Unveiling the stellar origin of the Wolf-Rayet nebula NGC 6888 through infrared observations

DOI: 
10.1093/mnras/staa2837
Publication date: 
01/09/2020
Main author: 
Rubio, G.
IAA authors: 
Guerrero, M. A.
Authors: 
Rubio, G.;Toalá, J. A.;Jiménez-Hernández, P.;Ramos-Larios, G.;Guerrero, M. A.;Gómez-González, V. M. A.;Santamarí, A. E.;Quino-Mendoza, J. A.
Journal: 
Monthly Notices of the Royal Astronomical Society
Refereed: 
Yes
Publication type: 
Article
Pages: 
415
Abstract: 
We present a comprehensive infrared (IR) study of the iconic Wolf-Rayet (WR) wind-blown bubble NGC 6888 around WR 136. We use Wide-field Infrared Survey Explorer (WISE), Spitzer IRAC and MIPS and Herschel PACS IR images to produce a sharp view of the distribution of dust around WR 136. We complement these IR photometric observations with Spitzer IRS spectra in the 5-38 μm wavelength range. The unprecedented high-resolution IR images allowed us to produce a clean spectral energy distribution, free of contamination from material along the line of sight, to model the properties of the dust in NGC 6888. We use the spectral synthesis code Cloudy to produce a model for NGC 6888 that consistently reproduces its optical and IR properties. Our best model requires a double distribution with the inner shell composed only of gas, whilst the outer shell requires a mix of gas and dust. The dust consists of two populations of grain sizes, one with small sized grains a<SUB>small</SUB>=[0.002-0.008] μm and another one with large sized grains a<SUB>big</SUB>=[0.05-0.5] μm. The population of big grains is similar to that reported for other red supergiants stars and dominates the total dust mass, which leads us to suggest that the current mass of NGC 6888 is purely due to material ejected from WR 136, with a negligible contribution of swept up interstellar medium. The total mass of this model is 25.5 $^{+4.7}_{-2.8}$ M<SUB>☉</SUB>, a dust mass of $M_\mathrm{dust}=0.14^{+0.03}_{-0.01}$ M<SUB>☉</SUB>, for a dust-to-gas ratio of 5.6 × 10<SUP>-3</SUP>. Accordingly, we suggest that the initial stellar mass of WR 136 was ≲50 M<SUB>☉</SUB>, consistent with current single stellar evolution models.
Database: 
ADS
URL: 
https://ui.adsabs.harvard.edu/#abs/2020MNRAS.499..415R/abstract
ADS Bibcode: 
2020MNRAS.499..415R
Keywords: 
stars: evolution;stars: individual: NGC 6888;WR 136;stars: winds;outflows;infrared: ISM;stars: Wolf-Rayet;Astrophysics - Solar and Stellar Astrophysics;Astrophysics - Astrophysics of Galaxies