PND1 1X04 12 2X24 19
2X01 0 1X12 11

PND2 2X06 15 1X26 20
1X03 10 2X23 2

PND3 1X08 16 2X28 23
2X05 12 1X25 18

PND4 2X09 16 1X29 22
1X07 14 2X27 20

PND5 2X46 25 1X16 15
1X34 19 2X13 10

PND6 1X48 26 2X18 17
2X45 4 1X15 13

PND7 2X49 26 1X19 17
1X47 24 2X17 14

PND8 2X68 29 1X38 23
1X56 25 2X35 18

PND9 1X69 28 2X39 22
2X67 6 1X37 21

PND10 2X89 8 1X59 27
1X78 29 2X57 24

Write
Processor

MemoryA_1 MemoryA_2

PV1 1X00 30 1X20 * 32
2X02 * 40 2X22 42

PV2 1X40 34 2X10 * 30
2X42 * 44 1X12 40

PV3 1X60 36 2X30 * 32
2X62 * 46 1X32 42

PV4 1X80 38 2X50 * 34
2X82 * 48 1X52 44

PV5 2X90 38 2X70 * 36
1X92 * 48 1X72 46

PV6 1X04 50 1X24 * 52
2X01 * 31 2X21 33

PV7 1X44 54 2X14 * 50
2X41 * 35 1X11 31

PV8 1X64 56 2X34 * 52
2X61 * 37 1X31 33

PV9 1X84 58 2X54 * 54
2X81 * 39 1X51 35

PV10 2X94 58 2X74 * 56
1X91 * 39 1X71 37

PV11 2X06 60 2X26 * 62
1X03 * 41 1X23 43

PV12 2X46 64 1X16 * 60

182

Appendix VI. SVD notes

1X43 * 45 2X13 41
PV13 2X66 66 1X36 * 62

1X63 * 47 2X33 43
PV14 2X86 68 1X56 * 64

1X83 * 49 2X53 45
PV15 1X96 68 1X76 * 66

2X93 * 49 2X73 47
PV16 1X08 70 1X28 * 72

2X05 * 51 2X25 53
PV17 1X48 74 2X18 * 70

2X45 * 55 1X15 51
PV18 1X68 76 2X38 * 72

2X65 * 57 1X35 53
PV19 1X88 78 2X58 * 74

2X85 * 59 1X55 55
PV20 2X98 78 2X78 * 76

1X95 * 59 1X75 57
PV21 2X09 71 2X29 * 73

1X07 * 61 1X27 63
PV22 2X49 75 1X19 * 71

1X47 * 65 2X17 61
PV23 2X69 77 1X39 * 73

1X67 * 67 2X37 63
PV24 2X89 79 1X59 * 75

1X87 * 69 2X57 65
PV25 1X99 79 1X79 * 77

2X97 * 69 2X77 67

Table 46 Reallocation ROM

183

17 Appendix VII. Communication notes

SoCWire
Protocol
Write
Register
ID

RTE Configuration
Register name
(16 bits)

Description

0 RTE_MODE Format : unsigned fixed point
Values:
0 : Classical estimations + RTE
1 : Classical estimations
2 : RTE (without Classical estimations)

1 RTE_ITERATIONS Format: unsigned fixed point
Values: integer in [0,32]

2 RTE_OUTPUT_MODE Format: unsigned fixed point
Values: Mask of eleven lest significant bits.
Each bit position codes if the referenced
parameter is in the RTE output values set. One is
true and zero is false.
Bit 0: the line-to-continuum absorption
coefficient ratio (η0)
Bit 1: the strength of the vector magnetic field
(B)
Bit 2: the line-of-sight (LOS) velocity (vLOS)
Bit 3: Doppler width of the line (λD)
Bit 4: the damping parameter (a)
Bit 5: inclination (γ) of the vector magnetic field
Bit 6: azimuth (φ) of the vector magnetic field
Bit 7: source function (S0)
Bit 8: source function (S1)
Bit 9: the continuum intensity (Ic)

3 RTE_INVERTED
_PARAMETERS

Format: unsigned fixed point
Values: Mask of ten least significant bits.
Each bit position codes if the referenced
parameter is used in the RTE inversion process.
One is true and zero is false.
Bit 0: the line-to-continuum absorption
coefficient ratio (η0)
Bit 1: the strength of the vector magnetic field
(B)
Bit 2: the line-of-sight (LOS) velocity (vLOS)
Bit 3: Doppler width of the line (λD)
Bit 4: the damping parameter (a)
Bit 5: inclination (γ) of the vector magnetic field
Bit 6: azimuth (φ) of the vector magnetic field
Bit 7: source function (S0)
Bit 8: source function (S1)

4 IM_ETHA0 Format: floating point of 32 bits split in two
SoCWire Register of 16 bits.
The LSB in the lower register and MSB in the
higher register.
Values: [8.0,12.0]

5

184

Appendix VII. Communication notes

The line-to-continuum absorption coefficient
ratio (η0) is used in the initial atmosphere model
for the RTE inversion mode without classical
estimations.

6 IM_B Format: floating point of 32 bits split in two
SoCWire Register of 16 bits.
The LSB in the lower register and MSB in the
higher register.
Values: [0,4500.0]
The strength of the vector magnetic field (B) is
used in the initial atmosphere model for the RTE
inversion mode without classical estimations.

7

8 IM_VL Format: floating point of 32 bits split in two
SoCWire Register of 16 bits.
The LSB in the lower register and MSB in the
higher register.
Values: [-5.0,5.0]
The line-of-sight (LOS) velocity (vLOS) is used in
the initial atmosphere model for the RTE
inversion mode without classical estimations.

