La fusión de dos estrellas de neutrones permite el primer estudio simultáneo en luz y ondas gravitatorias

Se trata de la quinta detección de ondas gravitatorias, pero la primera en la que se localiza y estudia la contrapartida en ondas electromagnéticas. Investigadores del Instituto de Astrofísica de Andalucía (IAA-CSIC) han participado en varios estudios internacionales sobre el fenómeno

16/10/2017

Tras siglos estudiando el universo en ondas electromagnéticas –lo que llamamos luz–, la detección en 2015 de ondas gravitatorias abrió una nueva ventana al cosmos. El origen de esta nueva emisión se hallaba en la fusión de dos agujeros negros, objetos que no emiten luz y solo pueden estudiarse a través de su influencia gravitatoria. Ahora, un estudio internacional ha permitido, por primera vez, observar un objeto en luz y ondas gravitatorias: una fusión de dos estrellas de neutrones que ha inaugurado una nueva era en la observación del universo.

UN FENÓMENO ÚNICO

El 17 de agosto, a las 12:41:04, el instrumento LIGO detectaba el evento transitorio de ondas gravitatorias GW170817, el quinto de la historia. Dos segundos después, los satélites Fermi e INTEGRAL detectaban una explosión de rayos gamma (un GRB, de su nombre inglés), que grupos de investigación de todo el mundo comenzaron a investigar, entre ellos tres del Instituto de Astrofísica de Andalucía (IAA-CSIC). Como resultado, esta semana se publican numerosos artículos que aportan una completa visión del fenómeno, ocurrido en la galaxia NGC 4993, a unos ciento treinta millones de años luz.

"Tras la detección de la luz óptica con el telescopio robótico Javier Gorosabel en la estación española BOOTES-5 (México), participamos en una campaña de observación que nos permitió estudiar el fenómeno durante quince días cubriendo desde el ultravioleta hasta el infrarrojo cercano -apunta Alberto Castro-Tirado, investigador principal del grupo ARAE (Astrofísica robótica y altas energías) del Instituto de Astrofísica de Andalucía (IAA-CSIC) que participa en tres artículos sobre el evento-. Así pudo identificarse la kilonova asociada con la fuente emisora de ondas gravitacionales en la galaxia NGC 4993, y cuyo origen se halla en la fusión de dos estrellas de neutrones".

Las estrellas de neutrones son objetos muy compactos y de rápida rotación que surgen cuando una estrella muy masiva expulsa su envoltura en una explosión de supernova. "Hace casi tres décadas se predijo que una fusión de dos estrellas de neutrones produciría un estallido corto de rayos gamma (GRB), ondas gravitatorias  y una kilonova, un fenómeno similar a una supernova pero cuya energía procede en parte del decaimiento de especies radiactivas. Gracias a los estudios de GW170817 ha podido confirmarse este escenario", señala Christina Thöne, co-investigadora principal del grupo HETH (Fenómenos Transitorios de Alta Energía y su Entorno) del IAA-CSIC que participa en seis artículos sobre GW170817.

EL ORIGEN DE LOS ELEMENTOS PESADOS

Este fenómeno ha permitido, además, establecer una relación clara entre la fusión de estrellas de neutrones y la producción de elementos químicos. Prácticamente todos los elementos químicos que conocemos tienen un origen astronómico, y se produjeron bien en etapas muy próximas al big bang, en las que se formaron el hidrógeno y el helio, o bien en las estrellas, tanto a través de la fusión de elementos en el núcleo (que producen carbono, nitrógeno o hierro) como a través eventos explosivos (en los que se generan el plomo o el cobre).

Sin embargo, existen discrepancias sobre lo que se conoce como proceso-r (o proceso rápido), que tiene lugar en eventos estelares explosivos y es responsable de la producción de la mitad de los elementos más pesados que el hierro, entre ellos el uranio y el plutonio. Aunque en un principio se pensaba que eran las supernovas la fuente de estos elementos, los últimos estudios favorecían las fusiones de estrellas de neutrones como principales productoras de los elementos más pesados.

"Hemos observado lo que podría considerarse el testimonio de dos estrellas que, posiblemente, murieron hace unos diez mil millones de años, pero que nos ha permitido estudiar los elementos pesados que se forman en estos entornos y confirmar que la fusión de estrellas de neutrones constituye una de las fuentes de los elementos del proceso-r", apunta la investigadora.

