During the last two decades, multiple observation techniques have enabled the study of exoplanet atmospheres, informing us about their chemical composition, thermal distribution and transport processes. The most successful techniques include low-resolution transit and eclipse spectroscopy, phase curves, and high-resolution Doppler spectroscopy. In all cases, the extraction of the atmospheric signal presents a challenge, being comparable to or smaller than instrumental systematic effects, stellar activity and potentially other astrophysical signals. I will present an overview of data detrending methods and modeling tools that I have developed in recent years, which shed light on the nature of dozens of exoplanetary systems. I will also discuss my ongoing plan to exploit synergies between various types of observation, with an emphasis on leveraging low- and high-resolution spectroscopy. This holistic approach is crucial to maximizing the scientific return of JWST, as well as the upcoming Ariel and PLATO missions.