9

10 IM_LD Format: floating point of 32 bits split in two
SoCWire Register of 16 bits.
The LSB in the lower register and MSB in the
higher register.
Values: [2.9e-2,3.2e-2]
The Doppler width of the line (λD) is used in the
initial atmosphere model for the RTE inversion
mode without classical estimations.

11

12 IM_A Format: floating point of 32 bits split in two
SoCWire Register of 16 bits.
The LSB in the lower register and MSB in the
higher register.
Values: [2.5e-3,6e-1]
The damping parameter (a) is used in the initial
atmosphere model for the RTE inversion mode
without classical estimations.

13

14 IM_GM Format: floating point of 32 bits split in two
SoCWire Register of 16 bits.
The LSB in the lower register and MSB in the
higher register.
Values: [0,180]
The inclination (γ) of the vector magnetic field is
used in the initial atmosphere model for the RTE
inversion mode without classical estimations.

15

16 IM_AZI Format: floating point of 32 bits split in two
SoCWire Register of 16 bits.
The LSB in the lower register and MSB in the
higher register.
Values: [0,180.0]
The azimuth (φ) of the vector magnetic field is
used in the initial atmosphere model for the RTE
inversion mode without classical estimations.

17

18 IM_S0 Format: floating point of 32 bits split in two
SoCWire Register of 16 bits.
The LSB in the lower register and MSB in the
higher register.
Values: [1e-1,1e0]

19

 Appendix VII. Communication notes

 185

The source function (S0) is used in the initial
atmosphere model for the RTE inversion mode
without classical estimations.

20 IM_S1 Format: floating point of 32 bits split in two
SoCWire Register of 16 bits.
The LSB in the lower register and MSB in the
higher register.
Values: [1e-1,9e-1]
The source function (S1) is used in the initial
atmosphere model for the RTE inversion mode
without classical estimations.

21

Table 47 SoCWire Protocol Write Registers used to configure the RTE inverter (see Chap. 8)

SoCP
Read
Register
ID

RTE
Status Register
 (16 bits)

Description

28 Status_Register_1 The Internal and the accepted configuration flag
29 Status_Register_2 The result of the check process for the

configuration
30,31 Statistical_Register_1 The current statistical value “χi Square” (32 bits

floating point)

Table 48 RTE status register (see Chapter 8)

187

18 Appendix VIII. Documentation packets

Preliminary Design Review (PDR) documentation:

- SOL-PHI-IAA-SW3100-PL-1 RTE FPGA Development Plan
- SOL-PHI-IAA-SW3100-PL-2 RTE inverter FPGA validation and verification plan
- SOL-PHI-IAA-SW3100-RP-1 RTE inverter FPGA Architecture Design Report
- SOL-PHI-IAA-SW3100-SP-1 RTE inverter FPGA requirement specification

Critical Design Review (CDR) documentation

- SOL-PHI-IAA-SW3100-PR-1 nProcessor net module post programming test
procedure

- SOL-PHI-IAA-SW3100-PR-1 Classical estimations functional post programming
test procedure

- SOL-PHI-IAA-SW3100-RP-1 Classical estimations functional post programming
test report

- SOL-PHI-IAA-SW3100-RP-1 nProcessor net module post programming test report
- SOL-PHI-IAA-SW3100-RP-5 RTE inverter FPGA detailed Design
- SOL-PHI-IAA-SW3100-PL-1 RTE inverter FPGA Development Plan
- SOL-PHI-IAA-SW3100-RP-7 RTE inverter FPGA progress report
- SOL-PHI-IAA-SW3100-SP-1 RTE inverter FPGA requirement specification
- SOL-PHI-IAA-SW3100-PL-2 RTE inverter FPGA validation and verification plan
- SOL-PHI-IAA-SW3100-PR-2 nProcessor module test procedure
- SOL-PHI-IAA-SW3100-PR-5 nProcessor net module test procedure
- SOL-PHI-IAA-SW3100-PR-6 spectral synthesis and response functions functional

test procedure
- SOL-PHI-IAA-SW3100-PR-7 classical estimations functional test procedure
- SOL-PHI-IAA-SW3100-PR-8 convolution functional test procedure
- SOL-PHI-IAA-SW3100-PR-9 covariance matrix functional test procedure
- SOL-PHI-IAA-SW3100-RP-6 nProcessor module verification report
- SOL-PHI-IAA-SW3100-RP-10 nProcessor net module verification report
- SOL-PHI-IAA-SW3100-RP-11 spectral synthesis and response functions

functional verification report
- SOL-PHI-IAA-SW3100-RP-12 classical estimations functional verification report
- SOL-PHI-IAA-SW3100-RP-13 convolution functional verification report
- SOL-PHI-IAA-SW3100-RP-14 covariance matrix functional verification report

Electrical and Functional Model (EFM) documentation:

- SOL-PHI-IAA-SW3100-LI-1 RTE FPGA EFM CIDL
- SOL-PHI-IAA-SW3100-LI-2 RTE inverter FPGA EFM Traceability, Verification

and Compliance Matrix for RTE inverter FPGA specification
- SOL-PHI-IAA-SW3100-PL-1 RTE inverter FPGA Development Plan
- SOL-PHI-IAA-SW3100-PR-18 RTE inverter EFM Model Test Procedure
- SOL-PHI-IAA-SW3100-RP-5 RTE inverter FPGA detailed Design
- SOL-PHI-IAA-SW3100-RP-17 RTE Inverter FPGA Power Test Report
- SOL-PHI-IAA-SW3100-RP-19 RTE inverter EFM Model Test Report
- SOL-PHI-IAA-SW3100-SP-1 RTE inverter FPGA requirement specification

189

19 Appendix IX. Virtex-4 FPGA development board

This card has been developed specifically for integration into this system. The design was

developed jointly with the company ‘Seven Solutions SL’.