El hallazgo y estudio tanto de las ondas gravitatorias como de la luz de este fenómeno ha permitido desvelar muchos de los procesos físicos involucrados en la fusión y establecer un cuerpo de conocimiento único de un objeto celeste: las ondas gravitatorias han revelado su masa, rotación, distancia y posición en el cielo, en tanto que las ondas electromagnéticas han permitido estudiar su entorno (una galaxia envejecida que, posiblemente, se fusionó con otra en su pasado reciente), así como la hidrodinámica y la formación de elementos en el material expulsado. Incluso, este estudio ha permitido obtener una medida independiente de la constante de Hubble, que mide la tasa de expansión del universo.

"La contrapartida electromagnética era excepcionalmente débil para un evento de este tipo, y tuvimos mucha suerte al detectarlo. Se trata, sin duda, de uno de los descubrimientos más importantes de la astrofísica de la década", indica Antonio de Ugarte, co-investigador principal del grupo HETH del IAA-CSIC que participa en los trabajos.

El Instituto de Astrofísica de Andalucía ha tomado parte en distintas campañas de observación de este objeto, que abarcan prácticamente todas las longitudes de onda y emplean las instalaciones astronómicas más avanzadas, entre ellas el European VLBI Network (a través del grupo RJB, Chorros relativistas y blázares), el telescopio espacial Hubble, el satélite Chandra o el Very Large Telescope.

LAS ONDAS GRAVITATORIAS

Las ondas gravitatorias son ondulaciones en la estructura del espaciotiempo, el "tejido" que compone el universo y que podemos imaginar como una malla elástica tensada. Una malla que, ante la presencia de materia, se curva. Esta curvatura en la geometría del espaciotiempo debido a la presencia de materia es la causante de los efectos gravitatorios que rigen el movimiento de los cuerpos (tanto el de los planetas alrededor del Sol como el de los cúmulos de galaxias).

Einstein predijo, en su teoría general de la relatividad (1916), la existencia de ondas gravitatorias, un fenómeno asociado a los objetos que generan los entornos gravitatorios más extremos, como los sistemas binarios de agujeros negros y estrellas de neutrones. Estos sistemas generarían distorsiones en el espaciotiempo que, al igual que las ondas que produce una piedra en el agua, se propagan desde el origen a la velocidad de la luz acarreando valiosa información sobre los objetos que producen las ondas y sobre la naturaleza de la gravedad.

En la actualidad existen dos grandes instalaciones dedicadas a la búsqueda y análisis de ondas gravitatorias, LIGO, en Estados Unidos, y Virgo, en Italia. Las dos primeras detecciones de ondas gravitatorias fueron realizadas por LIGO, en tanto que la tercera fue fruto de la colaboración LIGO-Virgo. "Ahora, el reto se centra en sumar más detecciones de fuentes de ondas gravitatorias, pero también de hallar sus contrapartidas lumínicas. En este sentido, mi grupo de investigación en el IAA ha firmado un acuerdo de colaboración único en España para detectar estas contrapartidas", señala Alberto Castro-Tirado (IAA-CSIC).

Un total de doce investigadores del Instituto de Astrofísica de Andalucía han participado en el estudio de GW170817: Alberto Castro-Tirado, Binbin Zhang, Juan Carlos Tello, Youdong Hu y Ronan Cunniffe (ARAE -Astrofísica robótica y altas energías-); Christina Thöne, Antonio de Ugarte, Alex Kann, Luca Izzo, Zach Cano y Gabriella Hodosan (HETH -Fenómenos transitorios de alta energía y su entorno-); Iván Agudo (RJB -Chorros relativistas y blázares-).

Referencia: 

B. Abbott et al. "The multi-messenger discovery and observation of a binary neutron star merger". Physical Review Letters, The Astrophysical Journal Letters, October 2017.

S. J. Smartt et al. "The electromagnetic counterpart to the gravitational wave source GW 170817", Nature, October 2017.

B. Abbott et al. "A gravitational-wave standard siren measurement of the Hubble constant", Nature, October 2017.

E. Pian et al. "Spectroscopic identification of a kilonova associated with GW170817, Nature, October 2017.

A. J. Levan et al. "The environment of the binary neutron star merger GW 170817", The Astrophysical Journal Letters, October 2017.

N. R. Tanvir et al. "The emergence of a lanthanide-rich kilonova following the merger of two neutron stars", The Astrophysical Journal Letters, October 2017.

B.-B. Zhang et al. "A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor", The Astrophysical Journal Letters, October 2017.

S. Kim et al. ALMA and GMRT constraints on the off-axis gamma-ray burst 170817A from the binary neutron star merger GW170817, The Astrophysical Journal Letters, October 2017.

Contacto: 

Instituto de Astrofísica de Andalucía (IAA-CSIC)
Unidad de Divulgación y Comunicación
Silbia López de Lacalle - sll[arroba]iaa.es - 958230532
http://www.iaa.es
http://divulgacion.iaa.es