The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final sample

DOI: 
10.1093/mnras/stw3384
Publication date: 
01/01/2017
Main author: 
Grieb, Jan Niklas
IAA authors: 
Prada, Francisco
Authors: 
Grieb, Jan Niklas;Sánchez, Ariel G.;Salazar-Albornoz, Salvador;Scoccimarro, Román;Crocce, Martín;Dalla Vecchia, Claudio;Montesano, Francesco;Gil-Marín, Héctor;Ross, Ashley J.;Beutler, Florian;Rodríguez-Torres, Sergio;Chuang, Chia-Hsun;Prada, Francisco;Kitaura, Francisco-Shu;Cuesta, Antonio J.;Eisenstein, Daniel J.;Percival, Will J.;Vargas-Magaña, Mariana;Tinker, Jeremy L.;Tojeiro, Rita;Brownstein, Joel R.;Maraston, Claudia;Nichol, Robert C.;Olmstead, Matthew D.;Samushia, Lado;Seo, Hee-Jong;Streblyanska, Alina;Zhao, Gong-bo
Journal: 
Monthly Notices of the Royal Astronomical Society
Refereed: 
Yes
Publication type: 
Article
Pages: 
2085-2112
Abstract: 
We extract cosmological information from the anisotropic power spectrum measurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new FFT-based estimators, we measure the power spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles ℓ 〉 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias, and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular diameter distance, the Hubble parameter, and the cosmic growth rate, and explore the cosmological implications of our full shape clustering measurements in combination with CMB and SN Ia data. Assuming a ΛCDM cosmology, we constrain the matter density to Ω <SUB>M</SUB>= 0.311_{-0.010}^{+0.009} and the Hubble parameter to H_0 = 67.6_{-0.6}^{+0.7} km s^{-1} Mpc^{-1}, at a confidence level (CL) of 68 per cent. We also allow for non-standard dark energy models and modifications of the growth rate, finding good agreement with the ΛCDM paradigm. For example, we constrain the equation-of-state parameter to w = -1.019_{-0.039}^{+0.048}. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. (2016) to produce the final cosmological constraints from BOSS.
Database: 
ADS
SCOPUS
URL: 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016155774&doi=10.1093%2fmnras%2fstw3384&partnerID=40&md5=2a7cce07e5cbbb9a03b3e6a2de4520e8
ADS Bibcode: 
2017MNRAS.467.2085G
Keywords: 
cosmology: observations;cosmological parameters;dark energy;large-scale structure of Universe;Astrophysics - Cosmology and Nongalactic Astrophysics