The board implements a commercial device Virtex 4, in particular the device XC4VSX55,

package FF1148, speed: - 10. It is equipped with the most common laboratory elements to

perform a debugging of a FPGA device programming as Figure 81 illustrates.

Figure 82: Block diagram development board

190

Appendix IX. Virtex-4 FPGA development board

We highlight the following characteristics:

1) Different programmable configurations of clock. The board has two clocks of

programmable frequency via PPL (cdcm61002) devices. The PLL devices, in their

configuration of LVCMOS outputs, allow us to select, via switch, on frequencies in a

range from 60 to 250 MHZ of clock signal. It also has possibility for connection of two

external clock inputs through SMA socket.

2) It allows us to integrate communications buses serial, RS-232 (MAX3232) and USB

(CP2102) for debugging.

3) Makes it possible to integrate 2 SoCWire communication buses as required by the final

design . The connection is made through a typical logic analyser cable, in particular the

National Instruments SHC68-H1X38, specified to 100 MHz.

4) It has 1 Connector for 34 commonly used LVDS signals.

5) It has 1 Connector for one probe-differential (E5387A), by Agilent.

6) It has 2 specific ports for probe-single-ended (E5390A) by Agilent (ChipScope, Xilinx

FPGA Logic Analyser) [Xilinx]

7) It has switches, leds and buttons of general use for programming debugging.

8) The VHDL test can be loaded through a Xilinx JTAG bus or can be loaded

automatically after power up from a SDRAM (2Mx32) memory bank.

Figure 83: Virtex-4 Development Board

191

20 Appendix X. Publications and other merits

Almost 30 technical notes have been released within the SO/PHI project. Below is a list of

some publications and contributions to scientific meetings.

Papers in JCR journals:

� Cobos Carrascosa, J.P.; Ramos, J.L.; Aparicio del Moral, B.; Balaguer M.;
Lopez Jimenez, A.C.; del Toro Iniesta, J.C. “SIMD architecture on FPGA for
scientific computing aboard a space instrument”. Journal of Systems
Architecture (Elsevier). In press.

Sited in Q2, in 2014, in the category of “Hardware and Architecture” of the
SCImago Journal Rank.

Papers in international conferences with double blind review:

� Cobos Carrascosa, J.P.; Aparicio del Moral, B.; Ramos, J.L.; Balaguer M.;

Lopez Jimenez, A.C.; del Toro Iniesta, J.C. “Scientific Computing and Fault
Mitigation on FPGA Aboard the Solar Orbiter PHI Instrument”. In Proc. of the
NASA/ESA Conference on Adaptive Hardware and Systems (AHS’15),
Montreal(CA), vol., no., pp.1-8, 15-18 June 2015. Doi:
10.1109/AHS.2015.7231150. IEEE Explore Publisher.

� Cobos Carrascosa, J.P.; Aparicio del Moral, B.; Ramos, J.L.; Lopez Jimenez,

A.C.; del Toro Iniesta, J.C., "A Multicore Architecture for High-Performance
Scientific Computing Using FPGAs," Embedded Multicore/Manycore SoCs
(MCSoc), 2014 IEEE 8th International Symposium on , vol., no., pp.223-228,
23-25 Sept. 2014 doi: 10.1109/MCSoC.2014.39 IEEE Explore Publisher.

Paper in national workshops:

� D. Hernández Expósito, J.P. Cobos Carrascosa, M. Rodríguez Valido and V.

Martínez Pillet, Arquitectura multiprocesador SIMD en FPGA para el cálculo de
la 2D-DWT, Jornadas de Computación Reconfigurable y Aplicaciones, Córdoba
(España) 2015

� J.P. Cobos Carrascosa, J.L. Ramos Mas, B. Aparicio del Moral, A.C. López
Jiménez, J.C del Toro Iniesta. Arquitectura multiprocesador SIMD en FPGA
para cálculo científico en instrumentación espacial Actas del JCRA 2014.
“Jornadas de Computación Reconfigurable y Aplicaciones” Valladolid,
Septiembre de 2014. ISBN : 978-84-697-0971-9 , pp 106-113.

(Awarded like the “Best Paper”)

� J.P. Cobos, R. Sanz, J.L. Ramos, J.C. del Toro Iniesta, A.C. López Jiménez,
Diseño de una arquitectura segmentada para computación de altas
prestaciones en FPGA. Actas del JCRA 2009. “IX Jornadas de Computación
Reconfigurable y Aplicaciones” Alcalá de Henares, 9-11 de Septiembre de
2009. ISBN : 978-84-8138-833-6 , pp 245-254.

192

Appendix X. Publications and other merits

� J.P. Cobos, B. Aparicio del Moral, J.L. Ramos, A.C. López Jiménez,
Configuración automática de una arquitectura MIMD empotrada en FPGA.
Actas del SiCE 2010. “I Simposio de Computación Empotrada”. Valencia, 7-10
Septiembre 2010. ISBN: 978-84-92812-69-1, pp 57-64

Presentations in workshop without printed proceedings:

� “FPGAs for embedded computing on space instrumentation”
II Jornadas de Computación Empotrada
Granada, Octubre 2011
Organized by Universidad de Granada

� “Progress on the RTE electronic inverter for SO/PHI”

Congreso Desarrollo de Instrumentación Espacial
Madrid, Junio 2011
Organized by the Centro de Astrobiología (INTA-CSIC)

� “Progress on the RTE electronic inverter for SO/PHI”

III Reunión Española de Física Solar y Heliosférica
Granada, Junio 2011
Organized by Instituto de Astrofísica de Andalucía.

