[OII] emitters in MULTIDARK-GALAXIES and DEEP2

DOI: 
10.1093/mnras/staa2292
Publication date: 
01/08/2020
Main author: 
Favole, G.
IAA authors: 
Prada, F.
Authors: 
Favole, G.;Gonzalez-Perez, V.;Stoppacher, D.;Orsi, Á.;Comparat, J.;Cora, S. A.;Vega-Martínez, C. A.;Stevens, A. R. H.;Maraston, C.;Croton, D.;Knebe, A.;Benson, A. J.;Montero-Dorta, A. D.;Padilla, N.;Prada, F.;Thomas, D.
Journal: 
Monthly Notices of the Royal Astronomical Society
Publication type: 
Article
Pages: 
5432-5453
Abstract: 
We use three semi-analytic models (SAMs) of galaxy formation and evolution run on the same 1h<SUP>-1</SUP>Gpc MultiDark Planck2 cosmological simulation to investigate the properties of $\left[\rm O\, {\rm {\small II}}\right]$ emission line galaxies at redshift z ∼ 1. We compare model predictions with different observational data sets, including DEEP2-FIREFLY galaxies with absolute magnitudes. We estimate the $\left[\rm O\, {\rm {\small II}}\right]$ luminosity ( $L{\left[\mathrm{O\, {\rm {\small {II}}}}\right]}$ ) of our model galaxies using the public code GET_EMLINES, which ideally assumes as input the instantaneous star formation rates (SFRs). This property is only available in one of the SAMs under consideration, while the others provide average SFRs, as most models do. We study the feasibility of inferring galaxies' $L{\left[\mathrm{O\, {\rm {\small {II}}}}\right]}$ from average SFRs in post-processing. We find that the result is accurate for model galaxies with dust attenuated $L{\left[\mathrm{O\, {\rm {\small {II}}}}\right]}$ ≲ 10<SUP>42.2</SUP>erg s<SUP>-1</SUP> ( $&lt;5\%$ discrepancy). The galaxy properties that correlate the most with the model $L{\left[\mathrm{O\, {\rm {\small {II}}}}\right]}$ are the SFR and the observed-frame u and g broad-band magnitudes. Such correlations have r-values above 0.64 and a dispersion that varies with $L{\left[\mathrm{O\, {\rm {\small {II}}}}\right]}$ . We fit these correlations with simple linear relations and use them as proxies for $L{\left[\mathrm{O\, {\rm {\small {II}}}}\right]}$ , together with an observational conversion that depends on SFR and metallicity. These proxies result in $\left[\rm O\, {\rm {\small II}}\right]$ luminosity functions and halo occupation distributions with shapes that vary depending on both the model and the method used to derive $L{\left[\mathrm{O\, {\rm {\small {II}}}}\right]}$ . The amplitude of the clustering of model galaxies with $L{\left[\mathrm{O\, {\rm {\small {II}}}}\right]}$ &gt;10<SUP>40.4</SUP>erg s<SUP>-1</SUP> remains overall unchanged on scales above 1 h<SUP>-1</SUP>Mpc, independently of the $L{\left[\mathrm{O\, {\rm {\small II}}}\right]}$ computation.
Database: 
ADS
SCOPUS
URL: 
https://ui.adsabs.harvard.edu/#abs/2020MNRAS.497.5432F/abstract
ADS Bibcode: 
2020MNRAS.497.5432F
Keywords: 
galaxies: distances and redshifts;galaxies: haloes;galaxies: statistics;cosmology: observations;cosmology: theory;large-scale structure of Universe;Astrophysics - Astrophysics of Galaxies;Astrophysics - Cosmology and Nongalactic Astrophysics