Papers as a member of the SO/PHI Team

� Sami K. Solanki, Jose Carlos del Toro Iniesta, Joachim Woch1, Achim Gandorfer,
Johann Hirzberger1, Wolfgang Schmidt, Thierry Appourchaux, Alberto Alvarez-Herrero
and the SO/PHI team, in Polarimetry: From the Sun to Stars and Stellar Environments,
K.N. Nagendra, S. Bagnulo, R. Centeno, & M.J. Martínez González (eds.), Proceedings
of the International Astronomical Union, Volume 305, pp. 108-113, CUP. 2015.

Academic works related to this thesis in which the author has been advisor:

� “Diseño de Módulos de cómputo en tiempo real para FPGA”. José Manuel Martín
Rodríguez. Project for obtaining the grade of Ingeniería en Telecomunicaciones. 2013.
University of Granada.

� “Implementation of classical methods of magnetic field measurement in an FPGA”.

Pablo Torné Torres. Master thesis. 2012. University of Granada.

193

21 Acronyms

ALU Arithmetric Logic Unit
ASIC Application-Specific Integrated Circuit
BCH Bose and Chaudhuri code
BRAM Block random access memory
CORDIC Coordinate Rotation DIgital Computer
DPU Data Processing Unit
DSP Digital Signal Processing
ESA European Space Agency
ESA European Space Agency
FFT Fast Fourier Transform
FIFO First Input First Output
FPGA Field Programmable Gate Array
FSM Finite State Machine
I/F InterFace
I/O Input/Output
IDL Interactive Data Language
IP Intelectual property
IQUV Stockes profiles
ISA Instruction Set Architecture
ISS Image Stabilization System
LOS Line-Of-Sight
LSB Least significant bits
ME Milne-Eddington
MILOS MILne-Eddington inversion of pOlarized Spectra
MIMD Single Instruction stream Multiple Data stream
MMC Multiport Memory Controller
MPP Massive Parallel Processing
MSB Most significant bits
NoC Network On Chip
nP nanoProcessor
nPCU nano Processor Control Unit
nProcessor nanoProcessor
PD Processor-Diagonal (Brent’s Algorithm)
PMP Polarization Modulation Package
PND Processor-Non-Diagonal (Brent’s Algorithm)
pP pProcessor
pProcessor picoProcessor
PV Processor-Vectorial (Brent’s Algorithm)
QA/PA Quality assurance/Product Assurance
RAM Random Access Memory
RF Response Functions
RISC Reduced Instruction Set Computer
ROM Read Only Memory
RTE Radiative Transfer Equation
RTL Register Transfer Level
SIMD Single Instruction stream Multiple Data stream
SO Solar Orbiter

194

Acronyms

SO/PHI Polarimetric and Helioseismic Imager for Solar Orbiter
SOB Shared Operations Block
SoC System On Chip
SoCP SoCWire Protocol
SSRFA Spectral Synthesis and Response Functions Algorithm
SVD Singular Value Decomposition
VHDL Very high speed integrated circuit Hardware Description Language

 References

 195

22 References

[Allan (1995)] Allan Vicki H. “Software pipelining”. ACM Computing Surveys, 1995. Vols. 27

Issue 3: pp. 367 - 432.

[Amdahl (1967)] Amdahl , Amdahl G., Validity of the Single Processor Approach to Achieving

Large-Scale Computing Capabilities // AFIPS Conference Proceedings. - 1967. - Vol.

30. - págs. 483-485.

[Acton (1992)] Acton, L., Tsuneta, S., Ogawara, Y., Bentley, R., Bruner, M., Canfield, R.,

Culhane, L., Doschek, G., Hiei,

E., Hirayama, T.: 1992, The Yohkoh mission for high-energy solar physics. Science 258, 618 –

625.

[Allen (2008)] Allen G., Swift G., and Carmichael C., “Virtex-4qv static seu characterization

summary,” Jet Propulsion Laboratory Pasadena, California, Tech. Rep., 2008.

[Altera (2007)] Altera Inc. Accelerating High-Performance Computing With FPGAs. White

Paper WP-01029-1.1. 2007

[Aparicio (2010)] B. Aparicio, J.P. Cobos. picoProcessor architecture. SOL-PHI-IAA-SW3100-

RP-5. 2010

[Aparicio (2013)] B. Aparicio, J.P. Cobos, J.L. Ramos. RTE inverter FPGA development plan.

SOL-PHI-IAA-SW3100-PL-1

[Aparicio (2014)] B. Aparicio, J.P. Cobos, J.L. Ramos. RTE inverter FPGA requirement

specification. SOL-PHI-IAA-SW3100-SP-1

[Baklouti (2010)] Baklouti M. et al. Scalable mpNoC for massively parallel systems – Design

and implementation on FPGA. Journal of Systems Architecture, July 2010.

[Bolotski (1994)] Bolotski M., et al. Unifying FPGAs and SIMD Arrays. Workshop on Field

Programmable Gate Arrays 1994.

[Borkar (2010)]S. Borkar, “Thousand Core Chips—A Technology Perspective,” Proc.

ACM/IEEE 44th Design Automation Conf. (DAC), ACM Press, 2007, pp. 746-749.

[Borrero (2010)] Borrero J.M. e al. VFISV: Very Fast Inversion of the Stokes Vector for the

Helioseismic and Magnetic Imager. 2010, Sol. Phys., 35.

[Bose (1960)] Bose, R. C.; Ray-Chaudhuri, D. K. (March 1960), "On A Class of Error

Correcting Binary Group Codes", Information and Control 3 (1): 68–79,

[Bubenhagen (2010)] F. Bubenhagen, B. Fiethe, J. Ilstad, H. Michalik, P. Norridge, B. Osterloh,

W. Sullivan, C. Topping, Enhanced Dynamic Reconfigurable Processing Module for

196

References

Future Space Applications, International SpaceWire Conference, pp. 475-482, June

2010

[Bubenhagen (2013)] Bubenhagen, F.; Fiethe, B.; Lange, T.; Michalik, H.; Michel, H.,

"Reconfigurable platforms for Data Processing on scientific space instruments," in

Adaptive Hardware and Systems (AHS), 2013 NASA/ESA Conference on , vol., no.,

pp.63-70, 24-27 June 2013

[Bravo (2006)]. Bravo, I.; Jimenez, P.; Mazo, M.; Lazaro, J.L.; Gardel, A., "Implementation in

Fpgas of Jacobi Method to Solve the Eigenvalue and Eigenvector Problem," in Field

Programmable Logic and Applications, 2006. FPL '06. International Conference on ,

vol., no., pp.1-4, 28-30 Aug. 2006

[Bravo (2007)] Bravo I., Arquitectura basada en FPGA para la detección de objetos en

movimiento, utilizando visión computacional y PCA. Thesis dissertation, 2007.

 [Bravo (2008)] Bravo, I., Mazo, M., et al., "Novel HW Architecture Based on FPGAs Oriented

to Solve the Eigen Problem," Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on , vol.16, no.12, pp.1722,1725, Dec. 2008

[Brent (1983)] R. P. Brent, F. T. Luk and C. F. Van Loan, “Computation of the singular value

decomposition using meshconnected processors”, J. of VLSI and Computer Systems 1,

3 (1983–1985), 242–270. Also appeared as Report TR 82-528, Department of Computer

Science, Cornell University, November 1982; and as Report TR-CS-83-05, Department

of Computer Science, ANU, January 1983, 34 pp.

[Brent (1985)] R. P. Brent and F. T. Luk, “The solution of singular-value and symmetric

eigenvalue problems on multiprocessor arrays”, SIAM J. Scientific and Statistical

Computing 6 (1985), 69–84.

[Cavallaro (1987] Cavallaro, 1987. "CORDIC Arithmetic for an SVD processor". Journal of

parallel and distributed computing

[Cassel (2011)] M. Cassel, M. Stähle, U. Lonsdorfer, F. Gliem, D. Walter, T. Fichna, The First

European Spaceborne Mass Memory System based on NAND-Flash Technology: The

Sentinel-2 MMFU, ReSpace / MAPLD 2011 Conference, August 2011

[Cobos (2015)] Cobos Carrascosa, J.P.; Aparicio del Moral, B.; Ramos, J.L.; Balaguer M.;

Lopez Jimenez, A.C.; del Toro Iniesta, J.C. “Scientific Computing and Fault Mitigation

on FPGA Aboard the Solar Orbiter PHI Instrument”. In Proc. of the NASA/ESA

Conference on Adaptive Hardware and Systems (AHS’15), Montreal(CA), vol., no.,

pp.1-8, 15-18 June 2015. IEEE Explore Publisher.

[Cobos (2014)] Cobos Carrascosa, J.P.; Aparicio del Moral, B.; Ramos, J.L.; Lopez Jimenez,

A.C.; del Toro Iniesta, J.C., "A Multicore Architecture for High-Performance Scientific

 References

 197

Computing Using FPGAs," Embedded Multicore/Manycore SoCs (MCSoc), 2014 IEEE

8th International Symposium on , vol., no., pp.223-228, 23-25 Sept. 2014 IEEE Explore

Publisher.

[Cobos (2011)] J.P. Cobos, B. Aparicio, RTE inversion on space- qualified configurable

devices, Technical Note SOL-PHI-IAA-SW3100-TN-2, September 2011

[Cobos (2013)] J.P. Cobos , J.L. Ramos, B. Aparicio. RTE inverter FPGA validation and

verification plan. SOL-PHI-IAA-SW3100-PL-2

[Cobos (2010-A)] Cobos J.P. C-MILOS. SOL-PHI-IAA-SW2500-TN-1. 2010.

[Cobos (2010-B)] Cobos J.P. RTE Inversion: computational cost. SOL-PHI-IAA-SW2500-TN-

3. 2010.

[Cobos (2014)] Cobos J.P, Aparicio B., Ramos J.L. RTE inverter FPGA detailed Design. SOL-

PHI-IAA-SW3100-RP-5. 2014

[Cobos (2015-A)] Cobos Carrascosa, J.P.; Aparicio del Moral, B.; Ramos, J.L.; Balaguer M.;

Lopez Jimenez, A.C.; del Toro Iniesta, J.C. “Scientific Computing and Fault Mitigation

on FPGA Aboard the Solar Orbiter PHI Instrument”. In Proc. of the NASA/ESA

Conference on Adaptive Hardware and Systems (AHS’15), Montreal(CA), vol., no.,

pp.1-8, 15-18 June 2015. IEEE Explore Publisher.

[Cobos (2015-B)] Cobos Carrascosa, J.P.; Ramos, J.L.; Aparicio del Moral, B.; Balaguer M.;

Lopez Jimenez, A.C.; del Toro Iniesta, J.C. “SIMD architecture on FPGA for scientific

computing aboard a space instrument”. Journal of Systems Architecture (Elsevier). In

press.

[del Toro (2011] del Toro Iniesta J.C., Torné Torres P., Cobos Carrascosa J.P.

Magnetographic and tachographic estimates trhough classical methods. SOL-

PHI-IAA- SW3100-TN-1

[del Toro (2003)] del Toro Iniesta, J.C, Introduction to Spectropolarimetry, Cambridge

University Press: Cambridge, 2003.

[Dijkstra (1972)] Edsger W. Dijkstra – “The Humble Programmer” AM Turing Award.

ACM Turing Lecture. 1972

[Domingo (1995)] Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: an

overview. Solar Phys. 162, 1 – 37.

[Dwyer (1992)] Dwyer H., Torng H. C., “An out-of-order superscalar processor with

speculative execution and fast, precise interrupts”. MICRO 25 Proceedings of the 25th

annual international symposium on Microarchitecture. 1992.

198

References

[Elliot (1988)] C. J. Elliott and J. H. Davenport. “Very-High-Performance Multiple-Instruction

Multiple-Data Applications”. Philosophical Transactions of the Royal Society of

London.

[Engel (2006) J. Engel, M. Wirthlin, K. Morgan, and P. Graham. Predicting On-Orbit Static

Single Event Upset Rates in Xilinx Virtex FPGAs. Los Alamos National Laboratory,

September 2006. Pp. 34-51]

[ESA (2008)] Space product assurance ASIC and FPGA development (ECSS-Q-ST-60-02C)

[Fiethe (2012)] Fiethe, B.; Bubenhagen, et al., "Adaptive hardware by dynamic reconfiguration

for the Solar Orbiter PHI instrument," NASA/ESA Conference on Adaptive Hardware

and Systems (AHS), 2012

[Fiethe (2014)] Björn Fiethe SOL-PHI-IDA-PA4200-PL-1 Virtex-4 FPGA CF1140 assembly

qualification plan - Company Confidential -

[Flyn (1966)] Flyn M. J., Very High-Speed Computing Systems // Proc of the IEEE. - 1966. -

Vol. 54. - págs. 1901-1909. - 12.

[Florent (2005)] Florent de Dinechin, Arnaud Tisserand: Multipartite Table Methods, 2005.

IEEE Transactions on Computers, vol. 54, no. 3, marzo, 2005.

[Forsythe (1977)] Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods

for Mathematical Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9.

[Fossati (2011)] L. Fossati, J. Illstad, The Future of Embedded Systems at ESA: towards

Adaptability and Reconfigurability, In NASA/ESA Conference on Adaptive Hardware

and Systems, Volume (AHS-2011), pp 113-120, June 2011

[Fuller (2000)] Fuller E., et al., Radiation testing update, seu mitigation, and availability

analysis of the Virtex FPGA for space re-configurable computing. International

Conference on Military and Aerospace Programmable Logic Devices, 2000.

[Green500] Top Green 500. http://www.green500.org/

[Gokhale (1995)] Gokhale M., Schott B.. Data parallel C on a reconfigurable logic array.

Journal of Supercomputing 9(3), 1995.

[Golub (1974)] Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed.

(Baltimore: Johns Hopkins University Press), §8.3 and Chapter 12. Lawson, C.L., and

Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ: Prentice-

Hall), Chapter 18.

[Götze (1993)] Gotze, J.; Paul, S.; Sauer, M., "An efficient Jacobi-like algorithm for parallel

eigenvalue computation," in Computers, IEEE Transactions on , vol.42, no.9, pp.1058-

1065, Sep 1993

 References

 199

[Handy (1999)] Handy, B.N., Acton, L.W., Kankelborg, C.C.,Wolfson, C.J., Akin, D.J., Bruner,

M.E., Caravalho, R., Catura, R.C., Chevalier, R., Duncan, D.W., Edwards, C.G.,

Feinstein, C.N., Freeland, S.L., Friedlaender, F.M., Hoffmann, C.H., Hurlburt, N.E.,

Jurcevich, B.K., Katz, N.L., Kelly, G.A., Lemen, J.R., Levay,M., Lindgren, R.W.,

Mathur, D.P., Meyer, S.B., Morrison, S.J., Morrison, M.D., Nightingale, R.W., Pope,

T.P., Rehse, R.A., Schrijver, C.J., Shine, R.A., Shing, L., Strong, K.T., Tarbell, T.D.,

Title, A.M., Torgerson, D.D., Golub, L., Bookbinder, J.A., Caldwell, D., Cheimets,

P.N., Davis,W.N., Deluca, E.E., McMullen, R.A., Warren, H.P., Amato, D., Fisher, R.,

Maldonado, H., Parkinson, C.: 1999, The transition region and coronal explorer. Solar

Phys. 187, 229 – 260.

[Hernández (2015)] D. Hernández Expósito, J.P. Cobos Carrascosa, M. Rodríguez Valido and

V. Martínez Pillet, Arquitectura multiprocesador SIMD en FPGA para el cálculo de la

2D-DWT, Jornadas de Computación Reconfigurable y Aplicaciones, Córdoba (España)

2015

[Hennessy (1999)] Hennessy J. Gupta A., Heinrich M. Cache,Coherent Distributed Shared

Memory: Perspectives on Its Development and Future Challenges // Proceedings of the

IEEE. Special Issue on Distributed Shared Memory. - 1999.

[Hirzberger (2012)] J. Hirzberger. 2012. PHI data processing pipeline. SOL-PHI-MPS-

SW3200-TN-1

[Hirzberger (2013-A)] J. Hirzberger, 2013, PHI Instrument Requirements Specification. SOL-

PHI-MPS-DE2000-SP-1

[Hirzberger (2013-B)] J. Hirzberger, D. Orozco Suarez, Julian Blanco Rodríguez PHI Science

Performance Report. SOL-PHI-MPS-DE1000-RP-1, issue 1, revision 0, 2013-11-11.

 [Hirzberger (2015)] Hirzberger J. 2015. SOL-PHI-MPS-OP3000-MA-1. PHI Instrument User

Manual

[Householder (1970)] Householder, A.S. 1970, The Numerical Treatment of a Single Nonlinear

Equation (New York: McGraw-Hill).

[Intel] Intel Corporation. http://ark.intel.com/

[Jacobi (1846)] Jacobi, C. G. J.: Über ein leichtes Verfahren, die in der Theorie der

Säkularstörungen vorkommenden Gleichungen numerisch aufzulösen. Crelle's Journal

30, 51--94 (1846)

 [Kahan (1987)] William Kahan. "Lecture Notes on the Status of IEEE Standard 754 for Binary

Floating-Point Arithmetic" 1987

200

References

[Kaiser (2008)] Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M.,

Christian, E.: 2008, The STEREO mission: An introduction. Space Sci. Rev. 136, 5 –

16.

[Kosugi (2007)] Kosugi, T., Matsuzaki, K., Sakao, T., Shimizu, T., Sone, Y., Tachikawa, S.,

Hashimoto, T., Minesugi, K., Ohnishi, A., Yamada, T., Tsuneta, S., Hara, H., Ichimoto,

K., Suematsu, Y., Shimojo, M., Watanabe, T., Shimada, S., Davis, J.M., Hill, L.D.,

Owens, J.K., Title, A.M., Culhane, J.L., Harra, L.K., Doschek, G.A., Golub, L.: 2007,

The Hinode (Solar-B) mission: An overview. Solar Phys. 243, 3 – 17.

[Lam (1988)] Lam M. “Software pipelining: An effective scheduling technique for VLIW

machines”. Conference on Programming Language Design and Implementation. - 1988.

- pp. 318-328.

[Learn (2011)] Learn M. Evaluation of Soft-Core Processors on a Xilinx Virtex-5. Sandia

National Laboratories. SAND2011-2733.

[Lin (2002)] Lin, R.P., et al.: 2002, The Reuven Ramaty High-Energy Solar Spectroscopic

Imager (RHESSI). Solar Phys. 210, 3 – 32.

[Mahmood (2011)] Mahmood, B.S.; Al Jbaar, M.A. Design and implementation of SIMD

Vector Processor on FPGA. ISIICT, 2011

[Marsden (2011)]Marsden, R.G., Müller, D.: 2011, Solar Orbiter definition study report,

ESA/SRE(2011)14

[Meller (2013)] Meller R. 2013. SO-PHI-MPS-SY1200-DR-01, Functional Diagram

[Meller (2013-B)] Meller R. 2013. SOL-PHI-MPS-SY1800-PL-1_3_3 Engineering Plan

[Michel (2013)] Michel, H.; Bubenhagen, et al., "Worst case error rate predictions and

mitigation schemes for Virtex-4 FPGAs on solar orbiter," NASA/ESA Adaptive

Hardware and Systems, 2013, pp.1,8, 24-27 June 2013

[Moler (1986)] Moler, C. "Matrix Computation on Distributed Memory Multiprocessors".

Hypercube Multiprocessors 1986

[Müller (2013)] D. Müller · R.G. Marsden · O.C. St. Cyr · H.R. Gilbert · The Solar Orbiter

Team. Solar Orbiter. Exploring the Sun–Heliosphere Connection Solar Phys (2013)

285:25–70

[Nvidia] NVIDIA Corporation. www.nvidia.com

[Orozco (2007)] Orozco Suárez, D., and del Toro Iniesta, J.C., The usefulness of analytic

response functions, 2007, Astronomy and Astrophysics, 462, 1137

[Orozco (2008)] Orozco D. Diffraction-limited spectropolarimetry of quiet-Sun magnetic

fields”. Doctoral Thesis. 2008.

 References

 201

[Osterloh (2008)] Osterloh, B.; Michalik, et al., SoCWire: A Network-on-Chip Approach for

Reconfigurable System-on-Chip Designs in Space Applications, Adaptive Hardware

and Systems, 2008. AHS '08. NASA/ESA Conference on , June 2008

[Ottoni (2005)]Ottoni, G. et al. “Automatic thread extraction with decoupled software

pipelining”. MICRO-38. Proceedings. 38th Annual IEEE/ACM International

Symposium on Microarchitecture, 2005

[Orozco (2008)] Orozco D. Diffraction-limited spectropolarimetry of quiet-Sun magnetic

fields”. Doctoral dissertation. 2008.

[Pesnell (2012)] Pesnell,W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics

Observatory (SDO). Solar Phys. 275, 3 – 15.

[Patterson (2000)] Patterson David A., Hennessy John L. and Canal Corretger Ramón,

Estructura y Diseño de Computadores: Editorial Reverte S.A, 2000. - Cap 7. Pp 529 -

539. - 8429126171.

[Porsche (1977)] Porsche, H.: 1977, General aspects of the mission Helios 1 and 2. Introduction

to a special issue on initial scientific results of the Helios mission. J. Geophys. 42, 551 –

559.

[Press (1992)] Press W.H. et al., Numerical recipes in C (2nd ed.): the art of scientific

computing. Cambridge University Press. 1992.

[Randell (1964)] Randell, B. and Russell, L.J. "Algol 60 Implementation" London: Academic

Press, 1964. ISBN 0-12-578150-4.

[Ramos (2011)] Jose Luis Ramos, Juan Pedro Cobos, Beatriz Aparicio, FPGA: Trigonometric

Functions. SOL-PHI-IAA-SW2500-TN-2

[Ramos (2011)] Jose Luis Ramos, Beatriz Aparicio , Juan Pedro Cobos, (SVD-FPGA): Brent’s

Algorithm Description SOL-PHI-IAA-SW3100-TN-9

[Ramos (2013)] RTE inverter FPGA: test system in hardware. 2013. SOL-PHI-IAA-SW3100-

TN-10

[Ramos (2014)] J.L. Ramos, J.P. Cobos, B. Aparicio, RTE inverter FPGA: hardware and

software I/F. SOL-PHI-IAA-SW3100-TN-11. 2014

[Ramos (2014-B)] José Luis Ramos, Juan Pedro Cobos, Beatriz Aparicio. RTE inverter FPGA:

power consumption test report. SOL-PHI-IAA-SW3100-RP-17

[Rollins (2010)] N. Rollins, M. Fuller, and M.J. Wirthlin. A Comparison of FaultTolerant

Memories in SRAM-based FPGAs. In 2010 IEEE Aerospace Conference

[Roma (2012)] Roma, N., Magalhaes, P., System-level prototyping framework for

heterogeneous multi-core architecture applied to biological sequence analysis. IEEE

ISRSR 2012.

202

References

[Scherrer (2002)] Scherrer, P. H., et al, Sol. Phys., 2002. P. 275- 207

[Schwenn (1990)] Schwenn, R., Marsch, E.: 1990, Physics of the Inner Heliosphere I. Large-

Scale Phenomena, Physics and Chemistry in Space 20, Springer, Berlin.

[Schwenn (1991)] Schwenn, R.,Marsch, E.: 1991, Physics of the Inner Heliosphere II. Particles,

Waves and Turbulence, Physics and Chemistry in Space 21, Springer, Berlin. Sheeley,

N.R. Jr.: 1991, Polar faculae – 1906 – 1990.

[Siegel (1979)] Siegel, H.J. A Model of SIMD Machines and a Comparison of Various

Interconnection Networks., Transactions on Computers, no.12, pp.907,917, Dec. 1979

[Socas-Navarro (2001)] Socas-Navarro, H. 2001, in Advanced Solar Polarimetry - Theory,

observation, and instrumentation, ASP Conf. Ser. 236, p.487

[SoCWire] System-on-chip Wire. http://socwire.org/

[Solanki (2015)] Sami K. Solanki, Jose Carlos del Toro Iniesta, Joachim Woch1, Achim

Gandorfer, Johann Hirzberger1, Wolfgang Schmidt, Thierry Appourchaux, Alberto

Alvarez-Herrero and the SO/PHI team, in Polarimetry: From the Sun to Stars and

Stellar Environments, K.N. Nagendra, S. Bagnulo, R. Centeno, & M.J. Martínez

González (eds.), Proceedings of the International Astronomical Union, Volume 305, pp.

108-113, CUP. 2015

[Stanley (2003)] Li Stanley Y. C. et al. FPGA-based SIMD Processor. 11th IEEE S FPCCM

2003.

[Stone (1977)] Stone, E.C.: 1977, The Voyager missions to the outer system. Space Sci. Rev. 21,

75.

[Swift (2008)] G. Swift, G. Allen, C. W. Tseng, C. Carmichael, G. Miller, and J. George, “Static

upset characteristics of the 90nm Virtex-4QV FPGAs,” in Radiation Effects Data

Workshop, 2008 IEEE, July 2008, pp. 98–105.

[SoCWire] System-on-chip Wire. http://socwire.org/

[Sravanthi (2014)]A review of High Performance Computing. G.Sravanthi , B.Grace2 ,

V.kamakshamma3 IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-

0661, p- ISSN: 2278-8727Volume 16, Issue 1, Ver. VII (Feb. 2014), PP 36-43

[Torné (2012)] Torné P. “Implementation of classical methods of magnetic field measurement

in an FPGA” Master thesis. 2012. University of Granada

[Tong (2006)] Tong, J.G., et al. Soft-Core Processors for Embedded Systems, International

Conference on Microelectronics, 2006.

[TOP500] TOP500 Supercomputer Sites. www.top500.org

[Volder (1959]Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE

Transactions on Electronic Computers, pp. 330–334, September 1959

 References

 203

[Veen (1986)] Veen A. Dataflow machine architecture. ACM Computing Surveys, Vol. 18, No.

4, December 1986

[Wenzel (1992)] Wenzel, K.P., Marsden, R.G., Page, D.E., Smith, E.J.: 1992, The Ulysses

mission. Astron. Astrophys. Suppl. Ser. 92, 207.

[Wilkinson (1999)] Wilkinson B. And Michael Allen, “Parallel Programming: Techniques and

Applications Using Networked Workstations and Parallel Computers”, Prentice Hall,

1999.

[Wilkinson 1988] The Algebraic Eigenvalue Problem. J. H. Wilkinson (Ed.). Oxford University

Press, Inc., New York, NY, USA. 1988

[Xilinc] Xilinx Inc. www.xilinx.com

[Xu (2003)] Xu X. and Ziavras S.G. A Configurable and Scalable SIMD Machine for

Computation-Intensive Applications. Transactions on Computers, Oct. 2003.

[Yiannacouras (2012)] Yiannacouras, P. et al. Portable, Flexible, and Scalable Soft Vector

Processors. IEEE Transactions on VLSI. Aug. 2012

[Zima (1988)] Zima H., et al. SUPERB: A tool for semi-automatic MIMD/SIMD

parallelization. Parallel Computing, January 1988.

